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Abstract. We report, in this paper, a complete analytical study on the bifurcations and chaotic phenomena observed
in certain second-order, non-autonomous, dissipative chaotic systems. One-parameter bifurcation diagrams obtained
from the analytical solutions revealing several chaotic phenomena such as antimonotonicity, period-doubling
sequences and Feignbaum remerging have been presented. Further, the analytical solutions are used to obtain
basins of attraction, phase portraits and Poincare maps for different chaotic systems. Experimentally observed
chaotic attractors in some of the systems are presented to confirm the analytical results. The bifurcations and
chaotic phenomena studied through explicit analytical solutions are reported in the literature for the first time.
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1. Introduction

Chaos in electronic circuits has been a topic of interest
among researchers because of its application to secure
communication [1–3]. After the observation of a
chaotic attractor in an autonomous circuit system by
Matsumoto [4], several electronic circuits with chaotic
dynamics have been reported [5–10]. The implementa-
tion of the Chua’s diode using Op-Amps [11] enabled
researchers to identify different types of nonlinear ele-
ments [6,12]. Even though a large volume of research
is done in chaos theory, only a few have reported
analytical studies on chaos and its synchronisation.
The analytical results thus obtained have been used to
study chaos and synchronisation through phase portraits
[6–8,13–20]. Being the prime validation for analysing
the dynamics of chaotic systems, the explicit analyt-
ical solutions play an important role in the study of
chaotic systems. However, a complete analytical study
on the evolution and characterisation of chaos through
bifurcation diagrams, basins of attraction and Poincare
maps obtained from analytical solutions is rare in the

literature. Hence, an explicit analytical solution
revealing the chaotic behaviours of dynamical systems
seems to be much important and has to be focussed
greatly for its extensive applications. Such a potential
explicit analytical solution producing several chaotic
behaviours and their characterisations is presented and
discussed in this paper.

A complete analytical study on the chaotic dynamics
of a class of second-order, non-autonomous systems
with piecewise-linear nonlinear elements is presented
in this paper. Nonlinear circuit elements with three seg-
mented V –I characteristics have been considered for
the present study. The dynamics of these systems have
been studied by presenting one-parameter bifurcation
diagrams, phase portraits, basins of attraction, Poincare
maps and power spectrum obtained from the analytical
solutions. Further, some of the significant phenomena
observed in these chaotic systems have been studied
through analytical solutions. The coexistence of chaotic
attractors arising from different basins of attractions
is presented. The chaotic attractors produced by cou-
pling the analytical solutions obtained in each of the
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Figure 1. Schematic representation of the sinusoidally
forced (a) series LCR circuit with a nonlinear element NR
connected parallel to the capacitor, (b) parallel LCR circuit
with a nonlinear element NR , (c) V –I characteristics of the
Chua’s diode with three negative slope regions and (d) V –I
characteristics of the simplified nonlinear element with two
positive outer slopes and one negative inner slope.

piecewise-linear regions are presented for each chaotic
system.

For the present study, we consider two types of
second-order chaotic circuit systems, each with two
different nonlinear elements. Figures 1a and 1b show
the schematic representation of the sinusoidally forced
series and parallel LCR circuits with piecewise-linear
elements NR . The nonlinear element may be a Chua’s
diode [11] or a simplified nonlinear element [6]. The
V –I characteristics of the Chua’s diode and the simpli-
fied nonlinear element are shown in figures 1c and 1d,
respectively. The paper is divided into two sections. In
§2, we present the generalised analytical solutions for
series LCR circuit systems with piecewise-linear non-
linear elements and the analytical dynamics of two types
of circuit systems. In §3, the generalised analytical solu-
tions and analytical dynamics of the parallel LCR circuit
systems are presented.

2. Analytical dynamics of the series LCR circuit
systems

The circuit equations for a sinusoidally forced series
LCR circuit with any three-segmented, piecewise-
linear, voltage-controlled nonlinear element are given by

C
dv

dt
= iL − g(v), (1a)

L
diL
dt

= −(Ri + Rs)iL − v + F sin(�t), (1b)

where g(v) is the mathematical form of the
piecewise-linear element given by

g(v) = Gbv + 0.5(Gb − Ga)[|v + Bp| − |v − Bp|].
(2)

In terms of the rescaled parameters, the normalised state
equations are given as

ẋ = y − g(x), (3a)

ẏ = −σ y − βx + f sin(θ), (3b)

θ̇ = ω, (3c)

where σ = (β+νβ) and β = (C/LG2), ν = GRs , a =
Ga/G, b = Gb/G, f = ( fβ/Bp) and ω = (ωC/G),
G = 1/R. In the piecewise-linear form, g(x) can be
written as

g(x) =

⎧
⎪⎨

⎪⎩

bx + (a − b) if x ≥ 1,

ax if |x | ≤ 1,

bx − (a − b) if x ≤ −1.

(4)

The equations of system (3) are second order in each
of the piecewise-linear regions. Hence, an explicit ana-
lytical solution can be obtained in each of these regions.
The generalised analytical solutions for eq. (3) are sum-
marised as follows.

In the central region D0, g(x) = ax and the dynamical
equation of the system is given as

ÿ + Aẏ + By = a f sin(ωt) + f ω cos(ωt), (5)

where A = (σ +a) and B = (β +aσ). The fixed points
in the D0 region are the origin (0, 0). The stability of
the fixed point in the D0 region can be determined from
the stability matrix

J0 =
(−a 1

−β −σ

)

. (6)

When the roots of the above equationm1,2 = (−A/2)±
(
√
A2 − 4B)/2 are real and distinct, then the state vari-

ables y(t) and x(t) are

y(t) = C1em1t + C2em2t + E1 + E2 sin(ωt)

+E3 cos(ωt), (7a)

x(t) = 1

β
(−σ y − ẏ + f sin(ωt)). (7b)

The constants of the particular integral E1, E2 and E3
are given as

E1 = 0, (8a)

E2 = f ω2(A − a) + a fB

A2ω2 + (B − ω2)2 , (8b)

E3 = − f ω(Aa + ω2 − B)

A2ω2 + (B − ω2)2 . (8c)
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The constants of the complementary functionC1 andC2
are given as

C1 = e−m1t0

m1 − m2
{((σ − m2)y0 − βx0 + m2E1)

+ (m2E3 − E2ω) cos ωt0
+ ( f + E3ω + m2E2) sin ωt0}, (9a)

C2 = e−m2t0

m2 − m1
{((σ − m1)y0 − βx0 + m1E1)

+ (m1E3 − E2ω) cos ωt0
+ ( f + E3ω + m1E2) sin ωt0}. (9b)

When the roots m1,2 are a pair of complex conjugates,
then y(t) and x(t) are given as

y(t) = eut (C1 cos vt + C2 sin vt) + E1 + E2 sin(ωt)

+ E3 cos(ωt), (10a)

x(t) = 1

β
(−σ y − ẏ + f sin ωt), (10b)

where u = −A/2 and v = (
√

4B − A2)/2. The con-
stants E1, E2 and E3 are the same as given in eq. (8c)
and the constants C1 and C2 are given as

C1 = e−ut0

v
{((σ + u)y0 + βx0 − uE1) sin vt0

+ (y0 − E1)v cos vt0
− ((E3ω + uE2 + f ) sin vt0
+ vE2 cos vt0) sin ωt0
+ ((E2ω − uE3) sin vt0 − vE3 cos vt0) cos ωt0},

(11a)

C2 = e−ut0

v
{((σ + u)y0 + βx0 − uE1) cos vt0

− (y0 − E1)v sin vt0
− ((E3ω + uE2 + f ) cos vt0
− vE2 sin vt0) sin ωt0
+ ((E2ω − uE3) cos vt0 + vE3 sin vt0) cos ωt0}.

(11b)

In the D±1 region, g(x) = bx ± (a−b) and the dynam-
ical equation can be written as

ÿ + C ẏ + Dy = b f sin(ωt) + f ω cos(ωt) ± �, (12)

where C = (σ + b), D = (β + bσ) and � = β(a − b).
The fixed points corresponding to the D±1 region are
(

k1 = ∓σ(a − b)

(bσ + β)
, k2 = ± β(a − b)

(bσ + β)

)

.

The stability of the fixed points corresponding to the
D±1 regions can be determined from the stability matrix

J0 =
(−b 1

−β −σ

)

. (13)

The state variables y(t) and x(t) in this region when the
roots

m3,4 = −C

2
±

√
C2 − 4D

2
are real and distinct are given by

y(t) =C3em3t + C4em4t + E4 + E5 sin(ωt)

+ E6 cos(ωt), (14a)

x(t) = 1

β
(−σ y − ẏ + f sin(ωt)). (14b)

The constants of the particular integral E4, E5 and E6
are given as

E4 = ±�

D
, (15a)

E5 = f ω2(C − b) + b fD

C2ω2 + (D − ω2)2 , (15b)

E6 = − f ω(Cb + ω2 − D)

C2ω2 + (D − ω2)2 . (15c)

Here +� and −� correspond to D+1 and D−1 regions,
respectively. The constants C3 and C4 are the same as
given in eq. (9b) except that the constants a, A and B
are replaced with b,C and D, respectively. When the
roots m3,4 are a pair of complex conjugates, the state
variables are given as

y(t) = eut (C3 cos vt + C4 sin vt) + E4 + E5 sin(ωt)

+ E6 cos(ωt), (16a)

x(t) = 1

β
(−σ y − ẏ + f sin ωt), (16b)

where u = −C/2 and v = (
√

4D − C2)/2. The
constants C3 and C4 are the same as eq. (11b) except
that the constants a, A and B are replaced with b,C
and D, respectively. If we start with the initial condition
in the D0 region, the arbitrary constants C1 and C2 in
eq. (7b) get fixed. Thus, x(t) evolves as given in eq. (8c)
up to either t = T1 when x(T1) = 1 and ẋ(T1) > 0 or
t = T ′

1 when x(T ′
1) = −1 and ẋ(T ′

1) < 0. Knowing
whether T1 < T ′

1 or T1 > T ′
1, we can determine the next

region of interest (D±1) and the arbitrary constants of
the solutions of that region can be fixed by matching the
solutions. The procedure can be continued for each suc-
cessive crossing. In this way, the explicit solutions can be
obtained in each of the piecewise-linear regions D0 and
D±1. However, it is clear that the sensitive dependence
on initial conditions is introduced in each of these cross-
ings at appropriate parameter regimes during the inverse
procedure of finding T1, T ′

1, T2, T ′
2, . . ., from the solu-

tions.
The solutions presented above for each piecewise-

linear regions can be used to obtain the trajectory of the
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system in the corresponding region for a given initial
condition (x0, y0). The state variables (x, y) obtained
every instant of time act as the initial condition for
obtaining the state variables in the next instant. The
state variables obtained in the individual regions can be
plotted together to produce the complete phase-space
trajectory. Now, we present the dynamics of series LCR
circuit systems with two different types of nonlinear ele-
ments, using the analytical solutions obtained above.

2.1 Murali–Lakshmanan–Chua (MLC) circuit

The MLC circuit is a series LCR circuit with a Chua’s
diode connected parallel to the capacitor. The circuit
exhibits a wide range of chaotic behaviours in its dynam-
ics. It has been studied for chaotic, strange non-chaotic
and synchronisation behaviours for the past two decades
[5,14,17]. The normalised values of the circuit parame-
ters are given as a = −1.02, b = −0.55, β = 1.0, ν =
0.015 and ω = 0.72. The amplitude of the external force
f is taken as the control parameter. The eigenvalues cor-
responding to the D0 region are two real values while
that of the D±1 regions are a pair of complex conjugates
with negative real parts given by λ1 = 0.1904, λ2 =
−0.1854 and λ3,4 = −0.2325 ± i0.623, respectively.
Hence, the origin is a saddle while the fixed points of
the D±1 regions k1 and k2 are stable foci. When the
amplitude of the external force f = 0, the trajecto-
ries starting from any initial condition near the origin
deviate from it owing to its saddle nature as given by
eqs (7b) and approach any one of the fixed point k1
or k2 as given by eqs (16b). As f is increased from
zero, a stable limit cycle encompassing any one of the
fixed points k1 or k2 depending upon the initial condi-
tions is obtained. Further increase in f results in the
period-doubling sequence of the limit cycle through the
Hopf bifurcation leading to one-band and double-band
chaotic attractors as shown in figure 4. The analytically
obtained one-parameter bifurcation diagrams indicat-
ing the period-doubling and reverse period-doubling
routes to chaos with f and ω as control parameters are
shown in figures 2a and 2b, respectively. Figures 2c and
2d show the one-parameter bifurcation diagrams in the
f –x and ω–x planes obtained through numerical sim-
ulations. A comparison of the analytical and numerical
results shown in figure 2 indicates that the dynamics
of the system obtained analytically are identical to that
obtained through numerical simulations. The analyti-
cal solutions can also be used to obtain the basins of
attraction corresponding to one-band chaotic attractors.
Figure 3a shows the basin of attraction correspond-
ing to the one-band chaotic attractor in the (x0–y0)

phase space. The green coloured regions indicate the
set of initial conditions that settle down at the one-band

Figure 2. One-parameter bifurcation diagram of the MLC
circuit obtained from the analytical solutions: (a) amplitude
scanning in the f –x plane with a fixed value of ω = 0.72 and
(b) frequency scanning in the ω–x plane with the amplitude
fixed at f = 0.053. One-parameter bifurcation diagram of
the MLC circuit obtained through numerical simulations: (c)
amplitude scanning in the f –x plane with a fixed value of
ω = 0.72 and (d) frequency scanning in the ω–x plane with
the amplitude fixed at f = 0.053.

Figure 3. (a) Basins of attraction for the one-band chaotic
attractor in the (x0–y0) phase-plane for the MLC circuit. The
coloured regions are represented as follows: green – chaotic
attractor corresponding to the left half-plane and red – chaotic
attractor corresponding to the right half-plane. (b) One-band
chaotic attractors originating from different initial conditions
obtained from the basin of attraction near the fixed point
(0, 0).

chaotic attractor in the left half-plane of the phase space
while the red coloured regions indicate the attractor
corresponding to the right half-plane. Figure 3b shows
the one-band chaotic attractors originating from the ini-
tial conditions corresponding to their coloured basins
shown in figure 3a. The fixed points (black dots) in
each of the piecewise-linear regions show that they form
an attracting set in the phase space around which the
one-band chaotic attractors settle down asymptotically.
The analytical solutions can be further used to obtain
the phase portraits and Poincare maps for the chaotic
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Figure 4. (a) One-band chaotic attractor in each of the piecewise linear regions D0 (green) and D+1 (magenta) in the
x–y phase-plane for the initial conditions (x0, y0 = 0,−0.2), its corresponding (b) Poincare map, (c) power spectrum;
(d) double-band chaotic attractor in the piecewise-linear regions D0 (green) and D±1 (magenta) in x–y phase-plane, its
corresponding (e) Poincare map and (f) power spectrum.

attractors as shown in figure 4. The state variables x(t)
and y(t) obtained in each of the piecewise-linear regions
are plotted to produce the chaotic attractors. The one-
band chaotic attractor shown in figure 4a exists only in
the D−1 and D0 piecewise-linear regions. The Poincare
maps and the power spectra indicating a broader range
of frequency distribution corresponding to the one-band
chaotic attractor are shown in figures 4b and 4b, respec-
tively. The phase portrait, Poincare map and power
spectrum corresponding to the double-band chaotic
attractor are shown in figures 4d–4f.

2.2 Forced series LCR circuit with a simplified
nonlinear element

This circuit introduced by Arulgnanam et al [6]
produces chaotic attractors with a least number of circuit
elements. Further, the fractal dimension of the chaotic
attractors observed in this system is found to have a
larger value compared to the other second-order chaotic
systems. Figure 5 shows the experimentally observed
chaotic attractor in the (v − iL) phase-plane for the
circuit parameters C = 10.32 nF, L = 42.6 mH,
R = 2050 �, Ga = −0.56 mS, Gb = +2.5 mS,
Bp = ±1.0 V and F = 4.59 V. The circuit also exhibits
a wide range of chaotic behaviours similar to the MLC
circuit. The eigenvalues corresponding to the D0 region
are two real values with one negative value and one posi-
tive value while that of the D±1 regions are two negative
real values given by λ1 = 0.47126, λ2 = −0.30976
and λ3 = −1.24075, λ4 = −4.87075, respectively.
Hence, the origin is a saddle while the fixed points
of the D±1 regions k1 and k2 are stable nodes. When

Figure 5. Experimentally observed double-band chaotic
attractor in the forced series LCR circuit with a simplified
nonlinear element in the v–iL phase-plane.

the amplitude of the external force f = 0, trajectories
arising from the initial conditions near the origin deviate
from the origin exponentially as given by eq (7b) and
approach any one of the fixed points k1 or k2 exponen-
tially, as given by eq. (12). On increasing f , a stable
limit cycle is obtained which results in period-doubling
sequences through the Hopf bifurcation for further
increase in f . The normalised circuit parameter values
are a = −1.148, b = 5.125, β = 0.9865, ν = 0 and
ω = 0.7084. The analytically obtained one-parameter
bifurcation diagrams in the f –x and ω–x planes indi-
cating the period-doubling and reverse period-doubling
sequences observed in the circuit dynamics are shown in
figures 6a and 6b, respectively. The analytically obtained
basins of attraction for the one-band chaotic attractors
shown in figure 7a indicate the set of initial conditions
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Figure 6. One-parameter bifurcation diagram of the forced
series LCR circuit with a simplified nonlinear element: (a)
amplitude scanning in the f –x plane with a fixed value of
ω = 0.7084 indicating the period-doubling route to chaos and
(b) frequency scanning in the ω–x plane with the amplitude
fixed at f = 0.28.

Figure 7. (a) Basins of attraction for the one-band chaotic
attractor in the (x0–y0) phase-plane for the series LCR
circuit with a simplified nonlinear element. The coloured
regions are represented as follows: green – chaotic attrac-
tor corresponding to the left half-plane and red – chaotic
attractor corresponding to the right half-plane. (b) One-band
chaotic attractors originating from different initial conditions
obtained from the basin of attraction.

that settle down into a one-band chaotic attractor at the
right half-plane (red) and the left half-plane (green). The
one-band chaotic attractors arising from two different
coloured basins shown in figure 7a along with the fixed
points (black dots) of the three piecewise-linear regions
are shown in figure 7b. The analytically observed one-
band chaotic attractor in the piecewise-linear regions
and its corresponding Poincare map and power spec-
trum obtained at the amplitude of the external force
f = 0.3065 are shown in figures 8a–8c. Figures 8d–8f
show the double-band chaotic attractor and its corre-
sponding Poincare map and power spectrum obtained
when amplitude f = 0.31.

3. Analytical dynamics of the parallel LCR circuit
systems

The state equations of a forced parallel LCR circuit sys-
tem with a three-segmented piecewise-linear element
connected parallel to the capacitor are given as

C
dv

dt
= 1

R
(F sin(�t) − v) − iL − g(v), (17a)

L
diL
dt

= v. (17b)

The piecewise-linear function g(v) is as given in
eq. (2). After proper rescaling, the normalised state
equations of the system can be written as

ẋ = f sin(θ) − x − y − g(x), (18a)

ẏ = βx, (18b)

θ̇ = ω, (18c)

where x = v/Bp, y = (iL/GBp), β = (C/LG2),
a = Ga/G, b = Gb/G, f = (Fβ/Bp), ω = (�C/G)

and G = 1/R. The mathematical form of the function
g(x) is given in eq. (4). The explicit analytical solu-
tions obtained for the normalised state equations given in
eq. (18c) are summarised as follows.

In the central region D0, g(x) = ax and the dynamical
equations of the system can be written as

ÿ + Aẏ + By = fβ sin(ωt), (19)

where A = 1 + a and B = β. The stability of the fixed
point (0, 0) in the D0 region can be determined from the
stability matrix

J0 =
(−(1 + a) −1

−β 0

)

. (20)

The state variables of the system when the roots

m1,2 = −(A) ± √
(A2 − 4B)

2

are real and distinct are given by

y(t) =C1em1t + C2em2t + E1 + E2 sin(ωt)

+ E3 cos(ωt), (21a)

x(t) = 1

β
(ẏ). (21b)

The constants E1, E2 and E3 are given as

E1 = 0, (22a)

E2 = fβ(B − ω2)

A2ω2 + (B − ω2)2 , (22b)

E3 = − f Aβω

A2ω2 + (B − ω2)2 . (22c)

The constants C1 and C2 are given as

C1 = e−m1t0

m1 − m2
{(βx0 − m2y0 + m2E1)

+ (m2E3 − ωE2) cos ωt0
+ (ωE3 + m2E2) sin ωt0}, (23a)
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Figure 8. (a) One-band chaotic attractor in each of the piecewise linear regions D0 (green) and D+1 (magenta) in the x–y
phase-plane for the initial conditions (x0, y0 = 0,−1) and its corresponding (b) Poincare map and (c) power spectrum; (d)
double-band chaotic attractor in the piecewise-linear regions D0 (green) and D±1 (magenta) in the x–y phase-plane and its
corresponding (e) Poincare map and (f) power spectrum.

C2 = e−m2t0

m2 − m1
{(βx0 − m1y0 + m1E1)

+ (m1E3 − ωE2) cos ωt0
+ (ωE3 + m1E2) sin ωt0}. (23b)

When the roots are a pair of complex conjugates, then
the state variables are

y(t) = eut (C1 cos vt + C2 sin vt) + E1 + E2 sin ωt

+ E3 cos ωt, (24a)

x(t) = 1

β
(ẏ), (24b)

where u = −A/2 and v = (
√

(4B − A2))/2. The con-
stants C1 and C2 are given as

C1 = − e−ut0

v
{((βx0 − uy0+uE1) sin vt0−vy0 cos vt0

− ((E2ω − uE3) sin vt0 − vE3 cos vt0) cos ωt0
+ ((E3ω + uE2) sin vt0 + vE2 cos vt0) sin ωt0},

(25a)

C2 = − e−ut0

v
{((βx0−uy0+uE1) cos vt0 + vy0 sin vt0

− ((E2ω − uE3) cos vt0 + vE3 sin vt0) cos ωt0
+ ((E3ω + uE2) cos vt0 − vE2 sin vt0) sin ωt0}.

(25b)

In the D±1 regions, g(x) = bx±(a−b) and the dynam-
ical equation of the system can be written as

ÿ + C ẏ + Dy = fβ sin(ωt) ∓ �, (26)

where C = (1 + b), D = β and −� and +�

correspond to the D+1 and D−1 regions, respectively.
The fixed points in the D±1 regions are k1,2 = (0, ±b−
a). The stability of the fixed points in this region can be
determined using the stability matrix

J±1 =
(−(1 + b) −1

−β 0

)

. (27)

The state variables in these regions when the roots

m3,4 = −C

2
±

√
C2 − 4D

2

are real and distinct are given as

y(t) =C3em3t + C4em4t + E4 + E5 sin ωt

+ E6 cos ωt±�, (28a)

x(t) = 1

β
(ẏ). (28b)

The constants E4, E5 and E6 are given as

E4 = ∓�, (29a)

E5 = fβ(D − ω2)

C2ω2 + (D − ω2)2 , (29b)

E6 = − Dfβω

C2ω2 + (D − ω2)2 . (29c)

The constantsC3 andC4 are the same as eq. (23b) except
that the constants a, A and B are replaced with b,C
and D, respectively. When the roots m3,4 are a pair of
complex conjugates, the state variables are given as
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y(t) = eut (C3 cos vt + C4 sin vt) + E4 + E5 sin(ωt)

+ E6 cos(ωt)±�, (30a)

x(t) = 1

β
(ẏ), (30b)

where u = −C/2 and v = (
√

4D − C2)/2. The
constantsC3 andC4 are the same as eq. (25b) except that
the constants a, A and B are replaced with b,C and D,
respectively. The solutions obtained can be used to gen-
erate the trajectories of the state variables as explained
in §2. Now, we discuss the analytical dynamics of the
parallel LCR circuit systems with the Chua’s diode
and the simplified nonlinear element as the nonlinear
elements.

3.1 Variant of MLC (MLCV) circuit

The MLCV circuit introduced by Thamilmaran et al
[7] presents a rich variety of bifurcations and chaos

Figure 9. One-parameter bifurcation diagram of the MLCV
circuit: (a) amplitude scanning in the f –x plane with a fixed
value of ω = 0.105. The period-doubling route to chaos
followed by a reverse period-doubling route indicates anti-
monotonicity behaviour and (b) frequency scanning in the
ω–x plane with the amplitude fixed at f = 0.225.

in its dynamics such as the quasiperiodic, reverse
period-doubling routes to chaos, antimonotonicity and
remerging Feignbaum trees to name a few [16]. Using
the analytical solutions presented above, we discuss
some of the bifurcation and chaotic phenomena observed
in the circuit dynamics. The eigenvalues correspond-
ing to the D0 and D±1 regions are given as λ1,2 =
0.635± i0.2144 and λ3,4 = −0.19762 ±0.623, respec-
tively. Hence, the origin is an unstable focus while the
fixed points corresponding to the D±1 regions k1 and
k2 are stable foci fixed points. When the amplitude of
the external force f = 0, the asymptotic divergence
of the trajectories starting from initial conditions near
the origin as observed by eqs (24b) is balanced by the
asymptotic convergence solutions in the D±1 regions
given by eqs (30b), as the trajectories cross the breaking
point regions Bp = ±1. Hence, a stable limit cycle occu-
pying a fixed region in the phase space is observed in
the circuit dynamics when f = 0. On the application of
the external force, an invariant torus is obtained through
the Hopf bifurcation of the limit cycle because of its
interaction with the external force. On increasing f , a
chaotic attractor emerges through the destruction of this
invariant torus. The analytically obtained one-parameter
bifurcation diagram in the f –x plane shown in figure 9a
reveals the antimonotonicity behaviour observed in the
dynamics of the circuit. The period-doubling route to
chaos leads to a reverse period-doubling sequence with
the increase in the amplitude of the external force f as
shown in figure 9a. Figure 9b shows the one-parameter
bifurcation diagram obtained in the ω–x plane. Another
interesting phenomenon named the remerging Feign-
baum trees observed numerically in the circuit dynamics

Figure 10. One-parameter bifurcation diagram in the ω–x plane indicating the remerging Feignbaum trees phenomena in the
MLCV circuit. The amplitude of the external force is taken as the control parameter: (a) the primary bubble at f = 0.429,
(b) period-4 bubble at f = 0.4275, (c) period-8 bubble at f = 0.4271. Further decrease in the amplitude results in infinite
period bubbles and undergo Feignbaum remerging tree at (d) f = 0.42585, (e) f = 0.4257 and (f) f = 0.425.
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Figure 11. (a) Chaotic attractor observed at f = 0.375 in each of the piecewise linear regions D0 (red) and D±1 (green) in
the x–y phase-plane for the initial conditions (x0, y0 = 0, 0) and its corresponding (b) Poincare map and (c) power spectrum;
(d) chaotic attractor observed at f = 0.411 in the x–y phase-plane and its corresponding (e) Poincare map and (f) power
spectrum.

[16] is explained using the analytically obtained
one-parameter bifurcation diagrams shown in figure 10.
Further, a plot of the analytical solutions of each
piecewise-linear regions results in chaotic attractors,
as shown in figures 11a and 11d, for the amplitudes
f = 0.375 and f = 0.411, respectively. The chaotic
attractors settle down in the region of space around the
unstable and stable fixed points (black dots) of the D0
and D±1 regions, respectively. The Poincare map and
the power spectrum of the chaotic attractors shown in
figures 11a and 11d are presented in figures 11b, 11c
and 11e, 11f, respectively.

3.2 Forced parallel LCR circuit with a simplified
nonlinear element

The forced parallel LCR circuit with a simplified
nonlinear element introduced by Arulgnanam et al [8]
exhibits a torus breakdown and reverse period-doubling
routes to chaos. In this circuit, the fixed points cor-
responding to the D0 region are an unstable focus
while those corresponding to the D±1 regions are stable
nodes. The eigenvalues corresponding to the D0 and
D±1 regions are given as λ1,2 = 0.074 ± i0.50371
and λ3 = −0.04261, λ4 = −6.0824, respectively.
Hence, the dynamics of this circuit resembles that of
the MLCV circuit. When f = 0, a stable limit cycle
encompassing the origin is obtained. Further increase
in f leads to the torus breakdown route to chaos.
The circuit exhibits two prominent chaotic attractors
at the amplitudes of the external force F = 4.75 and

Figure 12. (a) Experimentally observed chaotic attractor in
the forced parallel LCR circuit with a simplified nonlinear
element in the v–iL phase-plane at F = 4.779 V and its
corresponding (b) analytically observed power spectrum.

Figure 13. One-parameter bifurcation diagram for the
forced parallel LCR circuit with a simplified nonlinear ele-
ment: (a) amplitude scanning in the f –x plane with a fixed
value of ω = 0.2402 showing the entire dynamics of the cir-
cuit and (b) frequency scanning in the ω–x plane with the
amplitude fixed at f = 0.6.

F = 4.779 with other circuit parameters fixed at
C = 13.13 nF, L = 163.6 mH, R = 2.05 k�,
Ga = −0.56 mS, Gb = +2.5 mS and Bp = ± 3.8 V,
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Figure 14. (a) Chaotic attractor observed at f = 0.695 in each of the piecewise linear regions D0 (red) and D±1 (green) in
the x–y phase-plane for the initial conditions (x0, y0 = 0, 0) and its corresponding (b) Poincare map and (c) chaotic attractor
in the x–sin(ωt) plane; (d) chaotic attractor observed at f = 0.855 in the x–y phase-plane and its corresponding (e) Poincare
map and (f) chaotic attractor in the x–sin(ωt) plane.

respectively. The rescaled parameters of the circuit are:
β = 0.2592, a = −1.148, b = 5.125 and ν =
1.421 kHz. The experimentally observed chaotic attrac-
tor and its corresponding analytically observed power
spectra are shown in figure 12. The entire dynamics of
the circuit observed analytically through one-parameter
bifurcation diagrams in the ( f –x) and (ω–x) planes
are shown in figures 13a and 13b, respectively. From
figure 13, we can observe that the circuit exhibits chaotic
behaviour over a wide range of amplitude and frequency
of the external force. Figures 14a and 14d show the
analytically obtained chaotic attractors plotted in each of
the piecewise-linear region D0 (red) and D±1 (green) for
f = 0.695 and f = 0.855, respectively. The Poincare
map of the chaotic attractors shown in figures 14a and
14d are shown in figures 14b, 14e and the phase portraits
of the chaotic attractors in x–sin(ωt) phase planes are
shown in figures 14c, 14f, respectively.

4. Conclusions

In this paper, we have reported the effective application
of an analytical solution for identifying several inter-
esting phenomena in simple chaotic systems. The anti-
monotonicity, period-doubling, reverse period-doubling
and Feignbaum remerging identified earlier through
numerical studies have been proved analytically. Phase
portraits revealing the existence of trajectories in indi-
vidual piecewise-linear regions have been presented.
The efficiency of this solution can be applied for study-
ing the dynamics of second-order chaotic circuit systems
with five or more segmented piecewise-linear elements,

analytically. Further, the reliability of the analytical
solutions has been well established through its iden-
tical behaviour with the numerical results. Explicit
analytical solutions of this kind pave way for a better
understanding of the chaotic phenomena observed in
simple circuit systems.
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