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Asymptotic iteration method applied to new confining potentials
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Abstract. This work intends to evaluate the energy spectrum of a particle influenced by the new type of confined
interactions introduced in our previous work [Assi and Sous, Eur. Phys. J. Plus 133(5), 175 (2018); Assi et al, Mod.
Phys. Lett. 33(32), 1850128 (2018)]. We have used the asymptotic iteration method (AIM) to carry out numerical
computations and our results agree to a high degree of accuracy with those obtained by other researchers using
different methods as shown in the tables.
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1. Introduction

Obtaining analytical and numerical solutions of the
wave equations is a very important task in quantum
mechanics to understand different physical systems at
the atomic level [1–4]. Different analytical and numer-
ical methods have been used in the past to obtain
solutions to the associated eigenvalue problems such
as the supersymmetry method (SUSY) [5,6], the exact
quantisation method (EQM) [7–14], the tridiagonal rep-
resentation approach (TRA) [15–17], the asymptotic
iteration method (AIM) [18–23] and many other meth-
ods [24–27].

Very recently, Assi et al [17] introduced the follow-
ing one-dimensional (1D) and three-dimensional (3D)
potentials:

V (x) = B

cosh2(αx)
+ C cosh(2αx), (1.1)

V (r) = A

sinh2(αr)
+ B

cosh2(αr)
+C cosh(2αr), (1.2)

where A, C > 0, B < 0 for bound states and α > 0
is just a scaling parameter. We shall solve the corre-
sponding Schrödinger equation and obtain the energy
eigenvalues for both potentials using the AIM.

The flow of this work is organised as follows. In §2
and §3, we apply the AIM to solve the wave equation for
the 1D and the 3D potentials, respectively. In addition,

§4 contains our results and discussions for both the prob-
lems. Finally, we conclude our work in §5.

2. The 1D potential well

The non-relativistic stationary wave equation (in units
h̄ = m = 1) for the potential in (1.1) reads [28,29][
−1

2

d2

dx2 + B

cosh2(αx)
+ C cosh(2αx)

]
ψ(x)

= Eψ(x), (2.1)

where x ∈ (−∞, +∞). Using the change of variable
y = 2 tanh2(αx) − 1, eq. (2.1) becomes{
−α2(1 + y)(1 − y)2 d2

dy2 + α2

2
(1 − y)(1 + 3y)

d

dy

+ B

2
(1 − y) + 4C

1 − y

}
ψ(y) = (E + C)ψ(y),

(2.2)

where y ∈ [−1, +1]. The above equation can be written
in the following AIM form:

d2ψ(y)

dy2 = λ0(y)
dψ(y)

dy
+ s0(y)ψ(y), (2.3)

where

λ0(y) = 1

2

1 + 3y

1 − y2 , (2.4a)
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s0(y) = B̃

1 − y2 + C̃(
1 − y2

)
(1 − y)2

− Ẽ(
1 − y2

)
(1 − y)

(2.4b)

and

B̃ = B

2α2 , C̃ = 4C

α2 , Ẽ = E + C

α2 , (2.4c)

To improve the accuracy and fast convergence of the
AIM, in particular, we would like to reduce the order of
the regular singularity at y = 1, and we use the following
transformation in (2.3):

ψ(y) = (1 + y)a(1 − y)bg(y), (2.5)

where a and b are some non-negative parameters
selected so as to improve the convergence of our AIM
algorithm, and g(y) is some function of y. Using (2.5)
back in eq. (2.3), we get

d2g(y)

dy2 = λ̃0(y)
dg(y)

dy
+ s̃0(y)g(y), (2.6)

where

λ̃0(y) = λ0(y) − 2

(
a

1 + y
− b

1 − y

)
(2.7a)

and

s̃0(y) = s0(y) + λ0(y)

{
a

1 + y
− b

1 − y

}
− a(a − 1)

(1 + y)2

+ b(b − 1)

(1 − y)2 − 2ab

1 − y2 . (2.7b)

Next, we should find, iteratively, a set of functions{
λ̃n(y), s̃n(y)

}
n=1 using the following recursion rela-

tions [18]:

λ̃n = λ̃′
n−1 + s̃n−1 + λ̃0λ̃n−1, s̃n = s̃′

n−1 + s̃0λ̃n−1,

(2.8)

where the primes stand for the derivatives with respect
to y. This process is done using a suitable programming
language. The next step in the computation will be find-
ing the eigenvalues of the original problem by solving
the following quantisation condition [18]:∣∣∣∣ λ̃n s̃n
λ̃n−1 s̃n−1

∣∣∣∣ = 0. (2.9)

The evaluation of the eigenenergies using eq. (2.9) will
force us to use a suitable seed value for y to obtain the
actual energy eigenvalues, and we use y = 0 for our
case. The wave function, however, is obtained using the
following recursive relation [18]:

ψ(y) = A(1 + y)a(1 − y)b exp

(
−

∫ y

0

s̃n(t)

λ̃n(t)
dt

)
,

(2.10)

where A is the normalisation constant. The above solu-
tion must match with that which was obtained earlier
[17]. Note that because our potential is symmetric
around the origin, the physical solutions of the wave
equation must have definite parity [28,29]. Thus, the
physical solutions of eq. (2.1) are written in a compact
form as follows:

ϕ±(y) = 1√
2

[ψ(y) ± ψ(−y)], (2.11)

where the plus sign corresponds to the even states and
the minus sign corresponds to the odd states. In the next
section, we apply the AIM to the 3D problem.

3. Three-dimensional spherically symmetric
confined potential

The radial stationary wave equation for the second
potential in (1.2) reads as[
−1

2

d2

dr2 + A

sinh2(αr)
+ B

cosh2(αr)

+C cosh(2αr) + �(�+1)

2r2

]
ψ(r) = Eψ(r), (3.1)

where � is the angular momentum quantum number. To
simplify the calculations, we use the following approx-
imation for the centrifugal term suggested recently by
Assi et al [17]:

1

r2 ≈ α2
[

1

sinh2(αr)
+ 31

945

1

cosh2(αr)

− 16

945
cosh(2αr) + 20

63

]
. (3.2)

The reader should refer to other approximations used
before [30,31]. Substituting eq. (3.2) back in (3.1), we
get [17][
−1

2

d2

dr2 + Ã

sinh2(αr)
+ B̃

cosh2(αr)

+ C̃ cosh(2αr)

]
ψ(r) = Ẽψ(r), (3.3)

where

Ã = A + α2�(� + 1)

2
, (3.4a)

B̃ = B + 31

945

α2�(� + 1)

2
, (3.4b)
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Table 1. Lowest energy eigenvalues of the 1D potential (1.1) for B = −100,C = 5 and α = 1/
√

2 obtained using AIM in
this work against the results obtained in [17].

n Even states (this work) Even states [17] Odd states (this work) Odd states [17]

0 −89.8612818110 −89.8612818109 −79.7931821718 −79.7931821718
1 −70.1359637166 −70.1359637166 −60.8725193053 −60.8725193053
2 −51.9825141858 −51.9825141858 −43.4420839706 −43.4420839706
3 −35.2237088862 −35.2237088863 −27.2963654106 −27.2963654123
4 −19.6260386829 −19.6260386805 −12.1766206821 −12.1766206450
5 −4.91112636640 −4.9111262992 2.20693532829 2.2069354803
6 9.21225692283 9.2122537047 16.1366869670 16.1366691263
7 23.0084559604 23.008508563 29.8520161410 29.8523145060
8 36.6893107656 36.6889029437 43.5378311374 43.5356440685
9 50.4064368096 50.4068617266 57.3125644558 57.3142707495

C̃ = C − 16

945

α2�(� + 1)

2
(3.4c)

and

Ẽ = E − 20

63

α2�(� + 1)

2
. (3.4d)

Now, by making the change in the variable y =
2 tanh2(αr) − 1 back in eq. (3.3), we get

d2ψ(y)

dy2 = λ0(y)
dψ(y)

dy
+ s0(y)ψ(y), (3.5)

where

λ0(y) = 1

2

1 + 3y

1 − y2 , (3.6a)

s0(y) = Ā

(1 − y2)2 + B̄

1 − y2 + C̄

(1 − y2)(1 − y)2

− ε

(1 − y2)(1 − y)
(3.6b)

and

Ā = 2 Ã

α2 , B̄ = B̃

2α2 ,

C̄ = 4C̃

α2 , ε = Ẽ + C̃ + Ã

α2 . (3.7)

The next steps are mathematically similar to those fol-
lowed in the previous section from eq. (2.5) up to
eq. (2.10) but with the new form of s0(y) given in
eq. (3.6b). So, we are not going to rewrite them again
here. In the next section, we shall present our numerical
results for the eigenenergies of both potentials which
agree with what have been obtained in [17].

4. Results and discussion

4.1 Lowest energy eigenvalues of the 1D potential

Here, we have numerically calculated the lowest energy
eigenvalues for two different cases with the same values
of the potential parameters taken in ref. [17]. In the first
case, we took B = −100,C = 5 and α = 1/

√
2.

Our results are tabulated in table 1 against the results
obtained using different methods [17], where the stabil-
ity of the results obtained using a = b = 0 for the even
state’s eigenvalues and the odd state’s energies obtained
using a = b = 1/2. Comparing columns two with three,
and four with five, we notice that the results are very
close to a few decimal points which verify the results
obtained in [17] using the AIM. Similarly, we have also
considered another case with B = −10000,C = 5 and
α = 1/

√
2 as given in tables 2 and 3. The results pre-

sented in table 2 using the two methods agree with high
accuracy up to 12 decimal digits.

Table 2. Lowest 10 eigenvalues of the 1D eq. (2.1) for B =
−10000,C = 5 and α = 1/

√
2 corresponding to the even

states obtained in this work vs. those found using different
approaches in [17].

n Even states (this work) Even states [17]

0 −9945.09966135 −9945.09966135
1 −9746.49677011 −9746.49677011
2 −9549.89072670 −9549.8907267
3 −9355.28140035 −9355.28140035
4 −9162.66865346 −9162.66865346
5 −8972.05234112 −8972.05234112
6 −8783.43231070 −8783.4323107
7 −8596.80840134 −8596.80840134
8 −8412.18044336 −8412.18044336
9 −8229.54825775 −8229.54825775
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Table 3. Lowest 10 eigenvalues of the 1D eq. (2.1) for B =
−10000,C = 5 and α = 1/

√
2 associated with the odd

states obtained in this work using the AIM.

n Odd states (using AIM)

0 −9845.54860183
1 −9647.94415044
2 −9452.33648233
3 −9258.72546335
4 −9067.11095232
5 −8877.49280053
6 −8689.87085128
7 −8504.24493939
8 −8320.61489058
9 −8138.98052093

Table 4. Lowest 10 energies of the 3D potential for the
s-wave case obtained using the AIM against those obtained
by the HDM for the choice of parameters A = 10, B =
−200,C = 10 and α = 1/

√
2.

n En (AIM, this work) En (HDM, [17])

0 −92.7542191059 −92.7542191071
1 −69.5274752236 −69.5274752304
2 −47.4599081738 −47.4599081966
3 −26.3521411333 −26.3521411922
4 −5.99208981885 −5.9920899479
5 13.8293065397 13.8293062858
6 33.3030740081 33.3030735452
7 52.5923168605 52.5923160320
8 71.8289102768 71.8289091921
9 91.1153421519 91.1153398126

4.2 Energy spectrum of the 3D potential

The computations obtained for the 3D potential are
divided into two tables for the angular momentum values
� = 0 and 5, respectively, with the potential parameters
taken as A = 10, B = −200, C = 10 and α = 1/

√
2.

In table 4, the energies obtained using the AIM agree to
a high degree of accuracy with those calculated using
the Hamiltonian diagonalisation method (HDM) for the
zero angular momentum quantum number. In addition,
for � = 5, our results also agree with those obtained
using the HDM in [17] as shown in table 5. Note that in
both cases, and for numerical purposes, we have taken
a = b = 0.

5. Conclusion

In this work, we have applied the AIM for two new
confining potentials that were introduced in [17]. The
numerical computation of the energy spectrum agrees

Table 5. Comparison between the lowest energies obtained
using the AIM and the HDM for � = 5 the state with the
parameters A = 10, B = −200,C = 10 and α = 1/

√
2.

n En (AIM, this work) En (HDM, [17])

0 −67.4183920149 −67.4183920149
1 −45.5096792463 −45.5096792463
2 −24.5678690265 −24.5678690265
3 −4.37734190490 −4.3773419048
4 15.2748216808 15.2748216809
5 34.5830153201 34.5830153204
6 53.7126959917 53.7126959924
7 72.7969867796 72.7969867879
8 91.9387273925 91.9387272103
9 111.215271559 111.2152735964

to a high degree of accuracy with those obtained using
the HDM in [17]. This reflects the power of the AIM
for solving a wider class of eigenvalue problems. Those
potentials are new, and we are not aware of any direct
physical application that might be suitably modelled
using these interactions.
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