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Abstract. In this work, we derive the complexiton solutions for Date—Jimbo—Kashiwara—Miwa (DJKM) equation
using the extended transformed rational function algorithm that relies on the Hirota bilinear form of the
considered equation. Additional solutions such as complex-valued solutions also fall out of this integration scheme.
Multisoliton-type solutions, in other words one-soliton, two-soliton and three-soliton solutions, which comprise
both wave frequencies and generic phase shifts are presented through the medium of the multiple exp-function

methodology which falls out as a result of generalisation of Hirota’s perturbation technique.
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1. Introduction

Scientific models used in research fields such as biol-
ogy, nonlinear optics, nuclear physics, plasma physics
and chemistry are expressed usually by nonlinear evo-
lution equations (NLEESs). Therefore, it is an inevitable
task to investigate the solutions of NLEEs. Seeking
the exact solutions to NLEEs is quite difficult and is
possible in only some circumstances. However, in the
last three decades, there has been enormous activi-
ties for handling these equations. The Hirota’s bilin-
ear scheme [1], multiple exp-function approach [2-6],
exp-function procedure [7], extended transformed ratio-
nal function methodology [8], sub-equation algorithm
[9], Riccati-Bernoulli sub-ordinary differential equa-
tion (ODE) methodology and modified Kudryashov
method [10], novel test function method [11], ansatz
method [12], (G'/G)-expansion method [13], Jacobi
elliptic function algorithm [11,13-15], simplest equa-
tion procedure [11,12,14,15], Backlund transformation
[16], Lax pair [17], Wronskian and Grammian tech-
niques [18], lump and interaction solutions [19-24] etc.
are some of the most popular techniques.

It is well known that one of the most efficient
approaches in the literature is the multiple exp-function
integration scheme [2—6]. The fundamental advantage

of handling this technique is that it is profited without
any requirement of the bilinear equations that must
be required by means of Hirota’s bilinear procedure
[1]. In this process, expressing the multiwave solu-
tions as polynomials of exponential functions is the
most important point. The obtained solutions con-
tain generic wave frequencies with phase shifts and
known as one-soliton-, two-soliton- and three-soliton-
type solutions. The multiple exp-function algorithm is
a generalisation of Hirota’s perturbation methodology
[1].

Another interesting method for constructing analyt-
ical solutions to NLEEs is the extended transformed
rational function scheme [8]. In this process, finding
the rational solutions of variable-coefficient ODE trans-
formed from the given nonlinear partial differential
equation is the most important point. This algorithm
relies on the Hirota bilinear form of the considered mod-
els. Complexiton solutions fall out of this integration
scheme. These solutions contain singularities of unifi-
cations of both exponential and trigonometric function
waves that possess novel style distinct travelling wave
speeds.

The (2 4+ 1)-dimensional Date—-Jimbo—Kashiwara—
Miwa (DJKM) equation [16-18] considered in this
paper will be employed as follows:
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Uxxxxy T 4uxxyux + 2uxxxuy + 6uxyuxx
Hityyy — itxs = 0. (1)

This equation can be derived from the following bilinear
Hirota equation:

D.{(DDy —3D,D,)F - F} - F?
1
+§Dy{(ng +3D})F - F}- F> =0, )

employing u = 2(In F'),. This model characterises the
time evolution of Kadomtsev—Petviashvili (KP) hierar-
chy as the bilinear identity [25]. Hu and Li [16] proved
that the first two bilinear equations of the KP hierarchy
can be constructed by bilinear equation (2), and named
eq. (1) as DJKM equation.

When we look at the works done on this equation,
Lax pair, multishock wave solutions as well as infinite
conservation laws were imparted in [17] while nonlin-
ear superposition formulae as well as bilinear Backlund
transformation (BT) were extracted in [16]. In addition
to these substantial studies, Wronskian and Grammian
solutions were also recovered in [18]. We shall con-
tribute to the existing works in a different way by finding
multisoliton-type solutions and complexiton-type solu-
tions which have not been worked so far.

This paper is presented as follows. The multiple exp-
function methodology will be employed in order to
obtain multisoliton-type solutions, namely one-soliton,
two-soliton and three-soliton solutions in §2 whilst
complexiton solutions are derived by the extended
transformed rational function approach in §3. Some con-
clusions are given in §4.

2. A quick glance at the multiple exp-function
methodology

The fundamental stages of this scheme are enumerated
by the following steps [2—6]: Let us consider an NLEE:

Q(x7t7ux’ulv"'):O‘ (3)
Step 1: Let the first-order auxiliary equations be
b =—widr, Gix=kigr, 1<1<m, 4)

where k; corresponds to the angular wave numbers while
wj corresponds to the wave frequencies for 1 </ < m.
The analytical solutions of eq. (4) are given as
dr=ce, H=kx—awt, 1<1<m,
where ¢; signifies arbitrary constants.

Step 2: Equation (3) permits the formal solution

P(‘Ibl,---"pm)
) = DOL e Om) 5
o) = e b ©)
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with
m M )
P = Z Z prs,lj(b;lﬂ%a
r,s=11,j=0
m M )
=Y > ol 6)
r,s=11,j=0

where p,; ;; and g, ;; are all constants to be determined.
The necessary partial derivatives in eq. (3) can be yielded
by employing eq. (4). For instance, one can get

. 4> 1 PPl — DY ey A Pre
Uy = 3
q
=YLy o1py 1+ pY Il @1 ¢ o
- 2
q

and

_ g 1 PPl — P 4Pl
- 2

q
_aX i kipg b — P kigg i

q2 @®)

X

Step 3: Plugging (5) throughout (6) and its necessary
derivatives such as (7) and (8) into (3) lead to the fol-
lowing transformed equation:

Ax, 1, ¢1,¢2, ..., ¢m) = 0. ©)

Step 4: An overdetermined system which includes the
terms k;, wy, prs;; and g5 is obtained by equating
the numerator of (9) to zero. Solving this system with
Maple, we get the values of p, g polynomials with &
wave exponents. So, the multiple wave solutions for
eq. (3) are given by

kix—wt kmx—a)mt)
9

plcie
q(Cleklx_wlt, o, Cmekmx—wmt) .

ce., Cpm€

u(x,t) = (10)

2.1 One-soliton solution

In order to obtain the one-soliton solution of eq. (1) (see
figure 1), we assume

p

u(-xay9t):g9 (11)
where

p= A()+A]eklx+lly_wlt,

g = By + Bjefxthy—ei, (12)

Plugging eq. (11) and necessary derivative terms
into eq. (1), one comes up with an overdetermined
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Figure 2. Profiles of two-soliton-type solution (13).

system having unknown parameters.
overdetermined system, we conclude

Solving the

_ 2BoBik1 + AgB;

Aq
By
K+ 3
1 1
wl=———7>+—, ki, B 0.
| 2w 1, Bo #

Remark. We note that for the one-soliton solution, this
methodology corresponds to the exp-function technique

[7].

kik3 — 2k3k3 + k3ks — k315 + 2 kikoly 1o — k313

A =3 3.3 2.4 1272 2,2°
G + 20013 + K2kG — 1213 4 2 kikaly [ — K313
4, 2 4,72
o = DEHE) - bka+h)
27 2k3
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where
p= 2klek1x+lly—a)1l + 2kzek2x+lzy—w2t
+ 2A12(k1 + kZ) ek1X+lly—wltekﬂ-i-lzy—wzt’
g=1+ equ—i—lly—a)lt + ekzx-i—lzy—wzt
+ A126k1x+lly_wltek2x+lzy_w2t. (14)

Plugging eq. (13) and necessary derivative terms into
eq. (1), one comes up with an overdetermined system
having unknown parameters. Solving the overdeter-
mined system, we get

2.2 Two-soliton solution

In order to construct the two-soliton solution of eq. (1)
(see figure 2), we assume

P

ulx,y, t)=—, (13)
q

2.3 Three-soliton solution

For the three-soliton solution of eq. (1) (see figure 3),
we assume

u(x, y. 1) =2, (15)
q



36 Page4of12

Pramana — J. Phys. (2019) 92:36

-10 -5 0 5 10

Figure 3. Profiles of three-soliton-type solution (15).

where
p= 2k1e—w1t+k1x+11y + 2k26—w2t+k2x+lzy

+ 2k3e—a)3l‘+k3x+l3y

+ 2A12 (kl + kz)e—a)lt+k1x+llye—wzz+k2x+lzy
+ 2Al3 (kl + k3)e—w1t+k1x+llye—a)3l‘+k3x+l3y
+ 2A23 (k2 + k3)e—w2t+k2x+lzye—w3t+k3x+l3y
+2A12A13A23(k 1 + ko + k3)
% e—w1t+k1x+llye—a)zl+k2x+lzye—a)3l‘+k3x+l3y
q= 1+ e—w1t+k1x+11y + e—w2t+k2x+lzy
+e—w31+k3x+l3y+ Alze—a)lt+k1x+l1ye—a)2t+k2x+lzy
+ A13e—w1t+k1x+ylle—tw3+xk3+yl3
+A23e—tw2+xk2+ylze—ta)3+xk3+yl3
+ A12A13A23e—w1t+k1x+yl1e—ta)2+xk2+ylz
% e—ta)3+xk3+yl3‘ (16)
Plugging eq. (15) and necessary derivative terms into
eq. (1), one comes up with an overdetermined system
q p y

having unknown parameters. Solving the overdeter-
mined system, we get

ki3 — 23,3 + k3k5 — k312 + 2 kikoly 1 — K313

Ap = ,
TR 20K + KK — K212 1 2kikalyly — K22
e kik3 — 2k3k3 + kiky — k313 + 2 kikal 13 — k313
BT 12080 + 13K — 132 + 2 kikalily — K22
e — k3k3 — 2k3k; + kaky — k313 + 2 kokalols — k313
2T 12318 + KRk = RIE 1 2kakshls — K12
h(ki +17)
0l == ——a",
b(k; +13)
CET T
2
I3(k§ + 13
;= — 3(K3 3).

2
242

To the best of our knowledge the phase shifts A1z, A3
and A;3 are being shown for the first time for the DJKM
equation.

3. A quick glance at the extended transformed
rational function approach

The key steps of this procedure are summarised as fol-

lows [8]:
Let us consider the NLEE
A(uvux’ulau.XX7"'):0' (18)

Step 1: Equation (18) is transformed to the so-called the
Hirota bilinear form

H(D,,D,,.. )FF =0 (19)

with the help of the dependent function transformation
u = T (F) in which F accounts for an unknown func-
tion and Dy, Dy,..., are Hirota’s differential operators
defined by

A7)
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DF(¢) - P(2) = (9 — 0;)' F(Q)P(Z)

'=¢
= L F(+¢)P(c—7)) o 120 (20)
Step 2: Equation (19) permits the formal solution
F— PO nz)’ 21
q(n1,m2)

where p(n1,1n2) and ¢g(n1, n2) are polynomials and
n1(&1) and n2(&>) hold the following ODEs:

d?n;
i
771 = — = —7]1, (22)
d&?
d’n,
1
2= > =102, (23)
d&?

respectively, together with

&l =kix +o1t +c1, & =kox + wat + 3,

where k1, k2, w1 and wy will be obtained subsequently
and c; and c; are real value arbitrary constants.

The analytical solutions of eq. (22) are given through
the medium of
Ny = =xsin& or n; = +£cosé&y, 24)
whilst the exact solutions of eq. (23) are obtained by the
equation

Ny = *sinh& or 7y = £coshé;. (25)
The solutions suggest that 77,2 and 17;2 admit
nf=1-ni and n7=1+n. (26)

Step 3: We choose appropriate p(n1, n2) and g(n1, n2),
then we substitute (21) into (19) along with (22) and
(23). As a result of this substitution, we get an alge-
braic equation involving k; and w; under the conditions
of (26). Solving this algebraic equation, analytical solu-
tions for eq. (18) are recovered.

3.1 Complexiton solutions

The Hirota bilinear forms [16—18] of eq. (1) are obtained
by

(D} 43D} +aD,D;)FF
= 2FFyxxx — 8FyFyxx + 6F2 + 6FF,,

— 6F) + 20 FF; — 20 F.F, =0 (27)

Page 50f 12 36

and
3 o
(DiDy —3D.D; - EDyDZ>FF

=2FF,xxy — 2F 3 Fy — 6F\Fyyy + 6F Fyy

— 6FFy 4+ 6F.F; — aFFy, + aF,F, =0 (28)

under the transformation
ux,y,t)=2(InF(x,y,z,1)),,

where F(x, y, z, t) accounts for a real-valued function
while z implies an auxiliary variable and « corresponds
to a constant.

Case 1: 7 = x.
In this case, eqs (27) and (28) read as

(D} 43D} + aD})FF
= 2FFyyxx — 8FyFyxx + 6F2, + 6FFy,

— 6F) +20FF —2aF} =0 (29)
and
3 o
(DiDy —3D.D; - EDyDX)FF
= 2FFyyxy — 2FxxFy — 6FyFyyy + 6Fy Fyy
— 6FFy + 6FF, — aFFyy +aFyFy =0. (30)

To seek complexiton solutions of eq. (1), we suppose F
ineqs (29) and (30) is expressed in the following rational
function form:

_ p(n1,1m2)
a1, m)’
with

€29

p(mi,m2) = Ani+ Bna, q(n,m2) =1,
&l =kix+1Ly+ wit +c,
S =kx+hy+wit+c

A, B, k;, l; and w; will be determined subsequently.

Under conditions (22) and (23), all the necessary
derivatives in eqs (29) and (30) are recovered by means
of

Fy = Akin) + Bkarph, (32)
Fy = Alin| + Blans, (33)
Fi = Awin| + B, (34)
Fox = AR + BI3ny = —Akin + BK3ma,  (35)
Fyy = Al3n{ + B3uy = —Alfn1 + Bl3n, (36)

Fyy = Akiwin| + Bkawany =—Akio1n1+ Bkawan,
(37

Fyy = Akilin| + Bkalany = —Akilin1 + Bkalony,
(38)
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Frox = Alin' + Blany = —Akin| + Bian,,  (39) 8A%kil — 8B*k3l, + Aakily + B akaly
Fury = Akl + Bkshny' = —Akilin| + Bk3lan), +6A%k 01 + 6Bk ) = 0. (48)

(40) Solving (43)—(48), we obtain the following results:

Resulr 1

I} = —ky(QA%k? — B>k} —3B%i3)k, I = ki(BA%KT + A%k3 — 2B%k3)«,
_12A%) — 4AM3K3 4+ 3A B2k} — 26A2B2kIK3 + 3A? B2k3 — 4B*k}k3 + 12B%k3

o
2 2 2 2 ’
3(A4kl + A232k1 — A232k2 — B4k2)
kok
Fxxxy = Ak%ll77§4) + Bk31277§4) w] =

18(A%*? + A2B2k7 — A2B%k3 — B*k3)
x (72A%$ — 8ACKTKS + 36A* B2k?
— 168A* B2k k3 + 36 A*B%kTky — 9A? B*KS

= Ak3lin1 + Bkilana, (41)
Frxrx = AP + BIGRSY = Akin + Bidn,.  (42)

An algebraic equation for k;, /; and w; is imparted by 2 41412 214,24 24,6
substituting (32)~(42) into (29) and (30) and then equate _69“‘634 "21"2 + 1563“2‘ f‘ kikz - 627“‘ Bk,
all the coefficients of the same terms, namely 1%, 03, 11, +10B°k{k; + 36B°kik; — 54B°k3) ,

1m2, 1} and 1, as well as constant term to zero. Under
the conditions of (26), the determined equations are wp =
emerged from this system as follows:

8A%k{ — 8Bky — 2A%ak] — 2B ak3

kik
18(A%2 + A2B2k2 — A2B22 — BH2)
x (54A%S — 36A°k{k3 — 10A%k7k5
+27A*BkS — 153A* B2k k3 + 69A* B2k k5

— 6A%7 —6B%13 =0, (43)
8ABK ks — BABKIK3 — 44 Bakiks +9A*B2kS — 36 A2 Bkt + 168A% B3 kS
— 12ABl;l, =0, (44) —36A%B*S + 8B%kik; — 72B°kY)
2ABKY — 12ABKK2 + 2ABKS — 2A Bak? x (OA*KT + 9A Bk} — 9A*B*k; — 9B k3)i?
+2ABak? — 6ABI + 6ABI = 0, (45) —1=0 (49)
2AB k? I, + 6AB k% kol; — 6ABk; k% L, —2AB k; I The.complexiton sol.utions of (1) (see figure 4) corre-
+ ABakil + ABakoly + 6ABkiw» sponding to (49) are given by
+ 6ABkyw; = 0, @) Uy ) =2(nF(x, y, 1), (50)
2ABkily — 6ABk3kyly — 6ABkik3ly + 2ABk3 1, with
+ ABakl; — ABakyly + 6ABkjw; F(x,y,1) = +Bsinh(kox + ki (3A%k? + A%k3
— 6ABkyw, =0, (47) — 2B%3)ky + oot + ¢2)

w

Figure 4. Profiles of complexiton-type solution (50) with (52).
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Figure 5. Profiles of complex-valued-type solution (54) with (55).

+ Asin(kyx — ko (2A%k? — B%k?

—3B%k3)ky + it + 1), 51
F(x,y,t) = £Bsinh(kox + kg (3A2k% + A2k§
—2B*I3)Ky + wnt + c2)
+ Acos(kix — ko(2A%kT — Bk}
—3B’k3)ky + w1t + c1). (52)
Result 2
o= #’ ky = Fiky, 1 = £ily,
1
Gl S Gl )L o,

2k? 2k?

The complex-valued solutions of (1) (see figure 5) cor-
responding to (53) are given by

ulx,y,t)=2(InF(x,y, 1)), (54)
with
F(x,y,1)
= +B sinh (:I:iklx + Ly — %t + cz>
i(4k} + lg)zzt

k)

+ Asin| kijx £ibhy £+
(1 2y 2](]2

(55)
F(x,y,1)

Akt +12)1
= £+ B cosh (iiklx + by — Mt + cz)

2k?
i(4k} + l%)lzt

+ Asin| kix £iby £+ cl s
(1 2Y Zk% 1

(56)
F(x,y,1)

4kt + 121
— + B sinh( +ikx + by — %z 5
242

4kt 4 13)1
+ Acos(klx Ly + W TDE

2k?
(57)
F(x,y,t)
, 4k} + 1D
= *Bcosh| Likijx + Ly — — 5ttt
2k7
i(4kt +12)1
4+ Acos| kix £ilhy £ Ml +cr ).
2 2
ky
(58)

Case2:z=y.
In this case, eqs (27) and (28) read

(D} 43D} +aD,Dy)FF
= 2FFyxyx — 8F Fyxx + 6F], + 6FF,, — 6F;

+2aFFyy, —2aFFy, =0 (59)
and
D3D, —3D.D, — D2\ FF
x -~y x Mt 27
= 2FFxxxy - 2FxxxFy - 6Fxexy + 6Fxxey
— 6FFy; + 6F.F; — aFFy, + o F} =0, (60)

Using the same steps described in Case 1, the following
outputs are emerged:

Result 1

pB ki (—4k3ky + 4k3 + klo)
A = -, 0 =K, ll == -

kl /CkZ + 612
(ktkaly + k310)ic®

+ (=3k1k3 — 2K7K3 + kS + 3kP15 + 15k313)?
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+ (12kfkaly — 72k3k3 10 + 12k510 + T2ka13) ke
— A8KTKS + 96kTks + 36k313 — 48kSk3
— 216k3k313 + 36k{15 + 10815 = 0,
(kY 4 36k54k3 + 30k ks — 12k34S
+ k5 — 18kT13 + 12k3k313 — 10K313 + 915) p?
— 12k5k5 — 24k TS + 43S — 3ickSkals
— 6k{lalon — 3kl — kik313ic?
— iPI31 — 95KS — 18kK313 — K3k315
— 12k313 + 9k713 — 3613k3 = 0,

ki
w] =
U7 6k (k2 + k)2 (kka + 61)°

Pramana — J. Phys. (2019) 92:36

The complexiton solutions of (1) corresponding to
(61) are given by

u(x,y, t) =2(In F(x,y,1)), (62)
with

B
F(x,y,t)=xBsinh(kyx + Ly + wat + ) + i—
1

. ki (—4k3 ko +4k3 +k12)
x sin| kjx —
kky + 6l

Yyt o1t + C]>,
(63)

B
F(x,y,t) = £Bsinh(kox + Iy + wat+c3) £ i—
1

X (24K K3 + 16kkSAS + 326k{k] — 16kk3S (klx_ k(A4 k) Cl) |
— 8ickd + T2k + 512 kS L + Sk kKL xk + 6l
+ 7Sl — 96KSK2L + 240KSK3 64
— 240k {kS1y + 144kTkS1, — 48k3°1 Result 2
67,72 47,372 21,572
772 27,4;3 271271243
+ 48kckyly + 3x7kyly + 30k kikaly + 14kTks + 8k3KS + k5 =0,
27,4;3 673 47,243
— 21k7ky15 + 36k715 — 180k k515 A =kyBp, (3]{% + k%)pz —-2=0,
+ 972kTk313 + 36kS15 + 108k kikaly K — k23— K — 32
— 180kk315 + 108315 — 324k313), *= kik ’
ko(ky — 4kiks — k3 — 3k?)
h=x, bh=-— ;
6k
oy — 3k{0 — 27k3k5 + 66kSky — 18kTkS — 21k7kS — 3k)° + 53k2kD — 49k?kTk3 + 15k 2kTk3 — 196%kS
18«3 ’
10 81,2 67,4 416 21,8 10 21,6 21412 21214 216
oy — (3k;" — 26kVk3 + 58KkSky — 4kkS — 13k7k5 — 2ky0 + 5Tic?ky — 54K%kik3 + 39k kiky — 6K2kS) ko
27k k3 '
(65)
1 : :
w) = The complexiton solutions of (1) (see figure 6) corre-

" 6(k2 + k2)2 (ks + 612)?
x (326ckSkS — 32uck3k + 5k kK31,
— 92k k5lo — 17Tk — 3151
— 48I8 131, + 432k5K51, — 336k kS
— 48Kk + 84ickChals — 252icktk313
+ 126k}315 — 36Kky15 — 3icki 13
+ 423315 — 3P k313 + 180k013
— 612kTKk313 + 252k k315 — 108k513
+ 252ik?kols — 36Kk315 +324k315 —108k313).
(61)

sponding to (65) are given by

u(x,y, 1) =2(InF(x,y, 1))y 66)
with
F(x,y,t)

= 4B sinh(kzx _ ka(kf - 4k%6/ZK— K — 3K2)y

+wot + C2> + kyBpsin (k1 x + ky + w1t + ¢1),

(67)
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Figure 6. Profiles of complexiton-type solution (66) with (67).

F(x,y,1)
ko (ki — 4k3k3 — k3 — 3k?)
6k Y

= +Bsinh <k2x —

+wot + C2> + ko Bp cos (kix + ky 4+ w1t + c1).

(68)
Result 3
4k3 + 312
B = +iA, a = —L, k| = +iky, 1; = +iby,
kol>
i(4k3 1y — k> 3
o] = :I:I( 2 t2 Fwy + 2)' (69)

K
The complex-valued solutions of (1) corresponding to
(69) are given by

u(x,y,t) =2(In Fx, y, 1))y
with

(70)

F(x,y,t) = xiAsinh(kpx + Ly + wat + ¢3)

i(4k3ly — k3w + 13
k2
2

+ Asin (:I:ikzx iy +

(71)

F(x,y, 1) = iAsinh(kox + by + w2t +c2)
i(4k31 — Kawy + 13
(4kyla — ks 2)t+c1 .

+ Acos (:I:ikzx +iby+£

5
(72)
Result 4
8 3
dyc* —31% =0, a= —ZL, k1 = +fik, k) =«,
2
8ilykc? 81k2
I, = +ily, o] =+ 1;" D= é" . (73)

The complex-valued solutions of (1) (see figure 7)
corresponding to (73) are given by

u(x,y, 1) =2(InF(x,y, 1)),
with

(74)

812K2t N
c
3 2

8ilykc?
1A sin(:l:i/cx tily + 1;" [+ cl) ,
(75)

812K2t .
c
3 2
. . . 8ilok2
+ Asin| ikx iy + 3 t+c ),
(76)

812K2t N
C
3 2

8ilyk?
:I:Acos(:I:in:I:ilzy:I: 1§K t+cl>,

F(x,y,t)==B sinh(xx +bhy+

F(x,y, t)==B cosh(;cx +hy+

F(x,y,t)==+B sinh(;cx +hy+

(77)
81rk2
F(x,y,t) =xBcosh|kx +1Ly+ 3 t+cp
8ilak?
+ A cos(:l:i/cx +iby + ! ;K t+ cl>.
(78)
Result 5
i(4k} +313) _ .
o=xt——=" ky==+iky, [} =Zilp,
kil
il (4k% +12) L (4k? +12)
o =t—— 2 o=l (79)
2ky 2k

The complex-valued solutions of (1) corresponding to
(79) are given by
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Figure 7. Profiles of complex-valued-type solution (74) with (75).

ulx,y,t) =2(n F(x, y, 1))y

with
F(x,y,t)
I, (4k* + I3
— 2 Bsinh [ %ikyx + Ly — 2H D),
2k
1
il (4k% + 12
+ Asin( kix iy + 2(1—22)t
F(x,y, 1)
I, (4k* + 12
= £+ Bcosh| +ikix + Iy — ut
2Kk>
1
il (4k* + 12
+ Asin( ki iy + 2D,
243
F(x,y, 1)
I (4k* + 12
= B sinh| Likix + Ly — MI
2k?
1
il (4k* + 12
£ Acos( ki iy + 2HT D),
243
F(x,y,t)
I>(4k* + 12
= £+ Bcosh| xikix + Ly — 2(1—;_2)t
243
il (4T + 12
+ A cos <k1x +ily £+ %t
1

Case3:z=t.
In this case, eqs (27) and (28) change to

(D} 43D} + aD, D)FF

(80)

’

81

’

(82)

)

’

(83)

(84)

= 2FFkyyxx — 8F Fyyy + 6F2 4 6FF,, — 6F>
4+ 2aFFy; — 20 F F; =0
and
(DiDy — 3D, D, — %DyD,>FF
= 2FFxxxy - 2FxxxFy - 6Fxexy
+ 6Fy, Fyy — 6FFy; + 6F,F,
—aFFy, +aFyF; =0.

Using the same steps mentioned in Case 1, we obtain

the following result:
_ 2kap1

B = A, o = 3 12 =K,
kB2
kB2B3

W= 3o

4k>k1B1B4

K (—3k{ — 6k}k3 + 5k3 + 6K%) B2
wy = )

4k3 B

(144k3 — 144k3)ic® + (—288K$ + 480k} k3
— 992k}k3 + 288kS)kc®
+ (216k[° — 216k8k3 — 144k5k5
— 816kTKS + 1464k7kS — 504k10)
+ (=72k}* — 72k{k3 + 1464k1%k5
— 2184k5kS + 744k8kS + 1896k k1°
— 2136k7ky? + 360ki)ic? + 9k|®
+ 39k 19k2 + 148k1*ky — 36k 2kS — 98Kk [OkS
— 1230k$k30 4 2852k0k)% — 2644k ka*
+ 1185k7k1® — 225k1® = 0,
Br = —27k3% — 243k3°%k3
— 1017k{8k5 — 2081k{%kS + 354k]*k8
+ 5170k1 230 4 8958k 1012 — 28306k Sk
+ 24905k k1% — 7983k kiB — 405k7k3°
+ 675k3% — 108k 2k{® — 2520i°k| %3
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— 10896k 2 k1 4k — 10368k 2k 2kS +437041%k10kS By = (kS + 8kOk3 + 22k k3 — 32k34kS + 158

— 18096k 2 k5 kA0 — 1281612k SkI% +90241 2k i}t + 3612k + 24K 233 — 126%k3 + 12642, (87)
+ 6228k 2k k30 — 1080k 2kA® — 4104k k1 The complexiton solutions of (1) corresponding to
— 19656k *k12k3 + 6648k k13 + 19704k 4 K5k (87) are given as

+ 17832 ks — 7704k k30 — 1944k kiky®  w(x, y, 1) = 2(n F(x, y, 1)), (88)

+ 15126 * K3 + 518410k |0 — 864k CkS ks

+ 8448k kS 4 2496k Ok kS + 5568k OkTkS

— 864k %k0 + 6480k kS + 3024k 8k} k3 F(x,y, 1)

— 720k ¥k ky + 4324 3kS + 17281 10k3,
By = 27k3* + 255k3°k3 + 809k{¥k5

with

= +Asinh (kzx + Ky

+ 821k10kS — 1442k {*kS — 3130k 2k1° +K(—3k;‘ — 6k2k? + 5k3 + 6K2)/32t e
2
+ 10914k %12 — 20806k Sk)* + 20855k k10 413 1
— 10133kTk)® + 1605k743° + 225k3% +396K 2k |8 . KB
+ 2088k 2k10k2 + 67262k k3 — 929612k 2k8 Aty s g )
1 k2 1 K2 152 2k1B1P4
+ 19672ic%k{ kS — 10560k 2k k3°
F(x,y.t
456K + 114722004 + adackle 00D
— 360k %kA® — 1368k *k{* — 9144k k| k3 — 4+ A sinh (kzx + Ky
+ 2568k *k10k3 + 12648k k8kS + 135606 kK5
4 21,2 4 2
— 11688k kK10 + 21365 k212 + 504k*k1* R 6k1"22+ ky +6Db2, L 62)
585610k B2 + 49281 SkOKd + 56321 kS 4k p1
67,278 67,10 81,6
+ 704k kK5 — 2881c0Kk3 + 158415k + ACOS(,M thy+ 2B C1>. (90)
— 14418 kS 4+ 72018 k3G 4 14413+ 5761 k2, ki1 Bs

;KK (—9k$ — 16k0kZ + 22k k5 — 8K3KS + 27k + 1242k + 8ic2k3k3 — 4ick + 12«*)
U7 o (3KS + 8kOKZ + 22k — 32K2KS + 15KS + 36k kY + 24 2K3K2 — 1262K2 + 1264)

B3 = —45k3k3 — 186k13k5 — 665k19kS + 520k14kS

+ 1238k{ %)% + 6692k{ k)% — 1524245k
6,16 4,18 2,20 In this work, the DJKM equation was considered
+ 11400k7k;” — 1833k74; ™ — 1530kik from the view of analytical solutions. In this regard,
+ 675k3% 4 486K 2k{® + 6481k {%k3 multisoliton-type solutions, namely one-soliton, two-
_ 314442 k%4k§ . 7872,{2]{%2]{3 + 22260x> k%okg soliton a'nd three—solit'on which gomprise both wave
58110 5 61 5 414 frequencies and generic phase shifts are presented by
— 5328k "kiky” — 10152i"ktky” + 5184k "k ky the multiple exp-function approach which falls out as a
+ 66782 k% kéf’ — 1080x2 kég -1 296,(4](%4 result of generalisation of Hirota’s perturbation method-
4,122 4,104 4,86 ology. We emphasise that the fundamental advantage
— 10008«k; “k; + 672k "k "k; + 16152k ki k; of this methodology is that it does not require bilin-
+ 159841 kK3 — 6888k *k ki — 2304k*k?k)>  ear equations, whereas the Hirota’s bilinear proce-
4,14 6,10 61872 dure requires bilinear equations. The new phase shifts
+ 151267k, — 4327k, " — SAT26C ki Ky Alo, A?3 and Aj3 in (1q7) are given for thrz: first time
+ 5280k kS5 + 5952k Ok kS 4 3984k Sk TS for the DJKM equation. Furthermore, complexiton solu-
_ 864" k%o + 1728«8 k? + 4328 kzlt k% tions were recovered through the additional integrgtion
. 8.6 1042 technique known as the extended transformed rational
+ 288k k1ky 4 432k ky + 864k Tky, function algorithm that is based on the Hirota bilinear

4. Concluding remarks
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form. Additional solutions such as complex-valued
solutions also are obtained in this integration scheme.
It is emphasised that the obtained complexiton-type
solutions include singularities of unifications of both
exponential and trigonometric function waves that pos-
sess novel style distinct travelling wave speeds.

On the other hand, lump solutions are special exact
rational solutions and contrary to soliton solutions they
can be localised in all directions. We note that the lump-
type or interaction solutions can be constructed in (3+1)
and (4+41) dimensions using the generalised Hirota
bilinear forms. The important condition for producing
lump solutions is to put the given equation into Hirota
bilinear form with the help of Hirota’s derivative defini-
tion and u = T'(f) substitution (usually u = 2(log f)x
or u = 2(log f)xx). Afterwards, one assumes the form
of lump solutions as follows:

f=g*+h*+ao,
where

g = a1x +axy + aszt + a4,
h = asx + agy + a7t + ag

anda; , i = 1,...,9, are arbitrary values which must
be fixed in terms of themselves. We have observed that
the form of lump solutions does not generate analytic
solutions which are rationally localised in all direc-
tions in the space by Maple symbolic computation for
egs (29), (30), (59), (60), (85) and (86). Therefore, we
could not get lump solutions. However, the interaction
solutions (lump-soliton, lump-kink) stand as an open
problem. Moreover, in our subsequent works, using the
generalised Hirota derivative operators, lump-type solu-
tions will be investigated.
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