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Abstract. In this paper, a reliable numerical scheme, the q-fractional homotopy analysis transform method (q-
FHATM), is proposed to examine the Helmholtz equation of fractional order arising in seismic wave propagation,
imaging and inversion. Sufficient conditions for its convergence and error estimates are established. The q-FHATM
provides a solution in a rapidly convergent series. Results for different fractional values of space derivatives are
compared with the existing methods and discussed with the help of figures. A proper selection of parameters yields
approximations identical to the exact solution. Parameter h̄ offers an expedient way of controlling the region of
convergence of the solution. Test examples are provided to illustrate the accuracy and competency of the proposed
scheme. The outcomes divulge that our scheme is attractive, user-friendly, reliable and highly effective.
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1. Introduction

In the past few decades, fractional-order calculus has
emerged as a potential tool in various domains of sci-
ence and engineering such as fluid dynamic traffic,
neurophysiology [1], potential theory, control theory,
viscoelasticity, electromagnetic theory, bioengineering,
electric technology, plasma physics and mathematical
economy. Real-world processes, which we deal with, are
normally of fractional order. Heat diffusion into a semi-
infinite solid where heat flow equals the half-derivative
of the temperature is an example of a fractional-order
system.

Mass–energy equation of Einstein is obtained with the
conjecture of absolute smooth space–time but space–
time is congenitally discontinuous if it tends to a
quantum scale. A Hilbert cube can model actual frac-
tal space–time. The discontinuity of space–time may be
shown if we reckon a TV image smooth at all noticeable
scales. But, if the scale inclines to a very small one, the
image becomes unsmooth and involves many arrayed
pixels. So, time becomes discontinuous when it is
tremendously small. A film provides 24 slips/s. It gives

a continuous movement but for 10 slips/s, movement
converts to a discontinuous one. Then for discontinuous
space–time, the fractal theory is embraced to define
numerous phenomena [2]. Molecular diffusion in water
is similar to stochastic Brownian motion considering
continuum mechanics but the diffusion follows fractal
Fick laws if motion is noticed on a molecular scale.
Water flow gets discontinuous and fractal calculus is
needed to define molecular motion that gets entirely
unpredictable in the continuum mechanics frame. The
heat-proof property of a cocoon cannot be divulged by
advanced calculus. If the wall of the cocoon is thought
of as a continuous medium, it is hard to explain why the
temperature changes in its inner surface, very slowly,
irrespective of the environmental temperature [3]. Time
turns discontinuous in microphysics and so fractal kinet-
ics takes place on a very small time scale. In a smooth
nanofibre membrane, if we study the effects of diameter
of the nanofibres on air permeability, we use a nanoscale
as the nanofibre membrane turns discontinuous and frac-
tal calculus is effectively used [4].

Differential equations which govern systems with
memory are fractional differential equations (FDEs).
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Arbitrariness in their order introduces more degrees
of freedom in design and analysis, resulting in more
accurate modelling, better robustness in control and
greater flexibility in signal processing. Electrochemi-
cal phenomena such as double-layer charge distribution
or the diffusion process can be better explained with a
fractional-order system. As a result, the modelling of
lithium in batteries, fuel cells and supercapacitors are
carried out with FDEs. The characterisation of ceramic
bodies, fractal structures, viscoelastic materials, decay
rate of fruits and meat and the study of corrosion in
metal surfaces are also promising areas of their applica-
tions. Fractional-order system is also a popular choice
to study real-time events such as earthquake propaga-
tion, volcanic phenomenon, design of thermokinetics,
modelling of human lungs and skin. Even character-
istics of economic market fluctuation adopt fractional
calculus-based system modelling. So, fractional-order
analysis is changed from an inert physical network to
a living network of biology, ecology, physiology and
sociology, reminding us Leibnitz’s prediction in his let-
ter to L’Hopital in 1695 that the fractional differential
operator is ‘an apparent paradox from which one day
useful consequences will be drawn’.

In the frequency domain, the Helmholtz equation
is a version of an acoustic wave equation. It is used
in imaging and seismic wave propagation. Its numer-
ical solution is significant for forward modelling in
geophysical frequency domain inversion [5]. Its two-
dimensional form appears in water wave propagation,
acoustic radiation, heat conduction, steady-state-related
problems, biology and governing equation in waveguide
problems. It has a vital role in the pattern formation of
animal coating, prediction of acoustic propagation in
shallow water at low frequencies, estimation of geodesic
sea floor properties [6], etc.

The Helmholtz equation is derived from wave equa-
tion and its nature is elliptic. In a two-dimensional
non-homogeneous isotropic medium with speed c, wave
solution is u(x, y) corresponding to a harmonic source
ψ(x, y) which vibrates at a fixed frequency ω > 0 and
satisfies the Helmholtz equation in the region R. Integer-
order Helmholtz equation is

D2
x u(x, y) + D2

y u(x, y) + εu(x, y) = − ψ(x, y).

(1)

Here, u is a sufficiently differentiable function on the
boundary of R, ψ is a given function, ε > 0 is constant
while

√
ε = (ω/c) is the wave number with wavelength

2π/
√

ε. ψ = 0 makes eq. (1) homogeneous. If eq. (1)
is written as

D2
x u(x, y) + D2

y u(x, y) − εu(x, y) = − ψ(x, y),

(2)

then it describes mass transfer processes with volume
chemical reactions of first order. Equation (1) is studied
using finite element method [7], decomposition method
[8], Trefftz method [9], differential transform method
[10], spectral collocation method [11], etc.

The biggest advantage of using fractional models
of differential equations in physical models is their
non-local property. Fractional-order derivative is non-
local while integer-order derivative is local in nature. It
shows that the upcoming state of the physical system
is also dependent on all its historical states in addi-
tion to its present state. Hence, the fractional models
are more realistic. In FDEs, response expression has a
parameter which describes the variable order of the frac-
tional derivative that may be varied to achieve several
responses.

Standard Helmholtz equations can be generalised to
Helmholtz equation of fractional order by the exten-
sion of the integer-order space derivative to the Caputo
fractional space derivative. Space fractional Helmholtz
equation is

Dα
x u(x, y) + D2

y u(x, y) + εu(x, y) = −ψ(x, y) (3)

with u(0, y) = ξ(y) as the initial condition. Gupta
et al [12] used homotopy perturbation method to solve
multidimensional fractional Helmholtz equation while
Abuasad et al [13] recently applied reduced differen-
tial transform method to solve a fractional model of
Helmholtz equation. This model has not yet been stud-
ied by q-fractional homotopy analysis transform method
(q-FHATM) and fractional variation iteration method
(FVIM).

Space fractional derivatives arise for heavy tailed
variations. They describe the motion of a particle that
accounts for the flow field variation over the whole sys-
tem. Fractional equations describe motion of particle
with memory in time. Fraction in derivative suggests the
modulation of system memory. It is apparent that seis-
mic wave propagation is influenced by variations in flow
field. This fact marks fractional modelling suitable for
such phenomenon. Hence the study of space-fractional
Helmholtz equations is very important.

From the physical perspective, it is sensible to have
a fractional derivative of a constant equal to zero.
For the Riemann–Liouville fractional operator, Dα

t c =
(c/�(1 − α))t−α �= 0, c = constant while for the
Caputo fractional operator, CaD

α
t c = 0, c = constant. A

great advantages of the Caputo fractional derivatives is
that it allows traditional initial and boundary conditions
to be included in the formulation of the problem. Now,
consider the following initial value problem (IVP):

Dα y(t) − λ y(t) = 0, t > 0, n − 1 < α < n;
yk(0) = bk, k = 0, . . . , n − 1.
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In this problem, where the Caputo fractional oper-
ator is applicable, standard initial conditions in terms
of derivatives of integer order are involved. These ini-
tial conditions have obvious physical interpretations as
an initial position y(a) at point a, initial velocity y′(a)

initial acceleration y′′(a) and so on. To compute the frac-
tional derivative of a function in Caputo sense, it requires
the existence of the nth derivative of a function. Luck-
ily, most functions that appear in applications fulfil this
prerequisite. Caputo fractional derivative is defined only
for differentiable functions and we have considered u as
a sufficiently differentiable function in this paper.

Most nonlinear FDEs do not possess the exact solu-
tions, and so some numerical techniques are required
for their approximate numerical solution. Reliability of
solution schemes is also a very important aspect com-
pared to modelling dimensions of equations [14,15].
FVIM [16] directly attacks the nonlinear FDEs with-
out the need to find certain polynomials for nonlinear
terms and gives results in an infinite series that rapidly
converges to analytical solution. This method does not
require linearisation, discretisation, little perturbations
or any restrictive assumptions. It lessens mathematical
computations significantly. FVIM has a thoroughness
in the mathematical derivation of the Lagrangian multi-
plier by variational theory for fractional calculus. It leads
to a solution converging to the exact one. Recently, frac-
tional complex transform [17] was developed to build
a simpler variational iteration algorithm for fractional
calculus. Baleanu et al [18] applied local fractional
variational iteration transform method on nonlinear gas
dynamics and coupled KdV equations having a local
fractional operator to obtain a non-differentiable solu-
tion. A complete review on applications of FVIM is
available in [19].

The usual analytical methods need more memory in
the computer as well as time for computation. So, to
overcome these limitations, the analytical methods are
to be amalgamated with transform operators to work
on nonlinear equations [2,20–22]. The q-FHATM [23]
is an elegant union of q-homotopy analysis method
(q-HAM) and transform of Laplace. Liao [24] presented
HAM in which an incessant mapping is formed from
initial speculation to exact solution after selecting aux-
iliary linear operator. Solution convergence is confirmed
by the auxiliary parameter. The q-HAM is actually
an improvement of parameter q ∈ [0, 1] in HAM to
q ∈ [0, (1/n)], n ≥ 1. The superiority of q-FHATM
is its potential of adjusting two strong computational
methodologies for probing FDEs.

The aim of this paper is to obtain a numerical solu-
tion of a space-fractional model of Helmholtz equation
by q-FHATM and compare our results with existing
techniques. This paper is structured in the following

manner. Section 1 is introduction. In §2, we give a
brief review of the preliminary description of Caputo
fractional derivative, Mittag–Leffler function and some
other results, helpful for investigating FDEs. In §3, the
basic plan of the proposed numerical method q-FHATM
is shown by taking the problem under consideration. In
§4, the basic plan of FVIM is provided. Convergence
of q-FHATM and FVIM are discussed along with its
implementation on the given model and numerical test
examples. Section 5 deals with the discussion of the
obtained numerical results and their significance. In §6,
we recapitulate our outcomes and draw inferences.

2. Preliminaries

DEFINITION 1

Consider a real function h(χ), χ > 0. It is called in
space

a. Cζ, ζ ∈ R if ∃ a real number b (>ζ), s.t. h(χ) =
χbh1(χ), h1 ∈ C[0, ∞). Clearly Cζ ⊂ Cγ if γ ≤
ζ .

b. Cm
ζ ,m ∈ N ∪ {0} if h(m) ∈ Cζ.

DEFINITION 2 [24]

The Caputo fractional derivative of h, h ∈ Cm−1,m ∈
N ∪ {0} is

Dβ
t h(t)=

{
Im−βh(m)(t), m − 1<β <m, m∈N,

dm

dtm h(t), β =m,

a. I ζ
t h(x, t) = 1

Γζ

∫ t

0
(t − s)ζ−1 h(x, s)ds, ζ, t > 0,

b. Dν
τ V(x, τ ) = Im−ν

τ

∂mV(x, τ )

∂tm
, m − 1 < ν ≤ m,

c. Dζ
t I

ζ
t h(t) = h(t), m − 1 < ζ ≤ m, m ∈ N,

d. I ζ
t D

ζ
t h(t) = h(t) −

m−1∑
k=1

hk
(
0+) tk

k! ,

m − 1 < ζ ≤ m, m ∈ N.

e. I vtζ = �(ζ + 1)

�(v + ζ + 1)
tv+ζ.

DEFINITION 3 [24]

Laplace transform of the Caputo fractional derivative is

L[Dαg(t)] = pαL[g(t)] −
n−1∑
k=0

pα−k−1 g(k)(0+),

n − 1<α ≤ n.
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DEFINITION 4 [24]

Mittag–Leffler function is demarcated by the given
series representation valid in the entire complex plane:

Eζ (z) =
∞∑

m=0

(zm/�(1 + ζm)), ζ > 0, z ∈ C.

3. Proposed q-FHATM for space-fractional
Helmholtz equation

Let us ponder over a space-fractional nonlinear non-
homogeneous PDE

Dα
x u(x, y) + Ru(x, y) + Nu(x, y) = g(x, y),

n − 1 < α ≤ n,
(4)

where R and N are linear and nonlinear operators,
respectively, and g(x, y) is the source term.

Taking the transform of Laplace on each side of
eq. (4) and then simplifying, we obtain

L[u(x, y)] − 1

pα

n−1∑
k=0

pα−k−1 uk(0, y)

+ 1

pα
[L{Ru(x, y) + Nu(x, y) − g(x, y)}] = 0.

(5)

The nonlinear operator is formulated as

N [φ(x, y; q)] = L[φ(x, y; q)]

− 1

pα

n−1∑
k=0

pα−k−1 φk(x, y; q)(0+)

+ 1

pα
{L[Rφ(x, y; q) + Nφ(x, y; q)]}

− 1

pα
{L[g(x, y)]}. (6)

q ∈ [0, 1
n ] is the embedding parameter and φ(x, y; q)

is a real-valued function.
We build homotopy [25,26] as

(1 − nq)L[φ(x, y; q) − u0 (x, y)]
= h̄qH(x, y)N [φ(x, y; q)], n ≥ 1

(7)

where H �= 0 is an auxiliary function, h̄ �= 0 is an
auxiliary parameter, u0 is the initial value and φ is an
unknown function.

For q = 0 and 1
n , the ensuing results hold:

φ(x, y; 0) = u0(x, y), φ

(
x, y; 1

n

)
= u(x, y). (8)

Consequently, as q increases from 0 to 1/n, n ≥ 1,

φ(x, y; q) changes from u0 to solution u(x, y).

Applying Taylor’s theorem on φ to expand it about q,
we get

φ(x, y; q) = u0 (x, y) +
∞∑

m=1

um(x, y)qm, (9)

where

um(x, y) = 1

m!
∂mφ(x, y; q)

∂qm

∣∣∣∣
q=0

. (10)

For suitable choice of auxiliary operators, u0, n, h̄
and H , series (9) converges at q = 1/n, and we obtain

u(x, y) = u0 (x, y) +
∞∑

m=1

um(x, y)

(
1

n

)m

. (11)

Express the vectors as


um = {u0 (x, y), u1 (x, y), . . . , um(x, y)}. (12)

Differentiate deformation eq. (7) of the zeroth order
m times and divide by m!. Finally taking q = 0, defor-
mation equation of order m is obtained as

L[um(x, y) − kmum−1(x, y)] = h̄H(x, y)æm(
um−1).

(13)

Taking the inverse transform, we get

um(x, y) = kmum−1(x, y)

+ h̄L−1[H(x, y)æm(
um−1)]. (14)

In eq. (14), we express æm(
um−1) in a new manner as

æm(
um−1) = Lum−1(x, y) −
(

1 − km
n

)

×
[

1

pα

n−1∑
k=0

pα−k−1 uk(0, y)+ 1

pα
L{g(x, y)}

]

+ 1

pα
L{Rum−1(x, y) + Pm−1} (15)

and km is represented as

km =
{

0, m ≤ 1,

n, m > 1.
(16)

In eq. (15), Pm is the homotopy polynomial which is
expressed as

Pm = 1

m!
[
∂mφ(x, y; q)

∂qm

]∣∣∣∣
q=0

(17)

and

φ = φ0 + qφ1 + q2φ2 + · · ·. (18)
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Using results of eqs (15) into (14), we get

um(x, y)

= (km + h̄)um−1(x, y) − h̄

(
1 − km

n

)
L−1

×
[

1

pα

n−1∑
k=0

pα−k−1 uk(0, y) + 1

pα
L{g(x, y)}

]

+ h̄L−1
[

1

pα
L[Rum−1 (x, y) + Pm−1 ]

]
. (19)

The advancement in this recommended procedure is
that an innovative correction function (19) is established
by applying homotopy polynomials.

Eventually from eq. (19), components u(x, y) for
m ≥ 1 can be computed using Maple package.

Subsequently, the q-FHATM solution is

u(x, y) =
∞∑

m=1

um(x, y)

(
1

n

)m

. (20)

Theorem [24]. If ∃ a constant 0 < χ < 1 s.t.‖ζm+1
(t)‖ ≤ χ ‖ζm(t)‖∀m and if truncated series

∑r
m=0 ζm

(t)(1/n)m is used as the approximate solution ζ(t), then
maximum absolute truncation error is found as∥∥∥∥∥ ζ(t) −

r∑
m=0

ζm(t)(1/n)m

∥∥∥∥∥
≤ (χr+1 /nr(n − χ)) ‖ζ0(t)‖.

3.1 Implementation of q-FHATM

Now we show the applicability of q-FHATM via a few
test examples.

Example 1. Consider an x-space fractional Helmholtz
equation:

Dα
x u(x, y) + D2

y u(x, y) − u(x, y) = 0,

1 < α ≤ 2
(21)

with the starting condition

u(0, y) = y. (22)

Exact solution of eqs (21) and (22) for α = 2 is

u = y cosh x . (23)

Using the transform of Laplace on each side of
eq. (21) and simplifying, we get

L[u] − y

p
+ 1

pα
L[uyy − u] = 0. (24)

We state the nonlinear operator as

N [φ(x, y; q)]= L[φ(x, y; q)] −
(

1 − km
n

)
y

p

+ 1

pα
L[D2

y φ(x, y; q)−φ(x, y; q)].
(25)

Deformation equation for H(x, y) = 1 is written as

L[um(x, y) − kmum−1(x, y)] = h̄æm(
um−1). (26)

Here

æm(
um−1) = L[um−1] −
(

1 − km
n

)
y

p

+ 1

pα
L[D2

yum−1 − um−1].
Taking the inverse transform, we get

um(x, y) = kmum−1(x, y) + h̄L−1 æm(
um−1). (27)

Simplification yields the following approximations of
the q-FHATM solution:

u0 = y,

u1 = − h̄ yxα

�(1 + α)
,

u2 = −(h̄ + n)h̄ yxα

�(1 + α)
+ h̄2yx2 α

�(1 + 2 α)
,

u3 = −(h̄ + n)2h̄ yxα

�(1 + α)
+ 2(h̄ + n)h̄2yx2 α

�(1 + 2 α)

− h̄3yx3 α

�(1 + 3 α)
+ · · · ,

and so on.
Persisting in this way, next iterations um(x, y),m ≥ 4

can be achieved using Maple package.
Then, the solution is expressed as

u(x, y) = u0 +
∞∑

m=1

um(x, y)

(
1

n

)m

. (28)

It is observed that if α = 2, h̄ = −1, n = 1, the series
solution

∑N
m=0 um(x, y)(1/n)m converges to the exact

solution (23) as N → ∞,

u(x, y) = y

[
1 + xα

�(1 + α)
+ x2 α

�(1 + 2α)

+ x3 α

�(1 + 3α)
+ x4α

�(1 + 4α)
+ · · ·

]

= y
∞∑
k=0

xkα

�(1 + kα)
= yEα(xα),

where Eα(z) is the Mittag–Leffler function.
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Example 2. Consider another x-space fractional homo-
geneous Helmholtz equation with ε = 5:

Dα
x u(x, y) + D2

y u(x, y) + 5u(x, y) = 0,

1 < α ≤ 2, (29)

with

u(0, y) = y (30)

as the initial condition. The exact solution of eqs (29)
and (30) for α = 2 is

u = y cos
√

5x . (31)

Using the transform of Laplace on each side of
eq. (29) and using (30), we get

L[u] − y

p
+ 1

pα
L[uyy + 5u] = 0. (32)

We state the nonlinear operator as

N [φ(x, y; q)]
= L[φ(x, y; q)] −

(
1 − km

n

)
y

p

+ 1

pα
L[D2

y φ(x, y; q) + 5 φ(x, y; q)].
(33)

Deformation equation forH(x, y) = 1 is

L[um(x, y) − kmum−1(x, y)] = h̄æm(
um−1), (34)

where

æm(
um−1) = L[um−1] −
(

1 −
(
km
n

))(
y

p

)

+
(

1

pα

)
L[D2

y um−1 + 5um−1].
Taking the inverse transform, we get

um = kmum−1 + h̄L−1 æm(
um−1). (35)

Simplification yields the following approximations of
the q-FHATM solution:

u0 = y,

u1 = 5h̄ yxα

�(1 + α)
,

u2 = 5(h̄ + n)h̄ yxα

�(1 + α)
+ 25h̄2yx2α

�(1 + 2α)
,

u3 = 5(h̄ + n)2h̄ yxα

�(1 + α)
+ 50(h̄ + n)h̄2yx2α

�(1 + 2α)

+125 h̄3yx3α

�(1 + 3α)
+ · · · ,

and so on.
Persisting in this way, next iterations um(x, y),

m ≥ 4 can be achieved using Maple package.

Then, the solution is expressed as

u(x, y) = u0 +
∞∑

m=1

um(x, y)

(
1

n

)m

. (36)

If α = 2, h̄ = −1, n = 1, series solution∑N
m=0 um

( 1
n

)m
converges to solution (31) as N → ∞,

u(x, y) = y

[
1 − 5xα

�(1 + α)
+ 25x2 α

�(1 + 2 α)

− 125x3 α

�(1 + 3 α)
+ 625x4 α

�(1 + 4 α)
+ · · ·

]
= yEα(−5 xα).

Example 3. Consider an inhomogeneous two-
dimensional fractional Helmholtz equation with
ε = −2:

Dα
x u(x, y) + D2

y u(x, y) − 2u(x, y)

= (12x2 − 3x4 ) sin y,

1 < α ≤ 2, 0 < x ≤ 1, 0 < y ≤ 2 π (37)

with the starting condition

u(0, y) = (x4 − (x6/10)) sin y. (38)

Exact solution of eqs (37) and (38) for α = 2 is

u = x4 sin y. (39)

Using the transform of Laplace on each side of
eq. (37) and simplifying, we get

L[u] − y

p
+ 1

pα
L[uyy − 2u − (12x2 − 3x4) sin y]

= 0. (40)

We state the nonlinear operator as

N [φ(x, y; q)]
= L[φ(x, y; q)] −

(
1 − km

n

)
y

p

+ 1

pα
L

[
∂2 φ(x, y; q)

∂y2 − 2 φ(x, y; q)

− (12x2 − 3x4) sin y

]
. (41)

Deformation equation for H(x, y) = 1 is

L[um(x, y) − kmum−1(x, y)] = h̄æm(
um−1) (42)

where

æm(
um−1) = L[um−1] − (1 − (km/n))
y

p

+ 1

pα
L[(∂2 um−1/∂y

2) − 2um−1

− (12x2 − 3 x4) sin y].
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Taking the inverse transform, we get

um = kmum−1 + h̄ L−1æm(
um−1). (43)

Simplification yields the following approximations of
the q-FHATM solution:

u0 =
(
x4 − x6

1 0

)
sin y,

u1 = −24h̄ sin yx2 +α

�(3 + α)
+ 216 h̄ sin yx6 +α

�(7 + α)
,

u2 = −(1 + h̄ + n)24h̄ sin yx2 +α

�(3+α)
+ 72 h̄ sin yx4 +α

�(5+α)

+ 216(h̄ + n)h̄ sin yx6 +α

�(7 + α)

+ 72h̄2 sin yx2 +2α

�(3 + 2α)
− 648 h̄2 sin yx6 +2α

�(7 + 2α)
,

u3 = −(1 + h̄ + n)24h̄ n sin yx2+α

�(3 + α)

+ 72h̄n sin yx4+α

�(5 + α)

+ 216 (h̄ + n)h̄ n sin yx6+α

�(7 + α)

+ 72 h̄2n sin yx2+2 α

�(3 + 2α)
− 1296 h̄2n sin yx6+2α

�(7 + 2α)

− (1 + h̄ + h̄2 + h̄n)24h̄ sin yx2+α

�(3 + α)

+ 72(1 + h̄) h̄ sin yx4+α

�(5 + α)

+ 216(h̄ + n)h̄2 n sin yx6+α

�(7 + α)

+ 72(1 + 2 h̄ + n)h̄2 sin yx2+2α

�(3 + 2α)

+ 216 h̄2 sin yx4+2α

�(5 + 2α)
+ 1296h̄3 sin yx6+2α

�(7 + 2α)

− 216 h̄3 sin yx2+3α

�(3 + 3α)
+ 1944h̄3 sin yx6+3α

�(7 + 3α)

+ · · · .

Persisting in this way, next iterations um(x, y),m ≥ 4
can be achieved using Maple package.

The solution is expressed as

u(x, y) = u0 +
∞∑

m=1

um(x, y)

(
1

n

)m

. (44)

4. Proposed FVIM for space-fractional Helmholtz
equation

Consider the mathematical model described by eq. (3)
as

Dα
x u(x, y) + D2

y u(x, y) + ε u(x, y) = −ϕ(x, y);
u(0, y) = y.

A correction functional is built for eq. (3) as

un+1(x, y) = un(x, y) +
∫ x

0
λ(Dα

ξ u(ξ, y)

+ D2
y ũn(ξ, y) + εũn(ξ, y)

+ ϕ(ξ, y))(dξ)α, (45)

where λ is the Lagrange multiplier. By variational the-
ory, λ must satisfy

dαλ

dξα

∣∣∣∣
ξ=x

= 0 and 1 + λ|ξ=x = 0.

We quickly get λ = −1. Then, using it in eq. (3), we
get

un+1(x, y) = un(x, y) −
∫ x

0
(Dα

ξ un(ξ, y)

+D2
y un(ξ, y) + εun(ξ, y)

+ϕ(ξ, y))(dξ)α. (46)

Consecutive approximations un(x, y), n ≥ 0 can be
built henceforth. un is a restricted variation, i.e. δũn = 0.
Finally, we obtain sequences un+1(x, y), n ≥ 0 of the
solution.

Consequently, the exact solution is obtained as

u(x, y) = lim
n→∞ un(x, y). (47)

4.1 Convergence analysis of FVIM

Now, our emphasis is on the convergence of FVIM
applied to eq. (3). Sufficient conditions for the conver-
gence of FVIM and its error estimate are provided.

We define the operator S as

S =
∫ x

0
(−1)(Dα

ξ un(ξ, y) + D2
y un(ξ, y)

+ εun(ξ, y) + ϕ(ξ, y))(dξ)α. (48)

Also, we define the components vk, k = 0, 1, 2, . . . ,

as

u(x, y) = lim
n→∞ un(x, y) =

∞∑
k=0

vk . (49)
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Theorem 1 [27]. Let S, defined in eq. (48), be an oper-
ator from Banach space B to B. Solution as defined in
eq. (49), converge if 0 < q < 1 exists such that

‖S[v0 + v1 + v2 + · · · + vk+1 ]‖
≤ q‖S[v0 + v1 + v2 + · · · + vk]‖,

(i.e. ‖vk+1‖ ≤ q‖vk‖), ∀ kεN∪ {0}. It is an exceptional
case of Banach fixed point theorem applied in [28] as
a sufficient condition to discuss FVIM convergence for
various equations.

Theorem 2 [27]. If the solution defined in eq. (49) con-
verges, it is an exact solution of eq. (3).

Theorem 3 [27]. Suppose the series solution defined in
eq. (49) converges to solution u(x, y) of problem (3).
If the truncated series

∑ j
k=0 vk is used as an approxi-

mation to u(x, y) of eq. (3), then max. error Ej (x, y) is
assessed as

E j (x, y) ≤ 1

1 − q
q j+1‖v0‖.

If ∀i ∈ N ∪ {0}, we state parameters,

χi =
⎧⎨
⎩

(‖vi+1‖
‖vi‖

)
, ‖vi‖ �= 0.

0, ‖vi‖ = 0.

Then solution
∑∞

k=0 vk of eq. (3) converges to the
exact solution u(x, y) when 0 ≤ χi < 1, ∀i ∈ N∪ {0}.

Also, the maximum absolute truncation error is pro-
jected as∥∥∥∥∥u(x, y) −

∞∑
k=0

vk

∥∥∥∥∥ ≤ 1

1 − χ
χ j+1‖v0‖,

where χ = max{χi , i = 0, 1, 2, . . . , j}.

Remark 1 [27]. If first finite χi ’s, i = 1, 2, . . . , j are not
less than 1 and χi ≤ 1, i > j then, obviously the series
solution

∑∞
k=0 vk of eq. (3) converges to the exact solu-

tion. It means that the first finite terms do not affect the
convergence of the series solution. FVIM convergence
depends on χi , i > j .

4.2 Implementation of FVIM

Now, we validate the applicability of FVIM through
examples.

Example 4. Using condition (22), we initialise with
u0 = y and applying FVIM to eq. (21), we get

u1(x, y) = u0 −
∫ x

0
{Dα

ξ u0(ξ, y)

+ D2
y u0(ξ, y) − u0(ξ, y)}(dξ)α

= y + yxα

�(1 + α)
,

u2(x, y) = y + yxα

�(1 + α)
+ yx2α

�(1 + 2α)
,

u3(x, y) = y + yxα

�(1 + α)
+ yx2 α

�(1 + 2α)

+ yx3α

�(1 + 3α)
+ · · · .

Proceeding in this way, rest of the components may
be obtained using Maple package.

The final solution is

u(x, y) = lim
n→∞ un(x, y). (50)

In view of eqs (48) and (49), iteration formulae for
eq. (3) are

v0 = y,

v1 = yxα

�(1 + α)
,

v2 = yx2 α

�(1 + 2α)
,

v3 = y x3 α

�(1 + 3α)
,

. . .,

vk = y xkα

�(1 + kα)
.

Visibly, we conclude that the obtained solution,∑∞
k=0 vk converges to the exact solution u = yEα(xα).
In addition, by computing χi ’s for this problem, we

have

χi = ‖vi+1‖
‖vi‖ =

∥∥∥∥xα �(1 + iα)

�(1 + (i + 1)α)

∥∥∥∥ < 1

when, for example, i > 1 and 1 < α ≤ 2. This confirms
that the variational approach for problem (3) gives pos-
itive and bounded solution that converges to the exact
solution.

Remark 2 [27]. The above test problem is taken when
0 < x ≤ 1 to discuss the convergence condition. Still,
we may stretch the interval and examine the convergence
condition after ignoring the first few terms of the series
solution.

For space-fractional Helmholtz equation (3), when
0 < x ≤ a and α = 2, a > 0, then
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Figure 1. q-FHATM solution (Example 1).

Figure 2. FVIM solution (Example 4).

Figure 3. Exact solution (Example 1).

Figure 4. q-FHATM solution (Example 2).

Figure 5. FVIM solution (Example 5).

Figure 6. Exact solution (Example 2).
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Figure 7. q-FHATM solution (Example 3).

χi =
∥∥∥∥x2 �(1 + 2i)

�(1 + 2(i + 1))

∥∥∥∥
≤ a2

(2i + 1)(2i + 2)
< 1, for i > a.

Example 5. We initialise with u0 = y and applying
FVIM to eq. (29), we get

u1(x, y) = u0 −
∫ x

0
{Dα

ξ u0(ξ, y)

+ D2
yu0(ξ, y) + 5u0(ξ, y)}(dξ)α

= y − 5yxα

�(1 + α)
,

u2 (x, y) = y − 5yxα

�(1 + α)
+ 25yx2α

�(1 + 2α)
,

u3(x, y) = y − 5yxα

�(1 + α)
+ 25yx2α

�(1 + 2α)

− 125yx3α

�(1 + 3α)
,

and so on.
Proceeding in the same way, at last, we get the solution

u(x, y) = lim
n→∞ un(x, y). (51)

Example 6. We initialise with

u0 = (x4 − (x6 /1 0)) sin y

and apply FVIM to eq. (37), and we get

u1(x, y) = u0 −
∫ x

0
{Dα

ξ u0(ξ, y) + D2
yu0(ξ, y)

− 2u0(ξ, y) − (12ξ2 − 3ξ4) sin y}(dξ)α,

=
(
x4 − x6

10

)
sin y + 24 sin yx2+α

�(3 + α)

Figure 8. FVIM solution (Example 6).

Figure 9. Exact solution (Example 3).

− 216 sin yx6+α

�(7 + α)
,

u2(x, y) =
(
x4 − x6

1 0

)
sin y + 24 sin yx2+α

�(3 + α)

− 216 sin yx6+α

�(7 + α)
+ 72 sin yx2+2α

�(3 + 2α)

− 648 sin yx6+2α

�(7 + 2α)
,

u3(x, y) =
(
x4 − x6

10

)
sin y + 24 sin yx2+α

�(3 + α)

− 216 sin yx6+α

�(7 + α)
+ 72 sin yx2+2α

�(3 + 2α)

− 648 sin yx6+2α

�(7 + 2α)
+ 216 sin yx2+3α

�(3 + 3α)
,

−1944 sin yx6+3α

�(7 + 3α)
+ · · · .
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Figure 10. Behaviour of exact and q-FHATM solutions for distinct α when y = 1 = n, h̄ = −1 for Example 1.

Figure 11. Behaviour of exact and q-FHATM solutions for distinct α when y = 1 = n, h̄ = −1 for Example 2.

Figure 12. Behaviour of exact and q-FHATM solutions for distinct α when y = 1 = n, h̄ = −1 for Example 3.
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Proceeding in the same way, we get the solution as

u(x, y) = lim
n→∞ un(x, y). (52)

5. Numerical results and discussion

It can be easily observed from figures 1–9 that the
solution u(x, y) of the space-fractional Helmholtz equa-
tion obtained by using q-FHATM and FVIM is almost
identical with the exact solution in Examples 1–6.
Figures 10–12 show the behaviour of the q-FHATM
solution at different values of fractional order α =
1.25, 1.5, 1.75 and 2 with the exact solution at α = 2
by taking y = 1, h̄ = −1, n = 1 for Examples 1–3,
respectively. In figure 10, u increases sharply with
increasing x and finally coincides with the exact

solution at α = 2 while in figure 11, u first decreases
with increasing x but then increases slowly as α

increases and ultimately coincides with the exact solu-
tion when α = 2. In figure 12, u increases slowly with
increasing x and closely approximates with the exact
solution when α = 2. In figures 13–15, plotting of the
h̄-curve are carried out when n = 1, y = 1, α = 2
for Examples 1–3, respectively. Distinct values of h̄ are
chosen to curtail the residual error that guarantees the
convergence of the series solution. In figures 16–18,
plotting of the n-curve when x = 1, h̄ = −1, y = 1 are
executed for Examples 1–3, respectively. They show the
behaviour of the numerical solution for distinct values
of α. We notice in figures 17 and 18 that as n increases, u
also increases but slowly for increasing α. In figure 15,
u decreases with increasing n but decreases faster for
smaller α. Figures are drawn using Maple package.

Figure 13. Plot of h̄-curves for n = 1 = y, α = 2, for Example 1.

Figure 14. Plot of h̄-curves for n = 1 = y, α = 2, for Example 2.
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Figure 15. Plot of h̄-curves for n = 1 = y, α = 2 for Example 3.

Figure 16. Plot of n-curves for x = 1 = y, h̄ = −1, for Example 1.

Figure 17. Plot of n-curves for x = 1 = y, h̄ = −1 for Example 2.
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Figure 18. Plot of n-curves for x = 1 = y, h̄ = −1 for Example 3.

6. Conclusions

In this paper, the proposed numerical algorithms
q-FHATM and FVIM are successfully applied to exam-
ine the fractional-Helmholtz equation. The outcomes
reveal that the results derived using q-FHATM are
general, covering the results of FEM, ADM, FDM,
DTM, HAM, HPM, FRDTM, etc. as specific cases.
Numerical simulations confirm the high accuracy of
our results compared to other existing techniques. It
is seen that they are capable of reducing the size of
calculations and easy to use for both small and large
parameters in nonlinear fractional problems. Results
inform that FVIM is effective even if lower-order
approximations are used. However, the accuracy can
be enhanced using more approximations in the solu-
tion. It should be noted that FVIM is used directly
without using linearisation, perturbation, adomian poly-
nomials or any other restrictive assumptions. It is shown
by convergence analysis that the obtained numerical
solutions are positive and bounded. Sufficient condi-
tions for the convergence of both methods are estab-
lished. The q-FHATM contains parameters h̄ and n
that manage convergence of series solution. Hence,
both the proposed techniques are accurate, highly
systematic and attractive and they can be applied
for studying any mathematical model of physical
importance.
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