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Abstract. The main purpose of this paper is to explore the patterns of the bursting oscillations and the non-smooth
dynamical behaviours in a Filippov-type system which possesses parametric and external periodic excitations.
We take a coupled system consisting of Duffing and Van der Pol oscillators as an example. Owing to the
existence of an order gap between the exciting frequency and the natural one, we can regard a single periodic
excitation as a slow-varying parameter, and the other periodic excitations can be transformed as functions of
the slow-varying parameter when the exciting frequency is far less than the natural one. By analysing the
subsystems, we derive equilibrium branches and related bifurcations with the variation of the slow-varying
parameter. Even though the equilibrium branches with two different frequencies of the parametric excitation
have a similar structure, the tortuousness of the equilibrium branches is diverse, and the number of extreme
points is changed from 6 to 10. Overlying the equilibrium branches with the transformed phase portrait and
employing the evolutionary process of the limit cycle induced by the Hopf bifurcation, the critical conditions
of the homoclinic bifurcation and multisliding bifurcation are derived. Numerical simulation verifies the results
well.
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1. Introduction

Bursting oscillation, which is originally introduced in
neuronal models [1], can be found widely in low-
dimensional smooth systems [2–4]. There exist many
non-smooth factors which are usually represented as
collision, dry friction, switch, etc. in science and engi-
neering, and special non-smooth bifurcations found in
some systems are given in [5–7]. Among the non-
smooth systems, the Filippov systems have exhib-
ited more abundant nonlinear dynamical behaviours,
including complex bifurcations, sliding, chaos, etc.
[8,9].

Since the real time is altered by different speeds
between the subsystems, as well as the difference in
quality, size and stiffness caused by different
characteristics of each subsystem, the dynamics asso-
ciated with multiple time scales have attracted much

attention [10–13]. Up to now, most researchers followed
the modes of model analysis, approximate solution,
numerical simulation and experimental analysis of sys-
tems with multiple time scales [14–16] and multistable
systems [17]. It is not until Rinzel [18] introduced the
slow–fast analysis method that the evolution mechanism
of all kinds of dynamical behaviours could be further
analysed [19]. According to this method, the whole sys-
tem is divided into two subsystems, the fast subsystem
and the slow subsystem, which have an effect on the
forms of the spiking states (SPs) and the quiescent states
(QSs) as well as related bifurcations [20].

For a classic slow–fast system, represented by
⎧
⎪⎨

⎪⎩

dx

dt
= f (x, y), fast subsystem,

dy

dt
= εg(x, y), slow subsystem,

(1)

http://crossmark.crossref.org/dialog/?doi=10.1007/s12043-018-1644-8&domain=pdf
http://orcid.org/0000-0003-1250-6140


72 Page 2 of 10 Pramana – J. Phys. (2018) 91:72

where x ∈ RM , y ∈ RN , while 0 < ε � 1, describing
the ratio of the two scales, the state vector y is considered
to be a slow-varying parameter. In the standard slow–
fast analysis method, by setting ε = 0, the equilibrium
points as well as the bifurcation of the fast subsystem
with the variation of y can be obtained, which can be
employed to determine the QSs and the SPs as well as
the bifurcation between the two states, while the slow
subsystem can be used to reveal the modulation in the
oscillations [21].

There are many reports on the periodic bursting
oscillation analysis of a system with a slow variable
parameter [22,23]. As there exists many kinds of mul-
tiple periodic excitations in actual dynamical systems,
the analysis of the dynamical behaviour of systems with
multiple frequency excitations in the time domain has
aroused the scholars’ interests [24], especially the sys-
tems with the combination of parametric excitation and
external excitation. Since there is an order gap between
the exciting frequency and the natural one, it is still
a challenge to explore the bursting oscillations of the
system.

Here, we explore the non-smooth bursting oscillations
as well as bifurcation mechanisms in a Filippov-type
system with different scales and two periodic excitations
based on a coupled system consisted of Duffing and Van
der Pol oscillators. The rest of the paper is organised
as follows. In §2, we introduce a Filippov-type system
with the combination of parametric excitation and exter-
nal excitation. In §3, the equilibrium branches as well
as related bifurcations and the evolution mechanism
of non-smooth behaviours at non-smooth boundary are
taken into account. In §4, based on numerical simula-
tion and transformed phase portrait with the condition
of two amplitudes unchanged, the bursting oscillation
patterns as well as the mechanism analysis and the non-
smooth evolution behaviours of the system induced by
the frequency of parametric excitation are analysed. In
§5, we explore the tortuous analysis of the equilibrium
branches under different frequencies of parametric exci-
tation. Finally, in §6, we conclude with a discussion of
our results.

2. Mathematical model

As an example, a coupled system consisting of Duffing
and Van der Pol oscillators is explored by introducing
a bilateral diode as well as a harmonically changed
electrical source. Bursting oscillations can be found
when there exists an order gap between the excit-
ing frequency and the natural one. The Filippov-type
model can be written in the non-dimensional form
as

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = y1 + w1 + δsgn(x1),

ẏ1 = −w2x1−α1x3
1 −α2x5

1 −2μy1+ξ(x1−x2),

ẋ2 = y2,

ẏ2 = −α3x2 + (1 − x2
2)y2 − ξ(x1 − x2),

(2)

where w1 = A1 cos(�1τ) and w2 = A2 cos(�2τ)

describe the external excitation and the parametric exci-
tation, respectively, with amplitudes A1, A2 and the
frequencies �1, �2. For the meaning of other param-
eters, refer to [25]. The vector field is divided into two
smooth regions represented as

D+ = {(x1, y1, x2, y2) |x1 > 0},
D− = {(x1, y1, x2, y2) |x1 < 0}
by the non-smooth boundary � = {(x1, y1, x2, y2)

|x1 = 0} defined by δ sgn(x1) according to two non-
autonomous smooth subsystems. Note that two periodic
excitations are not independent of each other and by
employing the slow–fast analysis method, the combina-
tion of the two exciting terms can be transformed as a
function of a periodic term with single frequency, which
can be regarded as a slow-varying parameter. Keep
�1 = 0.0005 unchanged, change the value of �2 and the
other parameters are taken at regular values, there exists
an order gap between the frequency of two periodic exci-
tations and the natural frequency. Then the scale effect
is produced, that is the coupling between different fre-
quencies is formed, which leads to the special oscillation
patterns, such as non-smooth bursting oscillations.

3. Bifurcation analysis

There is a resonance relationship between the two
exciting frequencies �1, �2. The external excitation
can be expressed as w1 = A1 cos(�1τ) = A1W and
w2 = A2 cos(�2τ) = A2 fi (W ) (i = 1, 2) denotes
the parametric excitation with W = cos(0.0005τ).
Although the oscillation behaviour of the state variables
in system (2) is closely related to the inherent frequency,
it is modulated by the frequencies of two excitations.
Since �1 � 	, �2 � 	, we can regard W as a slow-
varying parameter that leads to the so-called generalised
autonomous system. That is, the whole system (2) can be
considered as a coupling of the fast and slow subsystems.

The fast subsystem is
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ1 = y1 + A1W + δsgn(x1),

ẏ1 = −A2 fi (W )x1 − α1x3
1 − α2x5

1−2μy1 + ξ(x1 − x2),

ẋ2 = y2,

ẏ2 = −α3x2 + (1 − x2
2)y2 − ξ(x1 − x2),

(3)

where i = 1, 2.
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When �1 = 0.0005, �2 = 0.004,

f1(W ) = 160W 4 − 256W 6 + 128W 8 − 32W 2 + 1.

(4)

When �1 = 0.0005, �2 = 0.005,

f2(W ) = (−1 + 2W 2)(256W 8 − 512W 6

+304W 4 − 48W 2 + 1). (5)

The slow subsystem is W = cos(0.0005τ).
In order to elaborate the mechanism of complex

behaviours in the fast and slow coupled system, we first
analyse the bifurcation of the fast subsystem. The gen-
eralised equilibrium points of the fast subsystem can be
expressed as

EQ+ := (x1, y1, x2, y2)

=
(

x0, −A1W − δ,
ξ x0

ξ − α3
, 0

)

,

for x0 > 0, implying x0 satisfies

−α2x
5
0 − α1x

3
0 − A2 fi (W )x0 − α3ξ

−α3 + ξ
x0,

−2μ(−A1W − δ) = 0, i = 1, 2, (6)

while

EQ− := (x1, y1, x2, y2)

=
(

x0, −A1W + δ,
ξ x0

ξ − α3
, 0

)

,

for x0 < 0, implying x0 satisfies

−α2x
5
0 − α1x

3
0 − A2 fi (W )x0 − α3ξ

−α3 + ξ
x0,

−2μ(−A1W + δ) = 0, i = 1, 2. (7)

The stability of the equilibrium points can be charac-
terised by the associated characteristic equations which
are written as

λ4 + a1λ
3 + a2λ

2 + a3λ + a4 = 0, (8)

where

a1 = 2μ − v, a2 = α3 − ξ − 2μv − k,

a3 = 2μ(α3 − ξ) + kv, a4 = −k(α3 − ξ) − ξ2,

k = −5α2x
4
0 − 3α1x

2
0 − A2 fi (W ) + ξ,

v = 1 −
(

ξ x0

ξ − α3

)2

.

The equilibrium points EQ± are stable for a1 >

0, a1a2 − a3 > 0, a1a2a3 − a2
1a4 − a2

3 > 0, a4 > 0,

while the parameters meet the conditions a4 = 0 (a1 >

0, a1a2 − a3 > 0, a3 > 0), that is

⎧
⎪⎨

⎪⎩

[5α2x4
0 +3α1x2

0 +A2 fi (W )+ξ ](α3 − ξ)−ξ2 = 0,

−α2x5
0 − α1x3

0 − A2 fi (W )x0 − α3ξ

−α3 + ξ
x0

−2μ(−A1W ∓ δ) = 0.

(9)

The fold bifurcation may happen, leading to the phe-
nomena of jumping between different equilibrium
points. Another type of bifurcation may exist, which
is expressed as

a1a2a3 − a2
1a4 − a2

3 = 0

(a1 > 0, a4 > 0, a1a2 − a3 > 0), (10)

on which the Hopf bifurcation may occur.

4. Numerical simulations

Now fix the parameters as α1 = 8, α2 = 1, α3 = 1, ξ =
0.7, μ = 0.2 and δ = −1. We study the dynamics as
well as the mechanism and the evolution of non-smooth
behaviours at non-smooth boundary when the ampli-
tudes of the two periodic excitations are constants and
the frequency of the parametric excitation is changed.

This paper mainly describes the mechanism of peri-
odic bursting oscillations and evolutionary analysis of
the non-smooth behaviours in the system with

(i) �1 = 0.0005, �2 = 0.004;
(ii) �1 = 0.0005, �2 = 0.005.

4.1 Bursting oscillations for �1 = 0.0005,

�2 = 0.004

As shown in figures 1 and 2, one periodic bursting
oscillation and non-smooth evolutionary behaviours can
be obtained when the amplitudes are fixed at A1 =
7, A2 = 3, and keeping �1 = 0.0005 and �2 = 0.004
unchanged.

As phase portrait on the (x1, y1) plane shows, the vec-
tor field of the system is divided into two smooth regions

Figure 1. Phase portrait on the (x1, y1) plane for �1 =
0.0005 and �2 = 0.004.
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Figure 2. Time history of x1 for �1 = 0.0005 and �2 =
0.004.

Figure 3. Equilibrium branches as well as bifurcations for
�1 = 0.0005 and �2 = 0.004.

among which the trajectory shows rich non-smooth
dynamical behaviours by the non-smooth boundary �.
The trajectory may slide on the boundary which fre-
quently may cause the trajectory to exhibit periodic
oscillations with alternations between SPs and QSs, or
cross through the boundary and enter into another region
for oscillation.

To expound the mechanism of such periodic burst-
ing oscillation, figure 3 gives the equilibrium branches
as well as the bifurcations with the variation of the
slow-varying parameter. The red points in figure 3 refer
to the supercritical Hopf bifurcation points, the blue
points denote the fold bifurcation points, while the pur-
ple points correspond to the cross-over points between
the branches and the boundary.

As is shown in equilibrium branches as well as the
bifurcations, the equilibrium branches corresponding
to the system are divided into seven segments by the
supercritical Hopf bifurcation points HB±1(W, x1) =
(±0.1562, ±0.4266), the fold bifurcation points
FB±1(W, x1) = (±0.1197, ±0.1592) and the cross-
over points between the branches and the boundary,
denoted by N1(W, x1) = (−0.1467, 0) and N2(W, x1)

= (0.1467, 0). Meanwhile, the dotted lines denote
unstable solutions while the solid curves describe sta-
ble ones. Using the differential inclusion theory, the

Figure 4. Transformed phase portrait on the (W, x1) plane
for �1 = 0.0005 and �2 = 0.004.

auxiliary parameter q is introduced, and system (2) is
represented by F while system (2) can be rewritten as

F := qF+ + (1 − q)F− (11)

and the auxiliary parameter q can be represented by

q = −ys − A1Ws + δ

2δ
. (12)

ys and Ws indicate the value of the state variable y and
the slow variable parameter W , respectively, when the
trajectory gets into contact with the non-smooth bound-
ary �. Due to the nonlinear dynamical characteristics
of non-smooth boundary and the theory of differential
inclusions, a �-equilibrium curve appears in the equi-
librium branches, as shown in figure 3.

We employ the transformed phase portrait on the
(W, x1) plane and the overlap of equilibrium branches
with transformed phase portrait to better explain
the mechanism of the periodic bursting oscillations
(figure 4). It is found that the trajectory exhibits both
SPs and QSs during a periodic bursting oscillation and
the transformation of the trajectory between different
SPs makes the trajectory contact with the non-smooth
boundary. Furthermore, the trajectory may slide on the
boundary, or cross through the boundary, or enter into
another region to show special bursting oscillations
(figure 5).

In order to better exhibit the oscillating forms of
the trajectory in the smooth region and the bursting
oscillations, figures 6–9 give the stable limit cycles
generated by Hopf bifurcations due to different slow-
varying parameters.

Without loss of generality, assuming the movement
starts from the point W = −1 in the region D−, the
trajectory may strictly move along the stable focus-
type equilibrium branch EB−1, showing that the sys-
tem is in quiescent state QS1. When the trajectory
arrives at the Hopf bifurcation point HB−1(W, x1) =
(−0.1562, −0.4266), Hopf bifurcation occurs and the
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Figure 5. Overlap of equilibrium branches and trans-
formed phase portrait on the (W, x1) plane for �1 =
0.0005,�2 = 0.004.

Figure 6. Stable limit cycle with W = −0.1562.

Figure 7. Stable limit cycle with W = −0.1544.

Figure 8. Stable limit cycle with W = −0.1044.

Figure 9. Stable limit cycle with W = 0.

equilibrium point becomes unstable, which produces
a stable limit cycle. As the limit cycle may be in
contact with the non-smooth boundary when the slow-
varying parameter changes, the dynamical behaviours
will change obviously due to the influence of non-
smooth factors.

We take the limit cycle shown in figures 6–9 as
an example. The supercritical Hopf bifurcation point
HB−1(W, x1) = (−0.1562, −0.4266) appears when W
is changed to W = −0.1562. The limit cycle shown
in figure 6 is completely in the smooth area D− and
does not contact with the non-smooth boundary � when
it oscillates around the unstable focus-type equilib-
rium branches EB−2 and EB−3 in counter-clockwise
direction.

The amplitudes of the oscillations gradually increase
with the growth of the slow-varying parameter W . Till
W is up to the value W = −0.1544, the limit cycle con-
tacts with the non-smooth boundary � in the direction
of the red arrow at the point P1(x1, y1) = (0, 0.0560).
Soon it slides along the boundary in the direction of
the blue arrow until it arrives at the point P2(x1, y1) =
(0, 1.6878), then it continues to move in the direction of
the green arrow till it arrives at the point P3(x1, y1) =
(0, 0.3959) and leaves the boundary immediately. That
is, after oscillating from the smooth region D− into the
boundary and sliding along it for a period of time, the
trajectory escapes from the boundary, then returns to the
smooth region again and continues to move. Therefore,
the slow variable parameter W = −0.1544 corresponds
to the homoclinic bifurcations of the Filippov-type
generalised autonomous system.

When the slow-varying parameter W increases to
W = −0.1044, the limit cycle comes to the bound-
ary at the point P1(x1, y1) = (0, −0.3067) and slides
along the boundary in the direction of the blue arrow
until it gets to the point P2(x1, y1) = (0, 1.4506),
then it passes through the boundary � immediately
and enters into the smooth region D+. After oscillat-
ing for a while in the smooth region D+, the limit cycle
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comes back to the boundary at the point P3(x1, y1) =
(0, 1.7431) and continues to move along the boundary
in the direction of the green arrow. When the limit cycle
reaches the point P4(x1, y1) = (0, −0.0622), it keeps
on oscillating in the smooth region D−. Therefore, the
slow variable parameter W = −0.1044 corresponds to
the multisliding bifurcations of the Filippov-type gen-
eralised autonomous system.

Figure 9 gives symmetrical oscillation patterns of the
trajectory when W changes to 0. The oscillation pat-
terns of the trajectory are similar to those of the previous
motion. The limit cycle gets to the boundary at the point
P1(x1, y1) = (0, −1.0395), and shows sliding motion
on the boundary in the direction of the blue arrow until
it arrives at the point P2(x1, y1) = (0, 0.6990), then it
slides through the boundary � quickly and goes into
the smooth region D+ to oscillate for a short time. Then
the trajectory goes back to the boundary at the point
P3(x1, y1) = (0, 1.0395) with time and still slides along
the boundary in the direction of the green arrow until it
comes to the point P4(x1, y1) = (0, −0.6990). Accord-
ing to the above analysis, we can conclude that the
trajectory oscillates symmetrically in both the regions
D+ and D−.

The slow-varying parameter W then increases with
time. Meanwhile, the amplitudes of the oscillations con-
stantly increase until W gets the maximum value at
W = 1. The trajectory may finally settle down to
the stable equilibrium curve EB+1 and moves almost
strictly along it with further increase of W to form QS
until it arrives at the supercritical Hopf bifurcation point
HB+1(W, x1) = (0.1562, 0.4266), at which the Hopf
bifurcation occurs, leading to the generation of the limit
cycle. It is found that the limit cycle presents a sim-
ilar and symmetrical evolutionary behaviour with the
limit cycle generated by the supercritical Hopf bifurca-
tion point HB−1(W, x1) = (−0.1562, −0.4266). The
slow-varying parameter W gradually decreases with the
increasing time, and the trajectory may finally converge
on the stable equilibrium curve EB−1 and moves almost
strictly to follow it. When the trajectory arrives at the
starting point W = −1, one period of the bursting oscil-
lations is finished.

4.2 Bursting oscillations for �1 = 0.0005,

�2 = 0.005

As figures 10 and 11 show, one period of the bursting
oscillations and the non-smooth evolutionary behavi-
ours also can be obtained when the amplitudes are fixed
at A1 = 7, A2 = 3 with �1 = 0.0005, �2 = 0.005.

The trajectory may slide along the boundary which
frequently causes the trajectory to exhibit periodic oscil-
lations with alternations between SPs and QSs, or cross

Figure 10. Phase portrait on the (x1, y1) plane for �1 =
0.0005,�2 = 0.005.

Figure 11. Time history of x1 for �1 = 0.0005,�2 =
0.005.

Figure 12. Equilibrium branches as well as bifurcations for
�1 = 0.0005,�2 = 0.005.

through the boundary, or get into another region to show
the special bursting oscillations.

To expound the mechanism of such periodic bursting
oscillations, figure 12 gives the equilibrium branches as
well as the bifurcations with the variation of the slow-
varying parameter. The red points in figure 12 refer
to the supercritical Hopf bifurcation points, the blue
points denote the fold bifurcation points, while the pur-
ple points correspond to the cross-over points between
the branches and the boundary.
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Figure 13. Transformed phase portrait on the (W, x1) plane
for �1 = 0.0005,�2 = 0.005.

Figure 14. Overlap of equilibrium branches and transformed
phase portrait on the (W, x1) plane for �1 = 0.0005,�2 =
0.005.

As shown, the equilibrium branches corresponding
to the system are divided into 11 segments by the
supercritical Hopf bifurcation points: HB±1(W, x1) =
(±0.3724, ±0.4274), HB±2(W, x1) = (±0.1968,

±0.4268), HB±3(W, x1) = (∓0.1253, ±0.2922), the
fold bifurcation points FB±1(W, x1) = (±0.1286,

∓0.3584), and the intersection of the trajectory and
the boundary, denoted as N1(W, x1) = (−0.1467, 0)

and N2(W, x1) = (0.1467, 0). Meanwhile, the dotted
curves denote the unstable solutions while the solid lines
describe the stable ones, respectively. Compared to the
case of �1 = 0.0005, �2 = 0.004 discussed earlier, the
tortuousness of the equilibrium curve is increased, and
the number of the corresponding extreme points is also
changed from 6 to 10.

We use the transformed phase portrait on the (W, x1)

plane (figure 13), the overlap of equilibrium branches
with the transformed phase portrait (figure 14) and
locally enlarged part of the transformed phase portrait
on the (W, x1) plane (figures 15–18) to better elaborate
the mechanism of the periodic bursting oscillations.

In general, assuming that the trajectory starts from
the point W = −1 in the region D−, it may strictly
move along the stable focus-type equilibrium branch
EB−1, showing that the system is in the quiescent state

Figure 15. Locally enlarged part one of the transformed
phase portrait on the (W, x1) plane for �1 = 0.0005,�2 =
0.005.

Figure 16. Locally enlarged part two of the transformed
phase portrait on the (W, x1) plane for �1 = 0.0005,�2
= 0.005.

Figure 17. Locally enlarged part three of the transformed
phase portrait on the (W, x1) plane for �1 = 0.0005,�2 =
0.005.

QS1. When the trajectory arrives at the Hopf bifurca-
tion point HB−1(W, x1) = (−0.3724, −0.4274), the
Hopf bifurcation which can bring a stable limit cycle
occurs and the equilibrium point becomes unstable. As
the limit cycle can get in touch with the non-smooth
boundary � when the slow-varying parameter alters,
the evolutionary behaviours will change obviously due
to the influence of non-smooth factors.
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Figure 18. Locally enlarged part four of the transformed
phase portrait on the (W, x1) plane for �1 = 0.0005,�2 =
0.005.

The trajectory exhibits different patterns of the
trajectory with �1 = 0.0005, �2 = 0.004 when it
oscillates around the unstable focus-type equilibrium
branch EB−2 in counter-clockwise direction. Initially,
the limit cycle is completely in the smooth region with-
out entering into the non-smooth boundary. After a
period of time, the limit cycle gets in touch with the
boundary and then slides along the boundary, result-
ing in homoclinic bifurcations. Then the trajectory
begins to oscillate, showing the spiking state SP−1.
The slow-varying parameter W increases with time.
Meanwhile, the amplitudes of the oscillations constantly
decrease. The trajectory settles down to the stable equi-
librium curve EB−3 finally and moves almost strictly
along it with further increase of W to form the qui-
escent state QS−2 until it arrives at the fold bifurcation
point FB−1(W, x1) = (−0.1286, 0.3584), at which fold
bifurcation occurs, leading to the jumping phenomenon
of the trajectory and showing the spiking state SP−2.

Later, the trajectory comes to the boundary at the point
Ps1(W, x1) = (0.1314, 0) and slides along the bound-
ary in the direction of the red arrow until it arrives at the
point Ps2(W, x1) = (0.1324, 0), then it passes through
the boundary � quickly and moves to the smooth region
D+ for oscillation, showing the spiking state SP+1.

The slow-varying parameter W then increases with
time. Meanwhile, the amplitudes of oscillations con-
tinue to decrease. The trajectory may finally sta-
bilise on the stable equilibrium curve EB+3, showing
the quiescent state QS+1. The trajectory reaches the
supercritical Hopf bifurcation point HB+2(W, x1) =
(0.1968, 0.4268), at which the Hopf bifurcation occurs
again, leading to the generation of the limit cycle. The
limit cycle presents a similar and symmetrical evolu-
tionary behaviour with the limit cycle generated by the
supercritical Hopf bifurcation point HB−1(W, x1) =
(−0.3724, −0.4274), that is homoclinic bifurcations
of the Filippov-type generalised autonomous system.

The time continues to increase, and as the value of
the slow-varying parameter W raises, the amplitudes
of oscillations continuously reduce. The trajectory may
continue to move almost strictly following the stable
equilibrium curve EB+1, showing the quiescent state
QS+2. When W is equal to the extreme point W = 1,
the trajectory finally converges on the stable equilibrium
curve EB+1. With time, the slow-varying parameter
W decreases continuously, showing that the system
is in the quiescent state QS+3. When the trajectory
gets to the Hopf bifurcation point HB+1(W, x1) =
(0.3724, 0.4274), Hopf bifurcation occurs and the equi-
librium point becomes unstable again. The trajectory is
relative to the previous motion until it returns back to the
starting point and completes one period of non-smooth
bursting oscillations.

5. The evolution of the equilibrium branches in two
cases

The equilibrium branches in two cases are shown in
figures 19 and 20. We find that, although the equilibrium
curves exhibit similar structures, the tortuous degree
enhances with the evolution of the parametric excita-
tion frequency, and the number of extreme points also
increases, while the transformation phase portrait with
the corresponding bursting oscillations becomes com-
plicated. The cause of this phenomenon is that there
exists an order gap in two periodic excitations. We take
�1 = 0.0005, �2 = 0.004 as an example. When one
vector with a small frequency moves about one period,
the other vector with a large frequency has moved
eight periods, and the coupling happens to form a new
period.

To describe the change in the number of extreme
points corresponding to the equilibrium branches,
figures 21 and 22 give the evolution of extreme points
in two cases, where the black point corresponds to the
extreme point of the equilibrium branches in figures 19
and 20.

Figure 19. Equilibrium branches as well as bifurcations for
�1 = 0.0005,�2 = 0.004.
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Figure 20. Equilibrium branches as well as bifurcations for
�1 = 0.0005,�2 = 0.005.

Figure 21. Variation of extreme points with �1 = 0.0005,
�2 = 0.004.

Figure 22. Variation of extreme points with �1 = 0.0005,
�2 = 0.005.

As figure 21 shows, �1 = 0.0005, �2 = 0.004,
the number of extreme points about the equilibrium
branches is 6, when �1 = 0.0005, �2 = 0.005, the
number of extreme points increases to 10. Comparing
figures 19 and 20 with figures 21 and 22, we find that
the number of extreme points in black is consistent
with the number of extreme points in the equilibrium
branches, and the coordinates of the extreme points also
coincide with those shown in the equilibrium branches.
For �1 = 0.0005, �2 = 0.004, the coordinates
of the points corresponding to the maximum are W±1 =

±0.4126, W±2 = ±0.6964, W±3 = ±0.9261, for
�1 = 0.0005, �2 = 0.005, the coordinates of
the extreme points are W±1 = ±0.1062, W±2 =
±0.2776, W±3 = ±0.5979, W±4 = ±0.8050, W±5 =
±0.9520.

6. Conclusions

Along with the analysis of the non-smooth bursting
oscillation mechanism of Filippov-type system with
multiple frequency excitations, other excitations are
expressed as functions of some single excitation which
can be regarded as a slow-varying parameter by alge-
braic transformation. By using the fast–slow analysis
method, we get the evolutionary mechanism of the equi-
librium branches as well as the related bifurcations in
the fast subsystem with slow-varying parameters when
the two excitation amplitudes are constants. The exter-
nal excitation frequency remains unchanged and the
parametric excitation frequency is altered. According
to the transformed phase portrait on the (W, x1) plane
and the evolution of stable limit cycle with different
slow-varying parameters, we find multisliding bifurca-
tions and various multisliding oscillations, which make
bursting oscillation mechanism of the system more
complicated and the non-smooth dynamical behaviour
characteristics more obvious. By comparing the equi-
librium branches as well as the related bifurcations
with two different parametric frequencies, we find that
although the equilibrium curves exhibit similar struc-
tures, the tortuous degree enhances with the change of
the parametric frequency. The number of extreme points
also increases, and the transformation phase portrait of
the corresponding bursting oscillations becomes more
complicated. All the above results are verified by the
numerical simulation.

It must be pointed out that this paper analyses the
phenomena produced by the system when the value of
�1 remains unchanged and the value of �2 is changed.
If the value of �2 is a constant and the value of �1 is
altered, the system may have different nonlinear dynam-
ical behaviours. We will discuss the situation in the other
way. It provides theoretical basis and technical guidance
for dynamic characteristics analysis, parameter identi-
fication, model demonstration and optimisation design
of nonlinear dynamic system. And it also has certain
engineering application value.
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