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Abstract. We explore the dynamics of quadratic and quartic nonlinear diffusion–reaction equations with nonlinear
convective flux term, which arise in well-known physical and biological problems such as population dynamics
of the species. Three integration techniques, namely the (G ′/G)-expansion method, its generalised version and
Kudryashov method, are adopted to solve these equations. We attain new travelling and solitary wave solutions in
the form of Jacobi elliptic functions, hyperbolic functions, trigonometric functions and rational solutions with some
constraint relations that naturally appear from the structure of these solutions. The travelling population fronts,
which are the general solutions of nonlinear diffusion–reaction equations, describe the species invasion if higher
population density corresponds to the species invasion. This effort highlights the significant features of the employed
algebraic approaches and shows the diversity in the constructed solutions.
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1. Introduction

The nonlinear partial differential equations (PDEs) are
widely used to model several natural and fundamental
problems in the fields of physics, chemistry, biology,
neurology, ecology, plasma and mathematical sciences
[1,2]. In the scientific investigation of a problem, the
system in hand is generally modelled in the form of
mathematical equations which is often nonlinear. The
exact analytic solutions of such nonlinear mathematical
equations can provide much physical information of the
system concerned.

Therefore, in the recent times, substantial efforts have
been made to acquire exact analytical solutions of such
nonlinear PDEs and a large number of pronounced and
efficient techniques have been developed for obtaining
explicit travelling wave solutions [3–41].

In the last few years, a novel sophisticated technique
called (G ′/G)-expansion method [42] was presented
for a reliable treatment of nonlinear wave equations.
Subsequently, some other significant applications of this
method have also been reported in the literature [43–52].
Very recently, a simplified and generalised version of the

(G ′/G)-expansion method and Kudryashov method is
also reported with their applications for nonlinear PDEs
[53–56].

In the contemporary work, we have considered the
nonlinear diffusion–reaction (DR) equations, which
have numerous applications in various branches of bio-
logical, chemical and physical systems. A large number
of simplified versions of the nonlinear DR equations
have been studied in ancient times. Triki et al [57] stud-
ied the three variants of nonlinear DR equations with
derivative-type and algebraic-type nonlinearities with
short-range and long-range diffusion terms in inhomo-
geneous media using the auxiliary equation method.
Bhardwaj et al [58] obtained periodic, double-kink, bell
and antikink-type solutions of the cubic–quintic nonlin-
ear reaction–diffusion equation with variable convection
coefficients. Recently, we have studied the DR equation
for a particular case when the diffusion coefficient D
was independent of concentration or density [59], but
in several circumstances such as insect dispersal mod-
els and small rodents D becomes density-dependent
[1,60]. Consequently, in such circumstances, growth in
the concentration of a species will increase D. Hence,
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here, we explore the dynamics by solving certain types
of nonlinear DR equations arising from such physi-
cal considerations. Here, we go beyond the previous
study and specifically seek exact solutions of the fol-
lowing DR equations which comprise quadratic and
quartic nonlinearities with a nonlinear convective flux
term:

Ct + kCCx = DCxx + αC − βC2, (1)

Ct + kC2Cx = DCxx + αC − βC4, (2)

where C = C(x, t) has diverse meanings depend-
ing on the types of phenomena under study, D is the
diffusion coefficient, and k, α and β are physical con-
stants which are to be determined. Equations (1) and (2)
define transport phenomena, such as ion-exchange col-
umn chromatography and population of the species, in
which both diffusion and convection processes have
equal importance and the nonlinear diffusion is sup-
posed to be equivalent to the nonlinear convection
effects [1].

The existence of solutions of nonlinear DR equations
may be well understood by first turning PDE into an
ordinary differential equation (ODE) with the assump-
tion of a travelling wave solution. The general travelling
wavefront solutions of nonlinear DR equations found
substantial mathematical and physical interests as they
arise in a wide area of natural sciences such as biology
and ecology [1].

The flux or current density of species J (r, t), which
can be cells, the amount of chemicals, the number of
animals and so on, are proportional to the gradient of
the concentration of the species. In one dimension, the
current density J (x, t) = −D grad C(x, t), where the
C(x, t) is the concentration of the species, i.e. concen-
tration of chemicals, number of cells or animals at point
x and time t . D is the diffusion coefficient or diffusiv-
ity of the species and the minus sign simply indicates
that diffusion transports matter from a high to a low
concentration. It is a measure of how well the particles
disperse from a high- to a low-density region. For exam-
ple, in blood, haemoglobin molecules have a diffusion
coefficient of the order of 10−7 cm2 s−1 while that for
oxygen in blood is of the order of 10−5 cm2 s−1.

The structure of the paper is as follows: in §2,
a short description of the methods for finding trav-
elling wave solutions of nonlinear DR equations is
given. In §3 and 4, eqs (1) and (2) are studied by
the (G ′/G)-expansion method and its generalised ver-
sion. In §5, we found travelling wave solutions of DR
equations using the Kudryashov method. The graphi-
cal and physical interpretation of the obtained results is
given in §6. Finally, concluding remarks are presented
in §7.

2. Description of the algebraic methods

2.1 (G ′/G)-expansion method

We concisely describe key steps of the (G ′/G)-
expansion method. Assume that a nonlinear PDE is of
the form
P(q, qt , qx , qtt , qxt , qxx , . . .) = 0, (3)

where q = q(x, t) is an unknown function and P is a
polynomial in q = q(x, t) and its partial derivatives, in
which higher order derivatives and nonlinear terms are
involved.

Step 1: In order to find the travelling wave solution of
eq. (3), introduce the wave variable ξ = (x − vt), so
that q(x, t) = q(ξ).

Based on this, we make the following changes:

∂

∂t
= −v

∂

∂ξ
,

∂2

∂t2 = v2 ∂2

∂ξ2 ,

∂

∂x
= ∂

∂ξ
,

∂2

∂x2 = ∂2

∂ξ2 (4)

and subsequently for other derivatives. With the aid of
eq. (4), PDE (3) changes to an ODE as

P(q, qξ , qξξ , qξξξ , . . .) = 0, (5)

where qξ , qξξ , etc. designate the derivative of q with
respect to ξ .

Here, one can integrate ODE (5) as many times as
possible and fix the constant of integration as zero for
simplicity.

Step 2: The solution of eq. (5) can be specified by a
polynomial in (G ′/G), i.e.

q(ξ) =
n∑

i=0

ai

(
G ′

G

)i
, (6)

where i = 0 to n, ai , λ and μ are constants to be
determined later and an �= 0. Here, G = G(ξ) satis-
fies the second-order linear ODE of the form

G ′′ + λG ′ + μG = 0, (7)

where prime denotes the derivative of G(ξ) with respect
to ξ . Considering the homogeneous balance among the
highest-order derivatives and nonlinear terms appearing
in ODE (5), the positive integer n can be determined.

Step 3: Replacing eq. (6) into eq. (5) and using eq. (7),
bring together all terms with the same order of (G ′/G),
and then comparing each coefficient of the resulting
polynomial to zero yields a set of algebraic equations
for ai , v, λ and μ.

Step 4: Meanwhile, the general solutions of eq. (7)
depending on whether λ2 − 4μ > 0, λ2 − 4μ < 0,
λ2 − 4μ = 0 are given as
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(
G ′

G

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
λ2 − 4μ

2

⎛

⎜⎝
A1 sinh(1

2

√
λ2 − 4μ)ξ + A2 cosh(

1

2

√
λ2 − 4μ)ξ

A1 cosh(
1

2

√
λ2 − 4μ)ξ + A2 sinh(

1

2

√
λ2 − 4μ)ξ

⎞

⎟⎠− λ

2
, λ2 − 4μ > 0,

√
4μ − λ2

2

⎛

⎜⎝
−A1 sin(

1

2

√
4μ − λ2)ξ + A2 cos(d 1

2

√
4μ − λ2)ξ

A1 cos(
1

2

√
4μ − λ2)ξ + A2 sin(

1

2

√
4μ − λ2)ξ

⎞

⎟⎠− λ

2
, λ2 − 4μ < 0,

A2

A1 + A2ξ
− λ

2
, λ2 − 4μ = 0.

(8)

The above results can be written in a more simplified
form as

(
G ′

G

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
λ2 − 4μ

2
tanh

(√
λ2 − 4μ

2
ξ + ξ0

)
− λ

2
, λ2 − 4μ > 0, tanh ξ0 = A1

A2
,

∣∣∣∣
A1

A2

∣∣∣∣ > 1,

√
λ2 − 4μ

2
coth

(√
λ2 − 4μ

2
ξ + ξ0

)
− λ

2
, λ2 − 4μ > 0, coth ξ0 = A1

A2
, | A1

A2
| < 1,

√
4μ − λ2

2
cot

(√
4μ − λ2

2
ξ + ξ0

)
− λ

2
, λ2 − 4μ > 0, cot ξ0 = A2

A1
,

A2

A1 + A2ξ
− λ

2
, λ2 − 4μ = 0.

(9)

Therefore, these results are the simplified forms of the
result obtained by the (G ′/G) method. Hence, we call
this method the simplified (G ′/G)-expansion method.

Now substituting ai , v and the general solutions of
eq. (7) which are from eqs (8) and (9) into eq. (6), we
obtain travelling wave solutions of nonlinear eq. (3).

2.2 Generalised (G ′/G)-expansion method

Step 1: Similar to that in §2.1.

Step 2: The solution of eq. (5) in terms of a polynomial
in (G ′/G) can be expressed as

q(ξ) =
n∑

i=0

ai

(
G ′

G

)i
, (10)

where G = G(ξ) satisfies the subsequent Jacobi elliptic
equation

[G ′]2 = q2G
4(ξ) + q1G

2(ξ) + q0, (11)

where i = 0 to n, ai , q2, q1, q0 are the arbitrary constants
to be determined later and an �= 0.

Step 3: On exchange of eq. (10) into eq. (5) and using
eq. (11), we get polynomial in G j (ξ), G ′(ξ)G j (ξ)

( j = ±1, ±2 . . .). Equating each coefficient of the
resulted polynomials to zero yields a system of alge-
braic equations for ai , q2, q1 and q0.

Step 4: As general solutions of eq. (11) are well known
for us (see Appendix A), then substituting ai and the
general solutions of eq. (11) into eq. (10), we obtain
several new travelling wave solutions in terms of Jacobi
elliptic functions of nonlinear PDE (3).

2.3 Kudryashov method

To make the discussion more coherent, in this paper, we
highlight briefly the main features of the Kudryashov
method.

We consider a nonlinear PDE, with a physical field q,
and independent variables x, y, t as

P(qx , qt , qxx , qxt , qy, qyy . . . .) = 0, (12)

where P is a polynomial in q(x, y, t) and its partial
derivatives in which the highest-order derivatives and
nonlinear terms are involved. In the following, we define
the main steps of this method:
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Step 1: Using the wave transformation q(x, y, t) =
q(ξ), where ξ = k(x + y − vt), to transform eq. (12) to
the following ODE:

F(q, qξ , qξξ , qξξξ , . . .) = 0, (13)

where F is a polynomial in q(ξ) and its total derivatives,
and the subscript denotes the derivative with respect to ξ .

Step 2: The solution of eq. (13) can be expressed in the
more general form

q(ξ) =
N∑

n=0

an[ϒ(ξ)]n, (14)

where an (n = 0, 1, 2, 3, . . . , N ) are constants to be
evaluated later, such that aN �= 0, while ϒ(ξ) satisfies
the new equation

ϒ(ξ) = 1

1 + exp(ξ + ξ0)
, (15)

which denotes the solution to the ODE, which is a special
kind of Riccati equation

dϒ

dξ
= ϒ2(ξ) − ϒ(ξ). (16)

Step 3: Find the positive integer N by matching the
highest-order partial derivative with the highest-order
nonlinear term in eq. (13). If N is not an integer, then a
transformation formula should be used to overcome this
difficulty.

Step 4: Substitute eq. (14) into eq. (13), and calcu-
late all the necessary derivatives qξ , qξξ , qξξξ . . . of the
unknown function q(ξ) as follows:

qξ =
N∑

n=0

annϒn(ϒ − 1), (17)

qξξ =
N∑

n=0

nϒn(ϒ − 1)[(1 + n)ϒ − n]an (18)

and so on. Replacing eqs (14), (17) and (18) into eq. (13),
we acquire the polynomial

F[ϒ(ξ)] = 0. (19)

Step 5: Assembling all the terms of the same powers
of the function ϒ(ξ) in the polynomial eq. (19) and
equating them to zero, we can develop a set of algebraic
equations which can be solved by MATHEMATICA to
get the unknown parameters an , k and v. Consequently,
we obtain the analytical exact solutions of eq. (12).

After a brief depiction of the methods, we now solve
DR equations with quadratic and quartic nonlinearities
using the aforementioned methods.

3. Solutions by the (G′/G)-expansion method

Now by using the travelling wave variable ξ = x − ωt ,
eqs (1) and (2) can be written as

DC ′′ + ωC ′ − kCC ′ + αC − βC2 = 0, (20)

DC ′′ + ωC ′ − kC2C ′ + αC − βC4 = 0. (21)

Balancing the highest-order derivative with nonlinear
term in eq. (20), we get n = 1. Thus, for this value of n,
ansatz (6) takes the following form:

C(ξ) = a0 + a1

(
G ′

G

)
, a1 �= 0. (22)

The use of eq. (22) in eq. (20) and the rationalisation
of the resultant expression with respect to the pow-
ers of (G ′/G) yields the following set of algebraic
equations:

2Da1 + ka2
1 = 0, (23a)

3Dλa1 − ωa1 + k(λa2
1 + a0a1) − βa2

1 = 0, (23b)

D(2μ + λ2)a1 − ωλa1

+ k(μa2
1 + λa0a1) + αa1 − 2βa0a1 = 0, (23c)

Dμλa1 − ωμa1 + kμa0a1 + αa0 − βa2
0 = 0. (23d)

On solving the above set of algebraic equations, we
obtain

a0 = 1

k2 (ωk − λkD − 2Dβ), a1 = −2D

k
,

ω = 1

2kβ
[αk2 + 4Dβ2], (λ2 − 4μ) = α2k2

4D2β2 .

(24)

By using eq. (24) in expression (22), we obtain

C(ξ) = 1

k2 (ωk − λkD − 2Dβ) − 2D

k

(
G ′

G

)
. (25)

Substituting the general solution of eq. (7) into eq. (25),
we have the following types of travelling wave solutions
of eq. (1):

Case (i): When (λ2 − 4μ) > 0, we have hyperbolic
function solution as

C(ξ) = α

2β

[
1 ∓

{
A1 sinh

(± αk
4βD ξ

)+ A2 cosh
(± αk

4βD ξ
)

A1 cosh
(± αk

4βD ξ
)+ A2 sinh

(± αk
4βD ξ

)
}]

. (26)
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In particular, if A1 �= 0, A2 = 0, then C(ξ) becomes

C(ξ) = α

2β

[
1 ∓ tanh

(
± αk

4βD
ξ

)]
. (27)

But when A2 �= 0, A1 = 0, then C(ξ) becomes

C(ξ) = α

2β

[
1 ∓ coth

(
± αk

4βD
ξ

)]
. (28)

These solutions of eq. (1) are similar to the results
obtained in [61] which are known as diffusive kink and
antikink soliton solutions. The diffusive kink wave solu-
tion (antikink) adopts the ‘+’ (‘−’) sign in eq. (27) and
has asymptotic states ∓1(±1) as ξ → ∓∞. Both kinks
and antikinks here can move in either a positive or a neg-
ative direction with wave speed ω. Now C(ξ) which is
given in eq. (26) can be written in the simplified form as

C(ξ) = α

2β

[
1 ∓ tanh

(
± αk

4βD
ξ + ξ0

)]
, (29)

where ξ0 = tanh−1(A1/A2), |A1/A2| > 1 and

C(ξ) = α

2β

[
1 ∓ coth

(
± αk

4βD
ξ + ξ0

)]
, (30)

where ξ0 = coth−1(A1/A2), |A1/A2| < 1.
Solutions (28) and (30) are singular solutions and less

acceptable in physical terms.

Case (ii): When (λ2 − 4μ) < 0, we have the complex
hyperbolic function solution as

C(ξ) = α

2β

[
1 ∓

{−iA1 sinh
(± αk

4βD ξ
)+ A2 cosh

(± αk
4βD ξ

)

A1 cosh
(± αk

4βD ξ
)+ iA2 sinh

(± αk
4βD ξ

)
}]

. (31)

In particular, if A1 �= 0, A2 = 0, then C(ξ) becomes

C(ξ) = α

2β

[
1 ± i tanh

(
± αk

4βD
ξ

)]
. (32)

But when A2 �= 0, A1 = 0, then C(ξ) becomes

C(ξ) = α

2β

[
1 ± i coth

(
± αk

4βD
ξ

)]
. (33)

These solutions of eq. (1) are complex travelling wave
solutions.

Case (iii): When (λ2 − 4μ) = 0, the rational solution is
obtained as

C(ξ) = α

2β
− 2D

k

(
A2

A1 + A2ξ

)
. (34)

The solutions found here might be worthwhile to
interpret the population dynamics.

Likewise, for the analytical solutions of eq. (21), we
get n = 1 in ansatz (6) by the balancing procedure
and the form of C(ξ) becomes the same as given in
eq. (22). As before, using ansatz (22) along with eq. (7)
in eq. (21), one obtains the following set of algebraic
equations for unknowns, specifically a0, a1, ω and α as

ka3
1 − βa4

1 = 0, (35a)

2Da1 + kλa3
1 + 2ka0a

2
1 − 4βa0a

3
1 = 0, (35b)

3Dλa1 − ωa1 + kμa3
1 + 2kλa0a

2
1

+ ka2
0a1 − 6βa2

0a
2
1 = 0, (35c)

D(2μ + λ2)a1 − ωλa1 + 2kμa0a
2
1

+ kλa2
0a1 + αa1 − 4βa3

0a1 = 0, (35d)

Dμλa1 − ωμa1 + kμa2
0a1 + αa0 − βa4

0 = 0, (35e)

which on solving by MATHEMATICA provide

a0 = (2Dβ2 + λk3)

2βk2 , a1 = k

β
,

ω = −(αk6 + 16D3β4)

4Dβ2k3 ,

(λ2 − 4μ) = −4β2(5D2β2 + ωk3)

k6 , (36)

along with the constraint relation α = ±(8D3β4/k6)

which gives two values of ω and (λ2 −4μ). Now insert-
ing eq. (36) in eq. (22), we get the following kinds of
travelling wave solutions of eq. (2).

Case (i): When (λ2 − 4μ) > 0 and α = ((8D3β4)/k6),
we have hyperbolic travelling wave solution as

C(ξ)

= βD

k2

[
1±
{ A1 sinh

(± Dβ2

k3 ξ
)+A2 cosh

(± Dβ2

k3 ξ
)

A1 cosh
(±Dβ2

k3 ξ
)+A2 sinh

(± Dβ2

k3 ξ
)
}]

,

(37)

where ξ = x + (6D2β2/k3)t . In particular, if A1 �= 0,
A2 = 0, then C(ξ) becomes



8 Page 6 of 13 Pramana – J. Phys. (2019) 92:8

C(ξ) = βD

k2

[
1 ± tanh

(
±Dβ2

k3 ξ

)]
. (38)

But when A2 �= 0, A1 = 0, C(ξ) becomes

C(ξ) = βD

k2

[
1 ± coth

(
±Dβ2

k3 ξ

)]
. (39)

These solutions of eq. (2) are similar to the solutions
obtained in [61] which are kink- and antikink-type soli-
ton solutions. The solution C(ξ) of eq. (37) can be
specified in more simplified forms as

C(ξ) = βD

k2

[
1 ± tanh

(
±Dβ2

k3 ξ + ξ0

)]
, (40)

where ξ0 = tanh−1(A1/A2), |A1/A2| > 1 and

C(ξ) = βD

k2

[
1 ± coth

(
±Dβ2

k3 ξ + ξ0

)]
, (41)

where ξ0 = coth−1(A1/A2), |A1/A2| < 1.

Case (ii): When (λ2 − 4μ) < 0, i.e. for α =
−(8D3β4/k6), we have a trigonometric function solu-
tion as

C(ξ) = βD

k2

⎡

⎣1 ± √
3

×
⎧
⎨

⎩
−A1 sin

(
±

√
3Dβ2

k3 ξ
)

+ A2 cos
(
±

√
3Dβ2

k3 ξ
)

A1 cos
(
±

√
3Dβ2

k3 ξ
)

+ A2 sin
(
±

√
3Dβ2

k3 ξ
)

⎫
⎬

⎭

⎤

⎦ ,

(42)

where ξ = x + (2D2β2/k3)t . In a simplified form,
eq. (42) can be written as

C(ξ) = βD

k2

[
1 ± √

3 cot

(
±

√
3Dβ2

k3 ξ + ξ0

)]
, (43)

where ξ0 = tan−1(A1/A2).

Case (iii): When (λ2 − 4μ) = 0, the rational solution
can be written as

C(ξ) = βD

k2 + k

β

(
A2

A1 + A2ξ

)
. (44)

Equations (38) and (40) are diffusive kink- or
antikink-shaped soliton solutions and wave speed of
invasion of species ω depends on the parameter k, non-
linear diffusion coefficient D and parameter β = r/K ,
where r is the linear growth rate and K is the carry-
ing capacity of the environment [35]. The travelling
wave solutions (39), (41) and (43) are singular solutions

and have no real physical meaning in explaining the
dynamics of ecological or biological phenomenon.

4. Solutions by the generalised (G′/G)-expansion
method

To explore the applications of the generalised (G ′/G)-
expansion method, in this section, we analyse eqs (1)
and (2). As an outcome of the balancing procedure in
eqs (20) and (21) we have n = 1. This suggest the
choice of C(ξ) the same as in eq. (22). Here and now,
on substituting eq. (22) into eq. (20) and with the help
of eq. (11), we achieve a set of algebraic equations:

2Dq2a1 − kq2a
2
1 = 0, (45a)

2Dq0a1 + kq0a
2
1 = 0, (45b)

ωq2a1 − kq2a0a1 − βq2a
2
1 = 0, (45c)

− ωq0a1 + kq0a0a1 − βq2a
2
1 = 0, (45d)

αa0 − βa2
0 − βq1a

2
1 = 0, (45e)

αa1 − 2βa0a1 = 0, (45f)

which after solving provides the following results:

a0 = α

2β
, a1 = 2D

k
,

ω = (αk2 + 4Dβ2)

2βk
, q0 = 0,

q1 = α2k2

16D2β2 . (46)

Using eq. (46) into ansatz eq. (22), we obtain

C(ξ) = α

2β
+ 2D

k

(
G ′

G

)
, (47)

where ξ = x − ((αk2 + 4Dβ2)/2βk)t .
Now, from Appendix A, we derive the following sets

of exact solutions.

Set (i): If q0 = 0, q1 = 1, q2 = −1, then eq. (47)
becomes

C(ξ) = α

2β
[1 − tanh(ξ)], (48)

which is an antikink wave solution.

Set (ii): If q0 = 0, q1 = 1, q2 = 1, then the solution
acquires the following form:

C(ξ) = α

2β
[1 − coth(ξ)], (49)

which represents the singular solution.
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Set (iii): If q0 = 0, q1 = −1, q2 = 1, then we have

C(ξ) = α

2β
+ 2D

k
tan(ξ), (50)

which is a periodic wave solution with period π and
range (−∞, ∞).

Set (iv): If q0 = 0, q1 = 0, q2 = 1, then solution (47)
becomes

C(ξ) = −(2D/k)

ξ
, (51)

which is the rational solution of nonlinear DR equation.

Set (v): If q0 = 0, q1 = −(1 + m2), q2 = m2, then we
obtain

C(ξ) = α

2β
+ 2D

k

{
cn(ξ)dn(ξ)

sn(ξ)

}
, (52)

which is a Jacobi elliptic function solution.
Now, using Appendices B and C, solution (52)

changes into hyperbolic and trigonometric function
forms according to the choice of modulus parameter
m as follows.

Special cases
(a) When m → 1, the combined hyperbolic solution of
eq. (52) is written as

C(ξ) = α

2β
+ 2D

k
{coth(ξ) − tanh(ξ)}. (53)

(b) When m → 0, solution (52) is written in the form
of trigonometric function as

C(ξ) = α

2β
+ 2D

k
cot(ξ), (54)

which is a periodic wave solution with period π and
range (−∞, ∞).

Next, to find the exact solutions of eq. (21), we utilise
similar procedure as above and obtain a set of simulta-
neous algebraic equations:

2Dq2a1 − 4βq2a0a
3
1 − 2kq2a0a

2
1 = 0, (55a)

2Dq0a1 − 4βq0a0a
3
1 + 2kq0a0a

2
1 = 0, (55b)

ωq2a1 − kq2a
2
0a1 − kq1q2a

3
1

− 6βq2a
2
0a

2−2βq1q2a
4
1 = 0, (55c)

− ωq0a1 + kq0a
2
0a1 + kq1q0a

3
1

− 6βq0a
2
0a

2−2βq1q0a
4
1 = 0, (55d)

− kq2
2a

3
1 − βq2

2a
4
1 = 0, (55e)

− kq2
0a

3
1 − βq2

0a
4
1 = 0, (55f)

αa0 − βa4
0 − βq2

1a
4
1

− 6βq1a
2
0a

2
1 − 2βq0q2a

4
1 = 0, (55g)

αa1 − 4βa3
0a1 − 4βa0a

3
1 = 0, (55h)

which, on solving provides the following results:

a0 = βD

k2 , a1 = − k

β
, ω = −5β4D2 + k6q1

k3β2 ,

q0 = 0, α = ±8β4D3

k6 , q1 = αk6 − 4β4D3

4Dk6 . (56)

Substitution of eq. (56) into eq. (22) yields the following
solution:

C(ξ) = βD

k2 − k

β

(
G ′

G

)
, (57)

where

ξ = x +
(

5β4D2 + k6q1

k3β2

)
t.

Now, using Appendix A, we obtain the following sets
of travelling wave solutions.

Set (i): If q0 = 0, q1 = 1, q2 = −1, then the solution of
eq. (2) becomes

C(ξ) = βD

k2 {1 ± tanh(ξ)}, (58)

where a constraining relation between constant
coefficients is given by α = 8β4D3/k6. However, when
α = −8β4D3/k6, then C(ξ) takes the form

C(ξ) = βD

k2 {1 ± √
3R tanh(ξ)}. (59)

Set (ii): If q0 = 0, q1 = 1, q2 = 1 and α =
±(8β4D3/k6), the following solutions are obtained:

C(ξ) = βD

k2 {1 ± coth(ξ)}, (60)

C(ξ) = βD

k2 {1 ± √
3i coth(ξ)}. (61)

Set (iii): If q0 = 0, q1 = −1, q2 = 1 and α =
±(8β4D3/k6), then eq. (57) becomes

C(ξ) = βD

k2 {1 ∓ i tan(ξ)}, (62)

C(ξ) = βD

k2 {1 ± √
3 tan(ξ)}, (63)
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which is a periodic wave solution with period π and
range (−∞, ∞).

Set (iv): If q0 = 0, q1 = −(1 + m2), q2 = m2 and
α = ±(8β4D3/k6), then we obtain

C(ξ) = βD

k2

{
1 ± i√

1 + m2

cn(ξ)dn(ξ)

sn(ξ)

}
, (64)

C(ξ) = βD

k2

{
1 ∓

√
3

1 + m2

cn(ξ)dn(ξ)

sn(ξ)

}
. (65)

Here, the parameter m varies between 0 and 1. When
m → 0, Jacobi elliptic functions will be converted to
trigonometric functions and when m → 1, Jacobi ellip-
tic functions degenerate into hyperbolic functions.

Special cases
(a) In the limiting case when m → 1, according to
Appendices B and C, eqs (64) and (65) can be written
as follows:

C(ξ) = βD

k2 {1 ± √
2i csch(2ξ)}, (66)

C(ξ) = βD

k2 {1 ∓ √
6 csch(2ξ)}. (67)

(b) When m → 0, according to Appendices B and C,
eqs (64) and (65) can be written as

C(ξ) = βD

k2 {1 ± i cot(ξ)}, (68)

C(ξ) = βD

k2 {1 ∓ √
3 cot(ξ)}. (69)

Hence, we have found diverse solutions of DR
equations in the form of Jacobi elliptic functions, hyper-
bolic and trigonometric functions. Using Appendix B,
the solutions, which are in the forms of Jacobi elliptic
function solutions, are reduced to hyperbolic, trigono-
metric function solutions. Many of the achieved solu-
tions are kink–antikink solitons and some are travelling
wave solutions. Also, we observed that some solu-
tions are complex. These travelling wave solutions are
singular as well as non-singular solutions. Only non-
singular travelling wavefronts have physical meaning
in order to explain natural biological and ecological
processes.

5. Solutions by the Kudryashov method

To explore the applications of the Kudryashov method,
here we analyse eqs (1) and (2). As a result of balancing
procedure in eqs (20) and (21), we get n = 1. Conse-
quently, we reach

C(ξ) = a0 + a1ϒ(ξ). (70)

Using eqs (17) and (18), we have

∂C(ξ)

∂ξ
= a1ϒ(ξ)[ϒ(ξ) − 1], (71)

∂2C(ξ)

∂ξ2 = a1ϒ(ξ)[ϒ(ξ) − 1][2ϒ(ξ) − 1], (72)

where a0, a1 are constants to be evaluated later, such
that a1 �= 0. Substituting eq. (70) along with eqs (71)
and (72) into eq. (20) and comparing all the coefficients
of power of ϒ(ζ ) to be zero, we achieve

− ka2
1 + 2Da1 = 0, (73a)

− 3Da1 + ωa1 − βa2
1 − ka1a0 + ka2

1 = 0, (73b)

− ωa1 + Da1 − 2βa0a1 + ka1a0 + αa0 = 0, (73c)

− βa2
0 + αa0 = 0. (73d)

On evaluating the above system of algebraic eqs (73a)–
(73d) with one of the packages for computer algebra,
we get values of parameters as the following cases:

Set (i)

a0 = 0, a1 = α

β
, ω = α + D, k = 2βD

α
. (74)

From eqs (74), (70) and (15), we have the particular
travelling wave solutions of eq. (20) as follows:

C(ξ) = α

β

1

exp[x − (α + D)t + ξ0] , αβ > 0. (75)

The above exact travelling wave solution can be further
simplified as

C(ξ) = α

2β

[
1 − tanh

(
x − (α + D)t

2
+ ξ0

2

)]
,

αβ > 0, (76)

C(ξ) = α

2β

[
1 − coth

(
x − (α + D)t

2
+ ξ1

2

)]
,

αβ > 0, (77)

where ξ0 is an arbitrary constant and ξ1 also is a constant
such that ξ0 = (iπ/2) + ξ1.

Set (ii)

a0 = α

β
, a1 = −α

β
,

ω = −α − D, k = −2βD

α
. (78)

From eqs (78), (70) and (15), we get the exact hyperbolic
function solutions of eq. (20) as follows:
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C(ξ) = α

β

[
1 − 1

exp[x + (α − D)t + ξ0]
]
, αβ < 0.

(79)

The exact travelling wave solution (79) can be written
as

C(ξ) = α

β
− α

2β

[
1 − tanh

(
x + (α − D)t

2
+ ξ0

2

)]
,

αβ < 0, (80)

C(ξ) = α

β
− α

2β

[
1 − coth

(
x + (α − D)t

2
+ ξ1

2

)]
,

αβ < 0, (81)

where ξ0 is an arbitrary constant and ξ1 also is a constant
such that ξ0 = (iπ/2) + ξ1.

Next, to find the exact solutions of eq. (21), we applied
similar procedure as above and arrive at a set of algebraic
relations:

− ka3
1 − βa4

1 = 0, (82a)

− 2ka2
1a0 + 2Da1 + ka3

1 − 4βa0a
3
1 = 0, (82b)

− ka1a
2
0 + ωa1 − 3Da1

−6βa2
0a

2
1 + 2ka2

1a0 = 0, (82c)

− 4βa3
0a1 + Da1 − ωa1 + ka1a

2
0 + αa1 = 0, (82d)

− βa4
0 + αa0 = 0. (82e)

Solving (82a)–(82e), we obtain the values of parameters
as follows:

Set (i)

a0 = 0, a1 = ±
√

−2D

k
,

ω = 3D, α = ± k3

β2 . (83)

From eqs (83), (70) and (15), we obtain the exact trav-
elling wave solutions of eq. (20) as follows:

C(ξ) = ±
√

−2D

k

1

exp[x − 3Dt + ξ0] , kD < 0. (84)

Moreover, the exact travelling wave solution (84) can
be expressed as

C(ξ) = ±
√

− D

2k

[
1 − tanh

(
x − 3Dt

2
+ ξ0

2

)]
,

kD < 0, (85)

C(ξ) = ±
√

− D

2k

[
1 − coth

(
x − 3Dt

2
+ ξ1

2

)]
,

kD < 0, (86)

where ξ0 is an arbitrary constant and ξ1 is also a constant
such that ξ0 = (iπ/2) + ξ1.

Set (ii)

a0 = ∓
√

2D

k
, a1 = ±

√
2D

k
,

ω = −3D, α = ± k3

β2 , (87)

From eqs (87), (70) and (15), we have the exact travelling
wave solutions of eq. (20) as follows:

C(ξ) = ∓
√

2D

k

[
1 − 1

exp[x + 3Dt + ξ0]
]
,

kD > 0. (88)

Solution (88) can be expressed in a more simplified form
as

C(ξ) = ∓
√

2D

k
±
√

D

2k

[
1−tanh

(
x + 3Dt

2
+ ξ0

2

)]
,

kD > 0, (89)

C(ξ) = ∓
√

2D

k
±
√

D

2k

[
1−coth

(
x + 3Dt

2
+ ξ1

2

)]
,

kD > 0, (90)

where ξ0 is an arbitrary constant and ξ1 is also a constant
such that ξ0 = (iπ/2) + ξ1.

Solutions (76), (80), (85) and (89) are diffusive kink or
antikink wave solutions describing travelling population
fronts depending on the parameter values involved in
nonlinear DR equations. On the other hand, the obtained
singular solutions (77), (81), (86) and (90) have no
physical importance in the explanation of biological
and ecological phenomena. It should be noted that the
Kudryashov method offers all the results that can be
found using the exp-function method and permits us to
obtain all solitary wave solutions and all one-periodic
solutions when we obtain the expansion of the gen-
eral solution of the nonlinear differential equation in
the Laurent series.

6. Graphical results and discussions

In order to understand the dynamics of nonlinear DR
equations, we represent two-dimensional profiles of
the obtained solutions. The profile of the obtained
travelling wave solution describes the population den-
sity or concentration of species vs. space and time.
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(a) (b)

Figure 1. Profile of solution (27). (a) C++(ξ) and C−+(ξ) for α = 1.0, β = 1.0, D = 1.0, ω = 1.0, t = 1.0, for k = 1.0
(red curve), k = 3.0 (orange dotted curve), k = 1.0 (green curve) and k = 3.0 (blue dotted curve), respectively and (b)
C+−(ξ) and C−−(ξ) for α = 1.0, β = 1.0, D = 1.0, ω = 1.0, t = 1.0, for k = 1.0 (red curve), k = 3.0 (orange dotted
curve), k = 1.0 (green curve) and k = 3.0 (blue dotted curve), respectively.

(a) (b)

Figure 2. Profile of solution (28). (a) C++(ξ) for α = 1.0, β = 1.0, D = 1.0, ω = 1.0, t = 1.0, for k = 1.0 (red curve) and
(b) C+−(ξ) for α = 1.0, β = 1.0, D = 1.0, ω = 1.0, t = 1.0, for k = 1.0 (green curve).

(a) (b)

Figure 3. (a) Profile of solution (48) for α = 1.0, β = 1.0, ω = 1.0, t = 1.0 and (b) profile of solution (50) for
α = 1.0, β = 1.0, D = 1.0, k = 1.0, ω = 1.0, t = 1.0.

The construction of the figures is carried out by taking
suitable values of parameters to see the mechanism
involved in DR equations. We have observed from the
obtained results that eqs (27), (29), (38), (40), (48), (58),
(76), (80), (85) and (89) are kink and antikink wave solu-
tions. It is imperative to study the symmetry involved in
the solutions which are expressed in eq. (27). We denote
these solutions asC−+ andC+− corresponding to upper
and lower signs for positive values of k and as C−−
and C++ for negative values of k. In this symmetry, it
is found that positive values of k provide kink-shaped
soliton solutions, and negative values of k provide
antikink soliton solutions. Also, it should be illustrious
that C−+ = C+− and C−− = C++, as depicted in
figures 1a and 1b. Note that the amplitude of C(ξ) is

independent of both the parameters D and k but
decreases with the increase in β while wave speed ω

depends on D and k. From solutions (38) and (39), we
also found that the amplitude and velocity of wave ω

depend on the nonlinear parameter β, diffusion coeffi-
cient D as well as density-dependent parameter k. Here,
the amplitude and velocity of the wave increase with
the increase in D and β but shows a decrease with an
increase in k. The symmetry involved in the solutions
is given in eqs (38) and (39), and it is found that the
symmetry of the solutions C++,C−−,C+− and C−+
remains the same as in eq. (27). The solutions repre-
sented by eqs (28), (30), (34), (39), (41), (43), (44),
(49), (51), (60), (77), (81), (86) and (90) are singular
solutions and have no physical significance in the
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(a) (b)

Figure 4. (a) Profile of solution (52) for α = 1.0, β = 1.0, D = 1.0, k = 1, ω = 1.0, t = 1.0 and (b) profile of solution
(54) for α = 1.0, β = 1.0, D = 1.0, k = 1.0, ω = 1.0, t = 1.0.

(a) (b)

Figure 5. (a) Profile of solution (67) for β = 1.0, D = 1, k = 1, ω = 1.0, t = 1.0 and (b) profile of solution (89),C−−(ξ)
for β = 1.0, D = 1.0, k = 1.0, ω = 1.0, t = 1.0.

biological phenomenon. The two-dimensional profiles
of a singular solution (28) are shown in figures 2a and
2b for different parameter values. The solutions rep-
resented by eqs (50), (52), (54), (63), (65) and (69)
are periodic wave solutions. In figures 3a and 3b,
we represent the two-dimensional profiles of a kink
wave soliton (47) and a periodic wave solution (50),
respectively. The profiles of the Jacobi elliptic solu-
tion (52) and trigonometric function solution (54)
are shown in figures 4a and 4b, respectively. The two-
dimensional profiles of singular soliton solution (67) and
antikink soliton (89) are depicted in figures 5a and 5b,
respectively.

7. Conclusion

We investigated the DR equations in the presence of
quadratic and quartic nonlinearities with a nonlinear
convective flux term arising in the biological systems.
The travelling wave solutions are constructed in terms
of hyperbolic, trigonometric and Jacobi elliptic func-
tions. The general travelling wave solutions can provide
periodic solutions and kink- or antikink-type soliton
solutions under different parametric restrictions. The
kink and antikink solutions can be used to describe
the population dynamics of some insects and small
rodents. The (G ′/G)-expansion method, its generalised

version and Kudryashov methods are direct, concise,
powerful, standard and computerisable methods and
can be applied for all integrable and non-integrable
nonlinear evolution equations in diverse areas of non-
linear science. Performance of these methods is con-
sistent, simple and offers different types of solutions.
Moreover, these methods are capable of significantly
reducing the size of computational work compared to
other existing methods in the literature and one can
easily recover solutions that are obtained from other
methods.

Acknowledgements

The authors would like to thank the anonymous referees
for many useful suggestions and detailed comments that
helped them to improve this paper.

Appendix A

The general solutions to Jacobi elliptic equation and
their derivative (see e.g. [53,55]) are listed in
table 1.

In table 1, the elliptic modulus m of the Jacobi
elliptic functions varies between 0 < m < 1 and
i = √−1.
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Table 1. Jacobi elliptic functions.

q0 q1 q2 G(ξ) G ′(ξ)

1 −(1 + m2) m2 sn(ξ) cn(ξ)dn(ξ)

1 −(1 + m2) m2 cd(ξ) −(1 − m2)sd(ξ)nd(ξ)

1 − m2 2m2 − 1 −m2 cn(ξ) −sn(ξ)dn(ξ)

m2 − 1 2 − m2 − 1 dn(ξ) −m2sn(ξ)cn(ξ)

m2 −(m2 + 1) 1 ns(ξ) −ds(ξ)cs(ξ)

m2 −(m2 + 1) 1 dc(ξ) (1 − m2)nc(ξ)sc(ξ)

−m2 2m2 − 1 1 − m2 nc(ξ) sc(ξ)dc(ξ)

−1 2 − m2 m2 − 1 nd(ξ) m2sd(ξ)cd(ξ)

1 − m2 2 − m2 1 cs(ξ) −ns(ξ)ds(ξ)

1 2 − m2 1 − m2 sc(ξ) nc(ξ)dc(ξ)

1 2m2 − 1 m2(m2 − 1) sd(ξ) nd(ξ)cd(ξ)

m2(m2 − 1) 2m2 − 1 1 ds(ξ) −cs(ξ)ns(ξ)
1
4

1
2 (1 − 2m2) 1

4 ns(ξ) ± cs(ξ) −ds(ξ)cs(ξ) ∓ ns(ξ)ds(ξ)
1
4 (1 − m2) 1

2 (1 + m2) 1
4 (1 − m2) nc(ξ) ± sc(ξ) sc(ξ)dc(ξ) ± nc(ξ)dc(ξ)

m2

4
1
2 (m2 − 2) 1

4 ns(ξ) ± ds(ξ) −ds(ξ)cs(ξ) ∓ cs(ξ)ns(ξ)
m2

4
1
2 (m2 − 2) m2

4 sn(ξ) ± icn(ξ) dn(ξ)cn(ξ) ∓ isn(ξ)dn(ξ)

0 1 − 1 sech(ξ) −sech(ξ) tanh(ξ)
0 1 1 csch(ξ) −csch(ξ) coth(ξ)
0 − 1 1 sec(ξ) sec(ξ) tan(ξ)

0 0 1 1
ξ

− 1
ξ2

0 −(1 + m2) m2 sn(ξ) cn(ξ)dn(ξ)

Appendix B

When m → 1, the Jacobi elliptic functions sn(ξ ), cn(ξ ),
dn(ξ ), ns(ξ ), cs(ξ ), ds(ξ ), sc(ξ ) and sd(ξ ) degenerate
into hyperbolic functions as follows:

sn(ξ) → tanh(ξ), cn(ξ) → sech(ξ),

dn(ξ) → sech(ξ), cs(ξ) → cosech(ξ),

ds(ξ) → cosech(ξ), ns(ξ) → coth(ξ),

sc(ξ) → sinh(ξ), sd(ξ) → sinh(ξ)

and into trigonometric functions if m → 0 as follows:

sn(ξ) → sin(ξ), cn(ξ) → cos(ξ),

dn(ξ) → 1, ns(ξ) → cosec(ξ),

cs(ξ) → cot(ξ), ds(ξ) → cosec(ξ),

sc(ξ) → tan(ξ), sd(ξ) → sin(ξ).

Appendix C

cd(ξ) = cn(ξ)

dn(ξ)
, dc(ξ) = dn(ξ)

cn(ξ)
,

nc(ξ) = 1

cn(ξ)
, nd(ξ) = 1

dn(ξ)
,

cs(ξ) = cn(ξ)

sn(ξ)
, sc(ξ) = sn(ξ)

cn(ξ)
,

sd(ξ) = sn(ξ)

dn(ξ)
, ds(ξ) = dn(ξ)

sn(ξ)
.
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