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Abstract. In this work, we have considered the Riccati–Bernoulli sub-ODE method for obtaining the exact
solutions of nonlinear fractional-order differential equations. The fractional derivatives are described in Jumarie’s
modified Riemann–Liouville sense. The space–time fractional modified equal width (mEW) equation and time-
fractional generalised Hirota–Satsuma coupled Korteweg–de Vries (KdV) equations are considered for illustrating
the effectiveness of the algorithm. It has been observed that all exact solutions obtained in this paper verify the non-
linear ordinary differential equations (ODEs), which were obtained from the nonlinear fractional-order differential
equations under the terms of wave transformation relationship. The obtained results are shown graphically.
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1. Introduction

More generalised forms of differential equations are
described as fractional differential equations (FDEs).
The FDEs have been found to be effective to describe
some physical phenomena and social science fields such
as engineering, geology, economics, chemistry, engi-
neering, biology, fluid flow, signal processing, control
theory, systems identification and fractional dynamics
[1–4]. As a result, numerous influential methods have
been proposed. Some of these include the fractional
sub-equation method [5,6], the tanh–sech method [7],
the (G ′/G)-expansion method [8,9], the first integral
method [10], the modified Kudryashov method [11],
the exponential function method [12,13] and others
[14–16].

The novelties of this paper are mainly exhibited in
three aspects: first, we use a new method, which is not
so familiar, the so-called Riccati–Bernoulli sub-ODE
method [17–19]. The space–time fractional modified
equal width (mEW) equation and generalised time-
fractional Hirota–Satsuma coupled Korteweg–de Vries
(KdV) system are chosen to illustrate the verity of this
method. Second, we also show that the proposed method
gives an infinite sequence of solutions, using a Bäcklund
transformation. Third, we obtain new types of exact ana-
lytical solutions. Moreover, by comparing our results
with other results, one can see that our results are new
and most extensive.

Assume that f (t) denotes a continuous R → R

function (but not necessarily first-order differentiable)
[20]. The Jumarie modified Riemann–Liouville deriva-
tive is defined as

Dα
t f (t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

�(1 − α)

d

dt

∫ t
0 (t − ξ)−α−1( f (ξ) − f (0))dξ, α < 0,

1

�(1 − α)

d

dt

∫ t
0 (t − ξ)−α( f (ξ) − f (0))dξ, 0 < α < 1,

( f (n)(t))(α−n), n ≤ α < n + 1, n ≥ 1,

(1.1)
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where

�(x) =
∫ ∞

o
e−t t x−1dt.

An important property of the fractional modified
Riemann–Liouville derivative is

Dα
t t

r = �(1 + r)

�(1 + r − α)
tr−α. (1.2)

The rest of the paper is arranged as follows: In §2,
we give a description of the Riccati–Bernoulli sub-
ODE method. We also give a Bäcklund transformation
of the Riccati–Bernoulli equation. In §3, we apply the
Riccati–Bernoulli sub-ODE method to solve the space–
time fractional mEW equation and the time-fractional
Hirota–Satsuma coupled KdV system. In §4, we com-
pare our results with other results in order to show that
the Riccati–Bernoulli sub-ODE is efficacious, robust
and adequate. That is, we clarify that this method is
superior to other methods. Finally, in §5, we give the
conclusions.

2. Method descriptions

We give abbreviation of the Riccati–Bernoulli sub-ODE
method. Any nonlinear FDE in two independent vari-
ables x and t can be expressed in the following form:

G(ψ, Dα
t ψ, Dα

x ψ, Dα
t D

α
x ψ, Dα

x D
α
x ψ, . . .) = 0, (2.1)

where 0 < α ≤ 1 and G is a polynomial in ψ(x, t) and
its partial fractional derivatives. We introduce a frac-
tional complex transformation as follows:

ψ(x, t) = ψ(ξ), ξ = kxα

�(1 + α)
− λtα

�(1 + α)
.

This transformation transform eq. (2.1) into the
following ODE:

H(ψ, ψ ′, ψ ′′, ψ ′′′, . . .) = 0, (2.2)

where prime denotes the derivation with respect to ξ .

Step 1. Assume that eq. (2.2) has the following solution:

ψ ′ = aψ2−n + bψ + cψn, (2.3)

where a, b, c and n are constants which are to be
calculated later. Using eq. (2.3), we obtain the
following:

ψ ′′ = a(2 − n)ψ1−nψ ′ + bψ ′ + cψn−1ψ ′

= a(2 − n)ψ1−n(aψ2−n + bψ + cψn)

+ b(aψ2−n + bψ + cψn)

+ cψn−1(aψ2−n + bψ + cψn)

= ab(3 − n)ψ2−n + a2(2 − n)ψ3−2n + nc2ψ2n−1

+ bc(n + 1)ψn + (2ac + b2)ψ. (2.4)

Similarly, we can obtain

ψ ′′′ = (ab(3 − n)(2 − n)ψ1−n

+a2(2 − n)(3 − 2n)ψ2−2n

+ n(2n − 1)c2ψ2n−2 + bcn(n + 1)ψn−1

+ (2ac + b2))ψ ′, (2.5)

. . .

Remark 1. Equation (2.3) is called the Riccati–Bern-
oulli equation. When ac �= 0 and n = 0, eq. (2.3) is a
Riccati equation. When a �= 0, c = 0 and n �= 0, eq.
(2.3) is a Bernoulli equation.

Step 2. Exact solutions to eq. (2.3), for an arbitrary
constant μ, are given as follows:

1. For n = 1, the solution is

ψ(ξ) = μe(a+b+c)ξ . (2.6)

2. For n �= 1, b = 0 and c = 0, the solution is

ψ(ξ) = (a(n − 1)(ξ + μ))1/(n−1) . (2.7)

3. For n �= 1, b �= 0 and c = 0, the solution is

ψ(ξ) =
(−a

b
+ μeb(n−1)ξ

)1/(n−1)

. (2.8)

4. For n �= 1, a �= 0 and b2 − 4ac < 0, the solutions
are

ψ(ξ) =
(

− b

2a
+

√
4ac − b2

2a

× tan

(
(1−n)

√
4ac−b2

2
(ξ+μ)

))1/(1−n)

(2.9)

and

ψ(ξ) =
(

− b

2a
−

√
4ac − b2

2a

× cot

(
(1−n)

√
4ac−b2

2
(ξ+μ)

))1/(1−n)

.

(2.10)

5. For n �= 1, a �= 0 and b2 − 4ac > 0, the solutions
are

ψ(ξ)=
(
− b

2a
−

√
b2 − 4ac

2a

× coth

(
(1−n)

√
b2−4ac

2
(ξ+μ)

))1/(1−n)

(2.11)
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and

ψ(ξ)=
(

− b

2a
−

√
b2 − 4ac

2a

×tanh

(
(1−n)

√
b2−4ac

2
(ξ+μ)

))1/(1−n)

.

(2.12)

6. For n �= 1, a �= 0 and b2 − 4ac = 0, the solution
is

ψ(ξ) =
(

1

a(n − 1)(ξ + μ)
− b

2a

)1/(1−n)

.

(2.13)

2.1 Bäcklund transformation

When ψm−1(ξ) and ψm(ξ) (ψm(ξ) = ψm(ψm−1(ξ)))

are solutions of eq. (2.3), we get

dψm(ξ)

dξ
= dψm(ξ)

dψm−1(ξ)

dψm−1(ξ)

dξ

= dψm(ξ)

dψm−1(ξ)
(aψ2−n

m−1 + bψm−1 + cψn
m−1),

that is,

dψm(ξ)

aψ2−n
m + bψm + cψn

m

= dψm−1(ξ)

aψ2−n
m−1 + bψm−1 + cψn

m−1

.

(2.14)

Integrating eq. (2.14) once with respect to ξ , we get
Bäcklund transformation of eq. (2.3) as follows:

ψm(ξ)=
(

−cK1+aK2 (ψm−1(ξ))1−n

bK1+aK2+aK1 (ψm−1(ξ))1−n

)1/(1−n)

,

(2.15)

where K1 and K2 are arbitrary constants. If we get a
solution to this equation, we use eq. (2.15) to get an
infinite sequence of solutions to eq. (2.3) as well as to
eq. (2.1).

A complete derivation of this method is given in [18].

3. Applications

The Riccat–Bernoulli sub-ODE technique is presented
for solving the space–time fractional mEW equation and
time-fractional Hirota–Satsuma coupled KdV equation.

3.1 The fractional mEW equation

Here, we apply the Riccat–Bernoulli sub-ODE method
to solve the space–time fractional mEW equation [21],
which is presented by a model for nonlinear dispersive
waves, of the form:

Dα
t ψ(x, t) + εDα

x ψ3(x, t) − δD3α
xxtψ(x, t) = 0, (3.1)

where ε and δ are positive parameters.

φ(x, t) = 1

κ
v2(ξ), χ(x, t) = −κ + v(ξ),

ψ(x, t) = 2κ2 − 2κv(ξ), ξ = x − κtα

�(1 + α)
,

(3.2)

where κ is a non-zero constant and 0 < α ≤ 1, to
transform eq. (3.1) into the following ODEs:

κv′′ + 2v3 − 2κ2v = 0. (3.3)

Substituting eq. (2.4) into eq. (3.3), we obtain

δλk2(ab(3 − m)ψ2−m + a2(2 − m)ψ3−2m

+ mc2ψ2m−1 + bc(m + 1)ψm

+ (2ac + b2)ψ) + εkψ3 − λψ = 0. (3.4)

If m = 0, then eq. (3.4) is reduced to

3δλk2abψ2 + 2δλk2a2ψ3 + δλk2bc

+ δλk2(2ac + b2)ψ + εkψ3 − λψ = 0. (3.5)

Equating all the coefficients of ψ i (i = 0, 1, 2, 3) to
zero, we, respectively, get

δλk2bc = 0, (3.6)

δλk2(2ac + b2) − λ = 0, (3.7)

3δλk2ab = 0, (3.8)

2δλk2a2 + εk = 0. (3.9)

Solving eqs (3.22)–(3.25), we obtain

b = 0, (3.10)

c = ±1

k

√
λ

− 2δkε
, (3.11)

a = ±
√ − ε

2δλk
. (3.12)

Hence, we give cases of solutions for eq. (3.3) as well
as eq. (3.1) as follows:
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1. When δ > 0, substituting eqs (3.10)–(3.12) and
(3.2) into eqs (2.9) and (2.10), we obtain travelling
wave solutions to eq. (3.1) as

ψ1,2(x, t) = ±
√

λ

−εk
tan

√
2√
δk

×
(

kxα

�(1 + α)
− λtα

�(1 + α)
+ μ

)

(3.13)

and

ψ3,4(x, t) = ±
√

λ

−εk
cot

√
2√
δk

×
(

kxα

�(1 + α)
− λtα

�(1 + α)
+ μ

)

,

(3.14)

where λ, ε, k, δ and μ are arbitrary constants.
Figure 1 illustrates solution ψ2.

2. When δ < 0, substituting eqs (3.10)–(3.12) and
(3.2) into eqs (2.11) and (2.12), we obtain travel-
ling wave solutions to eq. (3.1) as

ψ5,6(x, t) = ±
√

λ

εk
tanh

√
2√−δk

×
(

kxα

�(1 + α)
− λtα

�(1 + α)
+ μ

)

(3.15)

and

ψ7,8(x, t) = ±
√

λ

εk
coth

√
2√−δk

×
(

kxα

�(1 + α)
− λtα

�(1 + α)
+ μ

)

,

(3.16)

where λ, ε, k, δ and μ are arbitrary constants.
Figure 2 illustrates solution ψ6.

Remark 2. Applying eq. (2.15) to ψi (x, t), i = 1, 2,

. . . , 9, we obtain an infinite sequence of solutions of eq.
(3.3). Consequently, we obtain an infinite sequence of
solutions to eq. (3.1). For illustration, by applying eq.
(2.15) into ψi (x, t), i = 1, 2, . . . , 9, once, we have new
solutions to eq. (3.3)

ψ
1,2(x, t) =

±1
k

√
λ

−2δkε ± B3

√
λ

−εk tan
√

2√
δk

(
kxα

�(1+α)
− λtα

�(1+α)
+ μ

)

B3 ±
√

λ
−εk tan

√
2√
δk

(
kxα

�(1+α)
− λtα

�(1+α)
+ μ

) ,

ψ
3,4(x, t) =

±1
k

√
λ

−2δkε ± B3

√
λ

−εk cot
√

2√
δk

(
kxα

�(1+α)
− λtα

�(1+α)
+ μ

)

B3 ±
√

λ
−εk cot

√
2√
δk

(
kxα

�(1+α)
− λtα

�(1+α)
+ μ

) ,

ψ
5,6(x, t) =

±1
k

√
λ

−2δkε ± B3

√
λ
εk tanh

√
2√−δk

(
kxα

�(1+α)
− λtα

�(1+α)
+ μ

)

B3 ±
√

λ
εk tanh

√
2√−δk

(
kxα

�(1+α)
− λtα

�(1+α)
+ μ

) ,

ψ
7,8(x, t) =

±1
k

√
λ

−2δkε ± B3

√
λ
εk coth

√
2√−δk

(
kxα

�(1+α)
− λtα

�(1+α)
+ μ

)

B3 ±
√

λ
εk coth

√
2√−δk

(
kxα

�(1+α)
− λtα

�(1+α)
+ μ

) ,

where B3, λ, ε, k, δ and μ are arbitrary constants.

3.1.1 Physical interpretation. Here, we explain the
physical interpretation of the solution for the fractional
mEW equation. This equation has different types of trav-
elling wave solutions, which play an important role in
solitary wave theory. These types of waves depend on
the variation of physical parameters. We also introduce
both 2D and 3D plots, using the mathematical software
MATLAB 15, to give a full illustration in 3D and 2D at a
certain time. That is, these figures are presented to clar-
ify the behaviour of the solution in a completely unified
way.

Indeed, figure 1 shows solution (3.13) of the fractional
mEW equation, which represents the shape of the mul-
tiple periodic solution wave when λ = 0.8, ε = −2,
k = 1.6, δ = 2.5, α = 1, μ = 1, 0 ≤ t ≤ 6 and
−6 ≤ x ≤ 6. Figure 1a presents the 3D plot and figure
1b presents the 2D plot for t = 1.

Figure 2 shows solution (3.15) of the fractional mEW
equation, which represents the kink-type travelling wave
solution when λ = 1.8, ε = 3, k = 1.4, δ = − 1.5,
α = 1, μ = 1, 0 ≤ t ≤ 5 and − 5 ≤ x ≤ 5. Figure 2a
presents the 3D plot and figure 2b presents the 2D plot
for t = 0.
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Figure 1. The solution ψ = ψ1(x, t) in (3.13) with λ = 0.8,
ε = −2, k = 1.6, δ = 2.5, α = 1, μ = 1, 0 ≤ t ≤ 6 and
−6 ≤ x ≤ 6: (a) the 3D plot and (b) the 2D plot for t = 1.

3.2 The time-fractional generalised Hirota–Satsuma
coupled KdV system

The time-fractional generalised Hirota–Satsuma
coupled KdV system appears in mathematical mod-
elling of physical phenomena, which describes the
interaction of two long waves with different dispersion
relations. Moreover, the travelling wave solutions of
these equations have been studied in [8,14,15,22]. These
equations are given in the following form:

Dα
t φ = 1

4
φxxx + 3φφx + 3(−χ2 + ψ)x ,

Dα
t χ = −1

2
χxxx − 3φχx ,

Dα
t ψ = −1

2
ψxxx − 3φψx ,

(3.17)

Figure 2. The solution ψ = ψ5(x, t) in (3.15) when
λ = 1.8, ε = 3, k = 1.4, δ = − 1.5, α = 1, μ = 1,
0 ≤ t ≤ 5 and − 5 ≤ x ≤ 5: (a) the 3D plot and (b) the 2D
plot for t = 0.

where φ = φ(x, t), χ = χ(x, t) and ψ = ψ(x, t),
t > 0, 0 < α ≤ 1. This system models the interaction
between two long waves that have distinct dispersion
relations.

Using the transformation

φ(x, t) = 1

κ
υ2(ξ), χ(x, t) = − κ + υ(ξ),

ψ(x, t) = 2κ2 − 2κυ(ξ), ξ = x − κtα

�(1 + α)
,

(3.18)

where κ is the non-zero constant and 0 < α ≤ 1.
Equation (3.17) transforms into the following RODEs,

using (3.18):

κυ ′′ + 2υ3 − 2κ2υ = 0. (3.19)
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Substituting eq. (2.4) into eq. (3.19), we obtain

κ(ab(3 − m)υ2−m + a2(2 − m)υ3−2m

+ mc2υ2m−1 + bc(m + 1)υm

+ (2ac + b2)υ) + 2υ3 − 2κ2υ = 0. (3.20)

Setting m = 0, eq. (3.20) is reduced to

κ(3ab2υ2+2a2υ3+bc+(2ac+b2)υ)+2υ3−2κ2υ =0.

(3.21)

Setting each coefficient of υ i (i = 0, 1, 2, 3) to zero,
we get

κbc = 0, (3.22)

κ(2ac + b2) − 2κ2 = 0, (3.23)

3κab = 0, (3.24)

2κa2 + 2 = 0. (3.25)

Solving eqs (3.22)–(3.25), we get

b = 0, (3.26)

c = ±κ
√− κ, (3.27)

a = ± 1√− κ
. (3.28)

Hence, we give cases of solutions for eqs (3.19) and
(3.17), respectively:

1. When κ > 0, substituting eqs (3.26)–(3.28) and
(3.18) into eqs (2.9) and (2.10), we obtain the exact
wave solutions of eq. (3.17)

υ1,2(x, t) = ±i
√

κ tan
√

κ

(

x − κtα

�(1 + α)
+ μ

)

(3.29)

and

υ3,4(x, t) = ±i
√

κ cot
√

κ

(

x − κtα

�(1 + α)
+ μ

)

.

(3.30)

Using eqs (3.29), (3.30) and (3.18) the solutions
of eq. (3.17) take the forms:

φ1,2(x, t) = tan2 √
κ

(

x − κtα

�(1 + α)
+ μ

)

,

(3.31)

φ3,4(x, t) = cot2 √
κ

(

x − κtα

�(1 + α)
+ μ

)

,

(3.32)

χ1,2(x, t) = − κ ± i
√

κ tan
√

κ

×
(

x − κtα

�(1 + α)
+ μ

)

, (3.33)

χ3,4(x, t) = − κ ± i
√

κ cot
√

κ

×
(

x − κtα

�(1 + α)
+ μ

)

, (3.34)

ψ1,2(x, t) = 2κ2 ∓ 2iκ
√

κ tan
√

κ

×
(

x − κtα

�(1 + α)
+ μ

)

(3.35)

and

ψ3,4(x, t) = 2κ2 ∓ 2iκ
√

κ cot
√

κ

×
(

x − κtα

�(1 + α)
+ μ

)

, (3.36)

where κ and μ are arbitrary constants and 0 < α ≤
1. Figure 3 illustrates solution φ1.

2. When κ < 0, substituting eqs (3.26)–(3.28) and
(3.18) into eqs (2.11) and (2.12), we obtain the
exact travelling wave solutions to eq. (3.17)

υ5,6(x, t) = ±i
√−k tanh

√− k

×
(

x − κtα

�(1 + α)
+ μ

)

(3.37)

and

υ7,8(x, t) = ±i
√− k coth

√− k

×
(

x − κtα

�(1 + α)
+ μ

)

. (3.38)

Using eqs (3.37), (3.38) and (3.18), the solutions
to eq. (3.17) take the following forms:

φ5,6(x, t)

= tanh2
(√− k

(

x − κtα

�(1 + α)
+ μ

))

,

(3.39)

φ7,8(x, t)

= coth2
(√− k

(

x − κtα

�(1 + α)
+ μ

))

,

(3.40)

χ5,6(x, t) = − κ ± i
√− k tanh

√− k

×
(

x − κtα

�(1 + α)
+ μ

)

, (3.41)

χ7,8(x, t) = − κ ± i
√− k coth

√− k

×
(

x − κtα

�(1 + α)
+ μ

)

, (3.42)

ψ5,6(x, t) = 2κ2 ∓ 2i
√− k tanh

√− k

×
(

x − κtα

�(1 + α)
+ μ

)

(3.43)
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Figure 3. The solution φ = φ1(x, t) in (3.31) when κ = 1,
α = 1, μ = 0, 0 ≤ t ≤ 5 and − 5 ≤ x ≤ 5: (a) the 3D plot
and (b) the 2D plot for t = 1.

and

ψ7,8(x, t) = 2κ2 ∓ 2i
√− k coth

√− k

×
(

x − κtα

�(1 + α)
+ μ

)

, (3.44)

where κ and μ are arbitrary constants and 0 < α ≤
1. Figure 4 illustrates solution φ5.

Remark 3. As in Remark 2, we can get an infinite
sequence of solutions to eq. (3.17), by applying
eq. (2.15) once to υi (x, t) (i = 1, 2, . . . , 8).

3.2.1 Physical interpretation. We discuss the physical
interpretation of the results for the time-fractional gen-
eralised Hirota–Satsuma coupled KdV system. The
graphical demonstrations of some of the obtained solu-
tions are shown in figures 3 and 4. These figures have
the following physical explanations.

Figure 4. The solutionφ = φ5(x, t) in (3.39) whenκ = − 1,
α = 1, μ = 1, 0 ≤ t ≤ 5 and − 5 ≤ x ≤ 5: (a) the 3D plot
and (b) the 2D plot for t = 0.

The shapes of eqs (3.31) and (3.39) are represented
in figures 3 and 4. Equation (3.31) is a trigonometric
function solution. Figures 3a and 3b present the exact
periodic travelling wave solutions of the solitary wave
solution in 3D and 2D, respectively, with the fractional
order and the wave speed is within 0 ≤ t ≤ 5 and − 5 ≤
x ≤ 5. Equation (3.39) is a hyperbolic function solution.
Figures 4a and 4b present the bell-shaped solitary wave
solutions in 3D and 2D, respectively, with the fractional
order and the wave speed within 0 ≤ t ≤ 5 and − 5 ≤
x ≤ 5.

4. Comparisons

Here, we compare our results with other results in order
to show that the Riccati–Bernoulli sub-ODE is effica-
cious, robust and adequate. We clarify that this method
is superior to other methods:
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1. First, we discuss the comparison between the
solutions given in [21,23] and our solutions for
the space–time fractional mEW equation. Kaplan
et al [23] have presented only one solution to the
mEW equation, using the modified simple equa-
tion method, whereas Korkmaz [21] gave two
solutions to the space–time fractional mEW equa-
tion, using the ansatz method. The main advantage
of the Riccati–Bernoulli sub-ODE method over
the modified simple equation technique and ansatz
method is that it supplies many new exact trav-
elling wave solutions along with additional free
parameters. If we also compare between these two
methods and the proposed method in this paper, the
Riccati–Bernoulli sub-ODE method is more effec-
tive in providing many new solutions than these
two methods.

2. Second, we discuss the comparison between the
solutions given in [15,24,25] and our solutions.
Guo et al [25] used the improved fractional sub-
equation method and obtained only three solu-
tions. Furthermore, Liu and Chen [15] studied
the time-fractional Hirota–Satsuma coupled KdV
equations to find exact solutions via the func-
tional variable method and achieved only two
solutions. In contrast, we provide more general and
a huge amount of new exact travelling wave solu-
tions with numerous free parameters. Neirameh
[24] used a direct algebraic method for solving
the time-fractional Hirota–Satsuma coupled KdV
equations. Actually, the method proposed by him
is simple, flexible, easy to use and produces very
accurate results. His result is much better than the
results given in [15,25].

Based on the above discussions, we deduce that the
Riccati–Bernoulli sub-ODE method is very effective,
powerful and vital in providing many new solutions.
Moreover, the Riccati–Bernoulli sub-ODE technique
has a very important feature that admits an infinite
sequence of solutions to equations, which are explained
clearly in §2.1. In fact, this feature has never been given
for any other method, as shown in [15,21,23–25].

5. Conclusions

In this work, we have proposed a Riccati–Bernoulli
sub-ODE technique to solve nonlinear fractional dif-
ferential equations (NFDEs). By this way, the degree
of auxiliary polynomials is increased and more solu-
tions provide an opportunity for some models. The
space–time fractional mEW equation and generalised
time-fractional Hirota–Satsuma coupled KdV system

are handled to demonstrate the effectiveness of the
proposed method. In comparison with the other classical
methods, more travelling wave solutions are obtained.
The graphs of some solutions are depicted for suitable
coefficients. Actually, this method can be applied to
many other NFDEs appearing in mathematical physics
and natural sciences.
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