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Abstract. To treat a realistic chemical system, such as a liquid phase dehydrogenation reaction, a chemical scheme,
which describes the chemical kinetics in terms of the small number of reaction progress variables is needed. Based on
the matrix algebra, we analyse the key components, elements and reactions in the mechanism, C-matrix. Reduction
techniques exploit the time-scale separation into fast and slow modes by computing the dimension reduced model
via the elimination of fast mode subjecting them to the slow one. The two-step reversible reaction mechanism is
considered for model reduction and to simplify the complexity of reaction mechanisms. They give a meaningful
picture, but for maximum clarity, the phase flow of the solution trajectories near the equilibrium point is exploited.
The Lyapunov function is applied for the stability analysis. To describe the physical behaviour of the reaction
mechanism, graphical results are measured while refinement of the initial approximation is tabulated at the end.
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1. Introduction

Many chemical reactions with real-life applications
may be very slow without the influence of a catalyst.
Many chemical systems have simultaneous homoge-
neous and heterogeneous reactions: e.g. photosynthesis
in plants, where carbon dioxide and water are converted
to food, aerobic cellular respiration process, combus-
tion and chemical reactions in batteries are common
examples of electrochemistry. Khan et al [1] analysed
the effects of single-step chemical reaction processes on
the three-dimensional flow of Burgers fluid. Khan et al
[2] inspected the impact of elementary step chemical
reactions on the generalised Burgers fluid. Mustafa et
al [3] examined the characteristics of activation energy
and single-step chemical reactions. Khan et al [4] dis-
cussed the impact of constructive/distructive chemical
reactions on radiative heat transfer of three-dimensional
flow.

Mostly, chemical reactions are complex in nature,
the complexity of a complex reaction can be resolved
if we know the intrinsic details of the reaction mech-
anism. Now, to analyse the complexity of multistep
reaction mechanisms, the graphical representation of the

involved species (nodes) is commonly used. Two types
of nodes take part in graphs: the first one represents the
components and the second one represents the forward
and reverse reactions. Mathematical graph theory has
wide applications in chemical engineering and chem-
istry, in electrical diagrams and the representation of a
railway network, and mechanism of complex chemical
reactions is the most common feature of graph theory.
In 1956, King and Altman [5] first used graph methods
to represent the enzyme-catalysed reactions. Bipartite
graphs for representing the complex reaction mecha-
nism have been proposed by Hudyaeu and Vol’pert [6].

The idea of modelling the chemical kinetics is used
to transform the physical reality to a mathematical
description. A homogeneous reacting system modelled
by ordinary differential equations is considered. In
the case of a high-dimensional problem, these models
are inappropriate for efficient simulation, and stiffness
arises if they involve multiple time-scales. To over-
come these problems, model reductions are applied.
The reduced model contains all the essential informa-
tion to still describe the system accurately, which is
the goal of the model reduction technique in chem-
ical kinetics. Several techniques are used for finding
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the slow invariant manifold (SIM). A quasi-steady-state
approximation which depends on the concentration of
some of the active reagents (such as substrate–enzyme
complex and radicals) and computational singular per-
turbation method determines the result of the analytical
perturbation method and it is suitable for the stiff
system. Lumping, sensitivity and time-scale analysis are
the most common modern model reduction techniques
while computational singular perturbation and intrinsic
low-dimensional manifold (ILDM) are common in the
time-scale analysis. The SIM is the subset of the phase
space towards all the solutions of the system that come
and stay after fast time-scale events are equilibrated.
Gorban and Karlin [7] gave the idea of the method of the
invariant manifold while Chiavazzo et al [8] showed that
the quasi-equilibrium manifold (QEM), spectral quasi-
equilibrium manifold (SQEM), method of the invariant
grid (MIG), computational singular perturbation are all
based on SIM.

Another approach, which was originally proposed by
Keck and Gillespie [9] and then developed and used with
considerable success by Keck and other researchers,
is the rate-controlled constrained-equilibrium (RCCE)
method. This method depends on the essential assump-
tions and the second law of thermodynamics that the
slow reaction in a complex reacting system imposes
constraints on its composition, which controls the rate
at which it approaches the chemical equilibrium, while
the system equilibrated by fast reaction is subjected to
the constraints imposed by the slow reaction. Keck [10]
has delivered a brief theory on RCCE for a chemical
reaction in complex systems. Ren et al [11] discussed
the dimension reduction persistence to describe reactive
systems flow and applied different reduction techniques
such as ILDMs and RCCE to reduce a complete sys-
tem to some required species without losing essential
information.

Many detailed reaction mechanisms, homogeneous
or inhomogeneous (having many chemical species,
elementary reactions), describe a reactive flow. Conse-
quently, the numerical calculation of the reactive flow
of complete detailed (homogeneous or inhomogeneous)
mechanisms is complicated. To reduce the computa-
tional burden imposed by the direct use of a detailed
mechanism, we need well-recognised methodologies.
From several types of such methodologies for calculat-
ing chemically reactive flow, the dimension reduction
by using slow manifold is an effective approach for
reducing the complexity and computational burden. To
describe the inhomogeneous reactive flow, Ren and
Pope [12] discussed the chemistry-based manifold by
using the reduction technique (a good approximation
technique but not purely the invariant) ILDM. Differ-
ent approaches, namely the Mass–Pope approach, the

close-parallel approach and the approximate slow
invariant manifold (ASIM) approach for ILDM to com-
bine the transport-chemistry coupling in the reduced
description was discussed by Ren and Pope [13].
They also provided a brief overview of the reduced
description of inhomogeneous reactive flow through the
slow manifold and applied the close-parallel assump-
tion for validation. Ren et al [14] developed another
dimension reduction method, the invariant constrained-
equilibrium edge pre-image curve (ICE-PIC), and Ren
et al [15] demonstrated the application of ICE-PIC for
both homogeneous and inhomogeneous reacting sys-
tems. For inhomogeneous case, the ICE-PIC method is
implemented in two ways: first, one without transport
coupling and the second with transport coupling.

Furthermore, different model reduction techniques
are applied to a number of chemical reaction mech-
anisms by different researchers [8,16–26]. Constales
et al [27] analysed the augmentation and reduction of
the chemical composition of chemical species. Shahzad
and Sultan [28] discussed the behaviour of the involved
chemical species in a chemical reaction mechanism in
two dimensions and three dimensions and then com-
pared the behaviours.

For the construction of the low-dimensional approx-
imation, we make use of intrinsic multiple time-scales.
Reinhardt et al [29] explained that the fast-transient
dynamical model is assumed to be relaxed within the
reduced model if the long-term behaviour of the sys-
tem is to be studied. This task is done by replacing the
original system of differential equations with one of the
lower-dimensional systems without losing too much of
key information about the long-term system dynamics.

In the current research, we focus on the construction
of C-matrix for two-step reaction mechanism to obtain
the key/non-key components (low dimension), Horiuti
matrix and overall reaction. Moreover, for the dimen-
sion reduction process, different reduction techniques
are discussed here. We use three reduction techniques,
QEM, SQEM and ILDM, in this study and the effi-
ciency and accuracy of solution curves obtained through
these three reduction techniques are compared graphi-
cally as well as in tabular form. The refinement method is
applied to obtain more accurate results using MATLAB.

2. Problem formulation: A two-step reaction
mechanism

Consider that the two-step reversible chemical reaction
has five chemical species. In the first step, H2 reacts with
Z and forms an intermediate H2Z . In a next step, H2Z
reacts with the species B and gives the product BH2:
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Figure 1. Graphical representation of two-step reaction
mechanism [30].

H2 + Z
k±

1
� H2Z ,

H2Z + B
k±

2
� H2B + Z .

(1)

Graphically, it is shown in figure 1.
In figure 1, Z and H2Z are intermediate species while

H2 and B are reactants and BH2 is the product species.

Trees and nodes: Considering the intermediates as node
points, the line shows edges, while the positive and
negative signs represent the forward and backward
directions, respectively.

Forward: Z
+2←− H2Z , H2Z

+1←− Z ,

Backward: Z
−1←− H2Z , H2Z

−2←− Z .

To understand the behaviour of complex chemical reac-
tion mechanisms, linear algebraic analysis is one of the
key factors and the matrices operation plays a vital role,
i.e. C-matrix. The C-matrix comprises the stoichiomet-
ric, molecular and Horiuti matrices.

The stoichiometric matrix deals with the key and non-
key components and reactions of any mechanism. Thus,
each row represents a reaction and a column represents
a component, i.e. the example concerns reactions of (1)
are

H2 Z B H2Z BH2
W1 − 1 − 1 0 1 0

W2 0 1 − 1 − 1 1

(2)

Augmenting the above form with identity matrix we
obtain

H2 Z B H2Z BH2 W1 W2
W1 −1 −1 0 1 0 1 0

W2 0 1 −1 −1 1 0 1

(3)

Applying RREF, we get the stoichiometric C-matrix as

H2 Z B H2Z BH2 W1 W2
W1 1 0 1 0 −1 −1 −1

W2 0 1 −1 −1 1 0 1

(4)

The first two columns are pivot columns and thus H2
and Z are key components and the rest are dependent
components. There is no one dependent reaction as in
the augmented block there is no pivot element. Thus,
W1 and W2 are independent reactions:

ηReaction = ηKey component + ηDependent reaction,

ηKey component = ηIndepedent reaction.
(5)

Similarly, molecular matrix deals with the key and non-
key elements and components, each row represents a
different component, and each column a different ele-
ment, i.e. the involved components are H2, Z , H2Z , B
and BH2:

H Z B
H2 2 0 0
Z 0 1 0
B 0 0 1

H2Z 2 1 0
BH2 2 0 1

(6)

The augmented molecular matrix is along with the iden-
tity matrix, i.e.

H Z B H2 Z B H2Z BH2
1 0 0 0 0 −1/2 0 1/2
0 1 0 0 0 1 1 −1
0 0 1 0 0 1 0 0
0 0 0 1 0 1 0 −1
0 0 0 0 1 −1 −1 1

(7)

ηComponent = ηKey component + ηKey element. (8)

There are two key components, and the dependent com-
ponents can be expressed as

ηB = −1

2
ηHt + ηZt + ηB + ηH2,

ηH2Z = ηZ ,

ηBH2 = 1

2
ηHt − ηZt − ηH2 .

(9)

The orthogonality condition between the stoichiometric
matrix � and the molecular matrix M also holds, i.e.
M� = 0, i.e.

M · � =
⎡
⎣

2 0 0 2 2
0 1 0 1 0
0 0 1 0 1

⎤
⎦

⎡
⎢⎢⎢⎣

−1 0
−1 1

0 −1
1 −1
0 1

⎤
⎥⎥⎥⎦

=
⎡
⎣

0 0
0 0
0 0

⎤
⎦. (10)

Horuiti matrix deals with the global reaction. For
the analysis of overall reaction to wipe out the
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intermediates using RREF of augmented stoichiometry
matrix, intermediates must be listed first:
⎡
⎣

Z H2Z H2 B BH2
−1 1 −1 0 0

1 −1 0 −1 1

⎤
⎦. (11)

The augmented matrix along with the unit matrix gives
⎡
⎣

Z H2Z H2 B BH2 R1 R2
−1 1 −1 0 0 1 0

1 −1 0 −1 1 0 1

⎤
⎦ (12)

and RREF implies
⎡
⎣

Z H2Z
1 −1
0 0︸ ︷︷ ︸

Key Components

H2 B BH2
0 −1 1
1 1 −1︸ ︷︷ ︸

Non-Key Components,
Overall Reaction

W1 W2
0 1

−1 −1︸ ︷︷ ︸
Horiuti Matrix

⎤
⎦ (13)

From the above matrix (13), the second row H2 + A
k+
−⇀↽−
k−

AH2 gives an overall reaction. The Horiuti numbers are
the elements of R1 and R2 in the second row, i.e. −1
and −1. In the matrix form called Horiuti matrix, i.e.

σ =
[−1

−1

]
. (14)

Now, we shall model the overall problem according to
the available components, elements and reactions.

2.1 Mathematical formulation of invariant manifold

In the phase space, the trajectory of the species during
relaxation reveals that they quickly move towards the
lower-dimensional manifold, and then once they reach
the slow manifold, they do not leave it anymore, pro-
ceeding slowly along it towards equilibrium.

Let us consider the following initial parameters for
(1):

d1 = H2, d2 = Z , d3 = H2Z ,

d4 = A, d5 = AH2,

deq
1 = 0.5, deq

2 = 0.1, deq
3 = 0.1, deq

4 = 0.4,

deq
5 = 0.1, k+

1 = 10, k+
2 = 5.

The rate of reaction for reversible reaction mechanism
W = W+ − W− (law of mass action) is given as

W1 = W+
1 − W−

1 = k+
1 d1d2 − k−

1 d3,

W2 = W+
2 − W−

2 = k+
2 d3d4 − k−

2 d5d2.
(15)

The kinetic equations are the sum of the product of a
stoichiometric matrix and rate equations, generally:

ḋ =
r∑

x=1

�Wx (d). (16)

The system of kinetic equations given by (16) is

⎡
⎢⎢⎢⎢⎢⎢⎣

ḋ1

ḋ2

ḋ3

ḋ4

ḋ5

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

k−
1 d3 − k+

1 d1d2

k−
1 d3 − k−

2 d2d5 − k+
1 d1d2 + k+

2 d3d4

k+
2 d2d5 − k−

1 d3 + k+
1 d1d2 − k+

2 d3d4

k−
2 d2d5 − k+

2 d3d4

k+
2 d3d4 − k−

2 d2d5

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(17)

Now, let us apply the following model reduction tech-
niques, i.e. QEM, SQEM and ILDM, on the above
system (17). For details of these methods, we refer the
readers to [7,8,19,22–26].

In QEM a reduced descripted form ξ1...r having
dimension r < (n − 1) yields such points in a phase
space which minimises the Lyapunov function G:

(v1, x) = ξ1, (v2, x) = ξ2, . . . (vr , x) = ξr , (18)

G =
5∑

i=1

di

(
ln

(
di
deq
i

)
− 1

)
,

∂G(x, y)

∂y
= 0,

∂2G(x, y)

∂2y
> 0. (19)

Here v are the n-dimensional vectors. The solution of
the variational problem G → min along with (18) and
(19) gives QEM, while, if the selection of n-dimensional
vectors is a left-slowest eigenvector vl

s, then the govern-
ing method will be SQEM.

Similarly, in ILDM, each point in a state space of the
system can easily be divided into two subgroups, based
on their eigenstates, i.e. slow and fast subspaces:

max
{
re λxi, i = 1 . . . nf

}

≤ κ < min
{
re λxi, i = nf+1 . . . n

}
for κ < 0 (20)

and re λxi represent the real fast and slow variations at
each point di . Equation (20) allows us to distinguish
between fast nf and slow ns = n−nf subspaces at each
point.

To start measuring the initial manifold, the best avail-
able point is equilibrium deq, after that the next point
can be measured as

r = d p ± hb (21)

in both the directions to get the one-dimensional (1D)-
ILDM. d p is the previous point h representing a small
constant value and b is the slowest eigenvector extracted
from E :
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E =
⎡
⎣

| |
v1 · · · vn
| |

⎤
⎦, (22)

where v1, . . . , vn are column vectors representing the
eigenvectors of Jacobian J ; J = ∂CK /∂di .

To avoid any possibilities of moving along the fast
direction, we can take them to be in orthogonal direc-
tion. But, usually, these vectors are not orthogonal.
Therefore, with the help of Gram–Schmidt orthogo-
nalisation method, we apply the Schur decomposition
method over J , measured at each point in a phase
space.

Theorem. (Schur decomposition). For any n×nmatrix
A with entries from C , there is some orthonormal basis
B ofC and some upper-triangular matrix R with entries
in C .

Thus, a matrix we obtain with an orthonormal basis
Q (usually called transition matrix) evolves both the
fast and slow eigenvectors Q f : Vxi , i = 1 . . . nf , Qs :
Vxi , i = nf+1 . . . n. Then according to the definition of
Maas and Pope, ILDM implies

Qf · CR
K (d) = 0. (23)

where CR
K (d) is the reduced system to be solved and

Qf are 1 . . . nf rows of Q−1(inverse) matrix (nf × n)

appropriate to the transpose of Schur matrix and van-
ishes a big part of the Jacobian matrix matching to the
fast time-scale. This will allow us to move along slow
time-scales. System (21) further leads to the implica-
tion functions which need proper care while solving the
system.

A classified nature of this method allows us to
measure the higher-dimensional manifold. For this

purpose, 1D-ILDM may be considered in its discretised
form. Then each point of subdivision is considered
as a starting point to advance the method in both
the forward and backward directions. Rest of the pro-
cedure is like the procedure adopted for computing
1D-ILDM except for the addition of one more progress
variable.

3. Results and discussions

Usually, the transformed system of differential equa-
tions is high dimensional and the exact solutions of
these equations, in general, look impossible. Conse-
quently, we implement the numerical techniques to
find the solutions by setting their initial estimated
parameters.

Figure 2a shows the behaviour of the species (in
its reduced form) near the equilibrium point where
all the initial trajectories starting from different points
approaching the equilibrium point. Figure 2b shows the
QEM approximation starting from the equilibrium point
to both the directions.

Figure 3a shows the difference between the approxi-
mate curve and the invariant region, thus QEM approx-
imation needs to be refined. Refinements are carried
out using the method of invariant grids [8] shown in
figure 3b, and this figure shows that after the second
refinement the solution curve lies over the invariant
region.

Similarly, the initial approximations started from
equilibrium point in both the directions (forward and
backward) given by ILDM and SQEM are shown in fig-
ures 4a and 4b, respectively.

(b)(a)

Figure 2. Phase flow of the solution trajectories in its reduced form d1 and d4 near the equilibrium point (a) and 1D solution
curve obtained through QEM (b).
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(b)(a)

Figure 3. QEM solution curve along with the solution trajectories (a) and first and the second refinements of the QEM curve
(initial approximation) using the MIG at each grid point (b).

(b)(a)

Figure 4. ILDM approximation along with equilibrium point (a) and (b) shows SQEM approximation along with equilibrium
point.

Figure 5. Comparison of QEM, SQEM and ILDM approx-
imations along with the behaviour of their species near
equilibrium.

To investigate the efficiency of the reduction method,
all the solution curves are compared in figure 5, and it
is clear from this figure that the solution curve obtained
through ILDM lies over the invariant region. Thus, this
technique gives more accurate results than the SQEM
and QEM.

However, in Horuiti setting, it is difficult to mea-
sure the short-lived intermediates in terms of long-
lived components. Therefore, we find a relationship
between the long-lived components that do not involve
intermediates at all. In the present case, we have

H2 + A
k+
−⇀↽−
k−

AH2 which is an overall reaction.

Now the behaviour of the involved species is given in
figure 6.

The refined results are shown in table 1. Further-
more, the results obtained using different techniques are
compared in table 2.
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Figure 6. Steady-state behaviour of the involved species H2, A and AH2 in the overall reaction mechanism after passing
different transition periods.

Table 1. First and second refinement of QEM grid points.

QEM points First refinement Second refinement

0.3894 0.4729 0.4730
0.3564 0.4390 0.4390
0.3211 0.4000 0.4000
0.2836 0.3560 0.3560
0.2444 0.3079 0.3079
0.2037 0.2562 0.2563
0.1617 0.2015 0.2017
0.1186 0.1445 0.1448
0.4197 0.5015 0.5017
0.4472 0.5253 0.5256

Table 2. Difference between ILDM and QEM points and
ILDM and SQEM points.

Actual grid
points

Difference
between
ILDM
and QEM

Difference
between
ILDM
and SQEM

0.3631 0.0206 0.0005
0.3261 0.0152 0.0009
0.2890 0.0107 0.0012
0.2518 0.0074 0.0014
0.2144 0.0054 0.0013
0.1769 0.1158 0.0182
0.1392 0.1173 0.0363
0.4369 0.1210 0.0543
0.4737 0.1274 0.0723
0.5104 0.1365 0.0902

4. Conclusion

In this research paper, three model reduction techniques
are applied to get the invariants (solution curves) of a
complex chemical problem. After getting the reduced
model with the help of the C-matrix, results are com-
pared graphically and in a tabulated form. The following
conclusions can be drawn:

• C-matrix relies on the three basic matrices of chem-
ical reactions.

• C-matrix provides the main information of any reac-
tion mechanism with respect to key elements, key
components, independent reactions and global reac-
tions.

• Model reduction techniques applied to the key
species are provided by the C-matrix.

• The overall reaction is investigated by using the
Horiuti matrix.

• Trees and nodes are defined for the chemical reaction
mechanism.

• QEM solution is refined by applying MIG and after
the second refinement, the actual result was obtained.

• Comparison of MRT implies that the ILDM gives
better results than the QEM and SQEM.
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