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Abstract. This study reveals the dark, bright, combined dark–bright, singular, combined singular optical solitons
and singular periodic solutions to the conformable space–time fractional complex Ginzburg–Landau equation. We
reach such solutions via the powerful extended sinh-Gordon equation expansion method (ShGEEM). Constraint
conditions that guarantee the existence of valid solitary wave solutions are given. Under suitable choice of the
parameter values, interesting three-dimensional graphs of some of the obtained solutions are plotted.
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1. Introduction

The investigation of soliton propagation through
nonlinear optical fibres as a theory of optical solitons
has become one of the interesting research areas [1,2].
It is well known that optical solitons represent a treasure
trove of research in the field of nonlinear optics. Optical
solitons play vital roles in the field of fibre optics, pho-
tonics, quantum electronics, optoelectronics and so on
[3]. Various integral schemes have been used to investi-
gate different kinds of nonlinear Schrödinger equations
(NLSE) [4–32].

For the past two decades, the study of fractional
differential equations has attracted the attention of
many scientists [33,34]. Several definitions of frac-
tional differential equations have been submitted to
the literature, such as Riemann–Liouville, Grunwald–
Letnikov, the Caputo, Atangana–Baleanu derivative in
Caputo sense, Atangana–Baleanu fractional derivative
in Riemann–Liouville sense and modified Riemann–
Liouville [35–38]. Recently, Khalil et al [39] developed
the conformable fractional derivative, which can simply
be used to transform fractional nonlinear partial differ-
ential equations to nonlinear ordinary equations.

This paper is devoted for obtaining optical
solitons and singular periodic wave solutions to the
conformable space–time fractional complex Ginzburg–
Landau (GL) equation [2,3] by utilising the powerful
extended sinh-Gordon equation expansion method
(ShGEEM) [40–44]:

iDα
t � + aD2β

x � + bF(|�|2)�
− (|�|2�∗)−1[ν|�|2D2β

x (|�|2)
− �(Dβ

x (|�|2))2] − γ� = 0, (1)

where x and t are the non-dimensional distance along
the fibre and time in dimensionless form, respectively.
The unknown function � is the complex-valued func-
tion of x and t , the symbol ∗ stands for the complex
conjugate of the unknown function �, a and b are the
coefficients of the group velocity dispersion and nonlin-
earity, respectively. The real-valued constants ν, �, γ

are coefficients from the perturbation effects [45,46]. F
is a real-valued algebraic function which must have the
smoothness of the function F(|�|2)�:C → C. When
the complex plane C is considered as 2D linear space
R

2, the function F(|�|2)� is k times continuously dif-
ferentiable [47].
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F(|�|2)� ∈
∞⋃

σ,δ=1

C
k((−δ, δ) × (σ, σ );R2). (2)

2. The conformable fractional derivative

In this section, basic definition, properties and theorem
about conformable fractional derivative are discussed
[39].

DEFINITION 1

Let g : (0, ∞) → R, then the conformable fraction
derivative of g of order α is defined as

Tα(g)(t) = lim
ε→0

g(t + εt1−α) − g(t)

ε
,

t > 0, 0 < α < 1. (3)

Here, some basic properties of the conformable
fractional derivative [39] are presented:

1. Tα(bg + ch) = bTα(g) + cTα(h), b, c ∈ R.
2. Tα(tλ) = λtλ−α , λ ∈ R.
3. Tα(gh) = gTα(h) + hTα(g).
4. Tα(g/h) = ((hTα(g) − gTα(h))/h2).
5. If g is differentiable, then Tα(g)(t)= t1−α(dg/dt).

Theorem 1. Let g, h : (0, ∞) → R be differentiable
and also α differentiable functions. Then the following
rule holds:

Tα(g ◦ h)(t) = t1−αh′(t)g′(h(t)). (4)

3. The extended ShGEEM

Consider the following space–time fractional
sinh-Gordon equation [40]:

Dβ
x (Dα

t �) = λ sinh(�), 0 < α, β ≤ 1, (5)

where λ is a non-zero constant.
Substituting the fractional travelling wave

transformations

�(x, t) = ψ(η), η = xβ

β
− υ

tα

α
, (6)

into eq. (5), we obtain the following nonlinear ordinary
differential equation (NODE):

ψ ′′ = −λ

υ
sinh(ψ), (7)

where υ is the velocity of the travelling wave.
Integrating eq. (7) once, we obtain

(
ψ ′

2

)2

= −λ

υ
sinh2

(
ψ

2

)
+ c, (8)

where c is the constant of integration. Setting −(λ/υ) =
b and ψ/2 = �, eq. (8) becomes

�′ =
√
b sinh2(�) + c. (9)

For different values of parameters a and b, eq. (9)
possesses the following sets of solutions:

Set I: When c = 0, b = 1, eq. (9) becomes

�′ = sinh(�). (10)

Simplifying eq. (10), the following solutions are
secured:

sinh(�) = ±csch(η) or sinh(�) = ± i sech(η)

(11)

and

cosh(�) = ± coth(η) or cosh(�) = ± tanh(η),

(12)

where i = √−1.

Set II: When c = 1, b = 1, eq. (9) becomes

�′ = cosh(�). (13)

Simplifying eq. (13), the following solutions are
obtained:

sinh(θ) = tan(η) or sinh(�) = − cot(η) (14)

and

cosh(�) = ± sec(η) or cosh(�) = ± csc(η).

(15)

For a given nonlinear space–time fractional partial
differential equation, say

P(�, Dβ
x �, Dβ

x (Dα
t �), �2Dα

x �t , . . .) = 0,

0 < α, β ≤ 1, (16)

the following steps are followed to secure various wave
solutions to (16):

Step 1: We first transform eq. (16) into the following
NODE by using eq. (6):

Q(ψ, ψ ′, ψ ′′, ψ2ψ ′, . . .) = 0. (17)

Step 2: We assume that eq. (17) has a new ansatz solution
of the form

ψ(�) =
m∑

k=1

[
Bk sinh(�) + Ak cosh(�)

]k + A0, (18)

where � is a function of η and it satisfies eq. (9), and
A0, Ak, Bk (k = 1, 2, . . . ,m) are constants to be deter-
mined later. To obtain the value of m, the homogeneous
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balance principle is used on the highest derivatives and
highest power nonlinear term in eq. (17).

Step 3: We substitute eq. (28) and its derivatives
with a fixed value of m along with eq. (10) or
(13) into eq. (17) to obtain a polynomial equation
in �′s sinh j (�) coshk(�) (s = 0, 1 and j, k =
0, 1, 2, . . .). We collect a set of overdetermined nonlin-
ear algebraic equations in A0, Ak, Bk, υ by summing
the coefficients of �′s sinh j (�) coshk(�) with the same
power and setting each summation to zero.

Step 4: The obtained set of overdetermined nonlinear
algebraic equations is then solved with the aid of sym-
bolic software to determine the values of the parameters
A0, Ak, Bk and υ.

Step 5: Using the results obtained in eqs (11), (12), (14)
and (15), we have the wave solutions to the given nonlin-
ear partial differential equation in the following forms:

ψ(η) =
m∑

k=1

[ ±Bk i sech(η)±Ak tanh(η)
]k + A0,

(19)

ψ(η) =
m∑

k=1

[ ±Bk csch(η) ± Ak coth(η)
]k + A0,

(20)

ψ(η) =
m∑

k=1

[ ±Bk sec(η) + Ak tan(η)
]k + A0 (21)

and

ψ(η) =
m∑

k=1

[ ±Bk csc(η) − Ak cot(η)
]k + A0. (22)

4. Application

In this section, we obtain various solutions to the
complex GL equation [3] by using the extended
ShGEEM.
Consider the following complex fractional travelling
wave transformation:

�(x, t) = ψ(η)eiφ, φ = −ϑ
xβ

β
+ ω

tα

α
+ �,

η = xβ

β
− υ

tα

α
, (23)

where ψ(η) stands for the pulse shape, υ is the velocity
of the soliton, φ is the phase component, ϑ is the soliton
frequency, ω is the soliton wave number and � is the
phase constant.

Substituting eq. (23) into eq. (1) yields the following
NODE:

−ωψ + a(ψ ′′ − ϑ2ψ) + bF(ψ2)ψ

−2(ν − 2�)
(ψ ′)2

ψ
− 2νψ ′′ − γψ = 0 (24)

from the real part and the relation υ = −2aϑ from the
imaginary part.

Setting ν = 2�, eqs (1) and (24) become

iDα
t � + aD2β

x � + bF(|�|2)�
− �(|�|2�∗)−1[2|�|2D2β

x (|�|2)
− (Dβ

x (|�|2))2] − γ� = 0 (25)

and

(a− 4�)ψ ′′ − (ω + aϑ2 + γ )ψ + bF(ψ2)ψ = 0, (26)

respectively.
For the Kerr law nonlinearity, F(ψ) = ψ [3]. There-

fore, eq. (26) becomes

(a − 4�)ψ ′′ − (ω + aϑ2 + γ )ψ + bψ3 = 0. (27)

The Kerr law nonlinearity arises from the fact that light
wave in an optical fibre encounters nonlinear responses
from the non-harmonic motion of electrons with an
external electric field [2].

Balancing the terms ψ ′′ and ψ3 in eq. (27) yields
m = 1.
With m = 1, eqs (28)–(32) take the following forms:

�(�) = B1 sinh(�) + A1 cosh(�) + A0, (28)

ψ(η) = ±B1 i sech(η) ± A1 tanh(η) + A0, (29)

ψ(η) = ±B1 csch(η) ± A1 coth(η) + A0, (30)

ψ(η) = ±B1 sec(η) + A1 tan(η) + A0 (31)

and

ψ(η) = ±B1 csc(η) − A1 cot(η) + A0, (32)

respectively (figure 1).
Putting eq. (28) and its second derivative into eq. (27)

give a polynomial in the power hyperbolic functions. We
get a set of algebraic equations by equating each sum-
mation of the coefficients of the hyperbolic functions of
the same power to zero. We solve the set of algebraic
equations to get the values of the parameters involved.
To explicitly secure the solutions of eq. (1), we insert
the values of the parameters into each of eqs (29)–(32).

Set 1: When

A0, A1 = −
√

4� − a

2b
, B1 = A1,

ϑ = −
√

−(a + 2(γ − 2� + ω))

2a
,

eq. (1) possesses the following combined dark–bright
and combined singular optical solitons:
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Figure 1. The 3D graphics of eq. (35) when (a) α = β = 0.7
and (b) α = β = 0.6.

�1(x, t) = ±
√

4� − a

2b

(
i sech

[
xβ

β
+ 2aϑ

tα

α

]

+ tanh

[
xβ

β
+2aϑ

tα

α

])
ei

(−ϑ(xβ/β)+ω(tα/α)+�
)

(33)

and

�2(x, t) = ±
√

4� − a

2b

(
coth

[
xβ

β
+ 2aϑ

tα

α

]

+ csch

[
xβ

β
+ 2aϑ

tα

α

])
ei

(−ϑ(xβ/β)+ω(tα/α)+�
)
,

(34)

respectively, where b(4� − a) > 0 and a(a + 2(γ −
2� + ω)) < 0 for the existence of valid solitons
(figure 2).
Set 2: When

A0 = 0, A1 = −
√

2(4� − a)

b
, B1 = 0,

Figure 2. The 3D graphics of eq. (43) when (a) α = β = 0.7
and (b) α = β = 0.6.

ϑ = −
√

8� − 2a − γ − ω

a
,

eq. (1) possesses the following dark and singular optical
solitons:

�3(x, t) = ±
√

2(4� − a)

b

× tanh

[
xβ

β
+ 2aϑ

tα

α

]
ei(−ϑ(xβ/β)+ω(tα/α)+�) (35)

and

�4(x, t) = ±
√

2(4� − a)

b

× coth

[
xβ

β
+ 2aϑ

tα

α

]
ei(−ϑ(xβ/β)+ω(tα/α)+�), (36)
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Figure 3. The 3D graphics of eq. (44) when (a) α = β = 0.7
and (b) α = β = 0.6.

respectively, where b(4� − a) > 0 and a(8� − 2a −
γ −ω) > 0 for the existence of valid solitons (figure 3).

Set 3: When

A0 = 0, A1 = 0, B1 = −
√

−2(4� − a)

b
,

ϑ =
√
a − γ − 4� − ω

a
,

eq. (1) possesses the following bright and singular
optical solitons:

�5(x, t) = ±
√

−2(4� − a)

b

× sech

[
xβ

β
+ 2aϑ

tα

α

]
ei(−ϑ(xβ/β)+ω(tα/α)+�)

(37)

and

�6(x, t) = ±
√

2(4� − a)

b

× csch

[
xβ

β
+ 2aϑ

tα

α

]
ei(−ϑ(xβ/β)+ω(tα/α)+�),

(38)

respectively.
Valid solitons exist for both b(4� −a) < 0 or b(4� −

a) > 0 and a(a − γ − 4� − ω) > 0.

Set 4: When

A0 = 0, A1 = −
√

4� − a

2b
, B1 = A1,

ω = −1

2
a(1 + 2ϑ2) − γ + 2�,

eq. (1) possesses the following combined dark–bright
and combined singular optical solitons:

�7(x, t) = ±
√

4� − a

2b

(
i sech

[
xβ

β
+ 2aϑ

tα

α

]

+ tanh

[
xβ

β
+ 2aϑ

tα

α

])

×ei
(−ϑ(xβ/β)−(

1/2a(1+2ϑ2)+γ−2�
)
(tα/α)+�

)
(39)

and

�8(x, t) = ±
√

4� − a

2b

(
coth

[
xβ

β
+ 2aϑ

tα

α

]

+ csch

[
xβ

β
+ 2aϑ

tα

α

])

× ei(−ϑ(xβ/β)−((1/2)a(1+2ϑ2)+γ−2�)(tα/α)+�), (40)

respectively, where b(4� − a) > 0 for valid solitons.

Set 5: When

A0 = 0, A1 = −
√

2(4� − a)

b
, B1 = 0,

ω = −a(2 + ϑ2) − γ + 8�,

eq. (1) possesses the following dark and singular optical
solitons:

�9(x, t) = ±
√

2(4� − a)

b
tanh

[
xβ

β
+ 2aϑ

tα

α

]

× ei
(−ϑ(xβ/β)−(a(2+ϑ2)+γ−8�)(tα/α)+�

)
(41)

and

�10(x, t) = ±
√

2(4� − a)

b
coth

[
xβ

β
+ 2aϑ

tα

α

]

× ei
(−ϑ(xβ/β)−(a(2+ϑ2)+γ−8�)(tα/α)+�

)
, (42)
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respectively, where b(4� − a) > 0 for valid solitons.

Set 6: When

A0 = 0, A1 = 0, B1 = −
√

2(4� − a)

b
,

ω = a(1 − ϑ2) − γ − 4�,

eq. (1) possesses the following bright and singular
optical solitons:

�11(x, t) = ±
√

2(a − 4�)

b
sech

[
xβ

β
+ 2aϑ

tα

α

]

× ei
(−ϑ(xβ/β)+(a(1−ϑ2)−γ−4�)(tα/α)+�

)
(43)

and

�12(x, t) = ±
√

2(4� − a)

b
csch

[
xβ

β
+ 2aϑ

tα

α

]

× ei
(−ϑ(xβ/β)+(a(1−ϑ2)−γ−4�)(tα/α)+�

)
, (44)

respectively, where b(a − 4�) > 0 or b(a − 4�) < 0
for valid solitons.

Set 7: When

A0 = 0, A1 = −
√

2(γ + 4ϑ2� + ω)

b(2 + ϑ2)
,

B1 = 0, a = −(γ − 8� + ω)

2 + ϑ2 ,

eq. (1) possesses the following dark and singular optical
solitons:

�13(x, t)=±
√

2(γ + 4ϑ2� + ω)

b(2 + ϑ2)

×tanh

[
xβ

β
− 2ϑ(γ − 8� + ω)

2 + ϑ2

tα

α

]

× e
i

(
−ϑ

(xβ )
(β)

+ω
(tα)
(α)

+�

)

(45)

and

�14(x, t)=±
√

2(γ + 4ϑ2� + ω)

b(2 + ϑ2)

×coth

[
xβ

β
− 2ϑ(γ − 8� + ω)

2 + ϑ2

tα

α

]

× ei
(−ϑ(xβ/β)+ω(tα/α)+�

)
, (46)

respectively, where b(2 + ϑ2)(γ + 4ϑ2� + ω) > 0 for
valid solitons.

Set 8: When

A0 = 0, A1 = 0,

B1 =
√

2(γ + 4ϑ2� + ω)

b(ϑ2 − 1)
, a = γ + 4� + ω

1 − ϑ2 ,

eq. (1) possesses the following bright and singular
optical solitons:

�15(x, t) = ±
√

−2(γ + 4ϑ2� + ω)

b(ϑ2 − 1)

× sech
[ xβ

β
+ (γ + 4� + ω)

1 − ϑ2

tα

α

]

× ei
(−ϑ(xβ/β)+ω(tα/α)+�

)
(47)

and

�16(x, t) = ±
√

2(γ + 4ϑ2� + ω)

b(ϑ2 − 1)

× csch

[
xβ

β
+ (γ + 4� + ω)

1 − ϑ2

tα

α

]

× ei
(−ϑ(xβ/β)+ω(tα/α)+�

)
, (48)

respectively, where b(ϑ2 − 1)(γ + 4ϑ2� + ω) > 0 or
b(ϑ2 − 1)(γ + 4ϑ2� + ω) < 0 for valid solitons.

Set 9: When

A0 = 0, A1 = −
√

4� − a

2b
,

B1 = A1, ϑ = −
√
a − 2(γ + 2� + ω)

2a
,

eq. (1) possesses the following singular periodic
solutions:

�17(x, t) = ±
√

4� − a

2b

(
sec

[
xβ

β
+ 2aϑ

tα

α

]

+ tan

[
xβ

β
+ 2aϑ

tα

α

])
ei

(−ϑ(xβ/β)+ω(tα/α)+�
)

(49)

and

�18(x, t) = ±
√

4� − a

2b

(
cot

[
xβ

β
+ 2aϑ

tα

α

]

+ csc

[
xβ

β
+ 2aϑ

tα

α

])
ei

(−ϑ(xβ/β)+ω(tα/α)+�
)
,

(50)

where b(4�−a) > 0 or b(4�−a) < 0 and a(a−2(γ +
2� + ω)) > 0 for valid solitons.
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Set 10: When

A0 = 0, A1 = −
√

4� − a

2b
,

B1 = A1, ω = 1

2
(a − 2aϑ2 − 2(γ + 2�)),

eq. (1) possesses the following singular periodic
solutions:

�20(x, t) = ±
√

4� − a

2b

(
sec

[
xβ

β
+ 2aϑ

tα

α

]

+ tan

[
xβ

β
+ 2aϑ

tα

α

])

× ei(−ϑ(xβ/β)+(1/2)(a−2aϑ2−2(γ+2�))(tα/α)+�) (51)

and

�21(x, t) = ±
√

4� − a

2b

(
cot

[
xβ

β
+ 2aϑ

tα

α

]

+ csc

[
xβ

β
+ 2aϑ

tα

α

])

× ei(−ϑ(xβ/β)+(1/2)(a−2aϑ2−2(γ+2�))(tα/α)+�), (52)

where b(4�−a) > 0 or b(4�−a) < 0 for valid solitons.

5. Conclusions

This study used the powerful extended ShGEEM in
constructing the dark, bright, combined dark–bright,
singular, combined singular optical solitons and singular
periodic wave solutions to the conformable space–time
fractional complex GL equation. The constraint condi-
tions for the existence of a valid soliton to each of the
obtained solutions are stated. Under suitable choice of
parameters, the 3D graphics of some of the obtained
solutions are also plotted. The results reported may be
useful in explaining the physical meaning of the stud-
ied equation in this paper and other complex nonlinear
models arising in various fields of nonlinear science.

The computations in this paper provide a lot of encour-
agement to the future findings. It can be seen that the
integral scheme used in this study is a powerful and
efficient mathematical tool, which produces a family of
solutions when applied to a complex nonlinear model.
In our future research, we are going to consider investi-
gating the conformable space–time fractional complex
GL with a different type of nonlinearity. Its numerical
solutions will also be computed.
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