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Abstract. We present the re-scaled vibrational resonance (VR) method and the twice sampling VR method to
improve the amplitude-modulated signal. Two different kinds of signals are considered. One is the amplitude-
modulated harmonic signal. The other is the amplitude-modulated aperiodic binary signal. Both the VR methods
have an excellent effect on the signal improvement. For the re-scaled VR method, the scale parameter is the key
factor to determine the resonance output. For the twice sampling VR method, the frequency reduced ratio or the
minimal random pulse width stretched ratio is the crucial factor. By choosing appropriate key factors, the output
can achieve the strongest resonance and lead to the optimal signal improvement.
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1. Introduction

The amplitude-modulated signal is widely used in a
variety of engineering and scientific fields [1–7]. It is
quite an important topic to improve the weak signal
in the amplitude-modulated form. There are differ-
ent ways to improve a weak signal. Among them,
some methods according to the response properties
of a nonlinear system have attracted more and more
attention. For example, the stochastic resonance (SR)
[8] and vibrational resonance (VR) [9] methods are
well known. Especially, they can be used to improve
the weak amplitude-modulated signal [10–15]. Fur-
thermore, the SR and VR are very important and
interesting phenomena of different nonlinear models
[16–22].

In the earlier works of SR or VR related to the
amplitude-modulated signal excited system, the adia-
batic approximation theory should be satisfied. In this
precondition, the signal is usually in the low-frequency
or slow variable form. However, in the engineering

fields, the signal that characterises useful information
may be in arbitrary high-frequency form. As a result,
we need to improve the signal without the limitation of
the frequency value. With the development of SR and
VR, there are two important methods to solve this prob-
lem. One is the re-scaled method [23–28]. The other is
the twice sampling method [29,30]. Based on these two
different methods, the high-frequency signal can match
the system parameters effectively. Then, strong SR or
VR can be achieved. However, to our knowledge, all
studies are focussed on the external signal case. There
is no work on SR or VR under the excitation of the
amplitude-modulated signal especially when the signal
frequency is high. Moreover, most of the studies are car-
ried out in the classical bistable system which may not be
the optimal system for signal processing. On comparing
VR with SR, we found that VR is much easier to control.
Considering these problems, we shall further study VR
in a general bistable system subjected to an amplitude-
modulated high-frequency signal. Two different signal
forms will be considered.
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The first kind of signal is the harmonic signal in the
amplitude-modulated form. Its concrete expression is

s(t) = [ f + F cos(�t)] sin(ωt), (1)

where s(t) is the amplitude-modulated signal that will
be improved by the re-scaled and twice sampling VR
methods. f and ω are the amplitude and frequency of the
character signal, which usually transmit the useful infor-
mation. f is modulated by the other harmonic signal
with amplitude F and frequency �. We call F cos(�t)
as the auxiliary signal in this paper. Moreover, the signal
satisfies f � 1 and ω � �. In the following analysis,
we label � = nω with n being a positive real number.

The second kind is the aperiodic binary signal in the
amplitude-modulated form. Its concrete expression is

s(t) = [ f + F cos(�t)]
+∞∑

j=−∞
R j�(t − jT ) , (2)

where s(t) still means the amplitude-modulated signal.
The character signal is the aperiodic binary signal with
amplitude f , which is modulated by the auxiliary sig-
nal with amplitude F and frequency �. R j is a random
number generator of +1 or −1 with an independent
Gaussian distribution. �(t) is a random pulse with min-
imal width T . Usually, for VR phenomenon to occur,
we have T � 2π/�. In the following analysis, we let
� = n(2π/T ) with n being also a positive real number.

On comparing this work with earlier studies, there
are two major differences in the signal form. On the one
hand, in [14,15], the frequency ω is low, i.e. ω � 1.
The signal can be improved by the traditional VR the-
ory. In this work, the frequency ω is an arbitrarily large
value. It extends the potential applications of VR. How-
ever, the VR phenomenon cannot be realised in this case
according to the traditional VR theory. Hence, re-scaled
and twice sampling VR methods are proposed to solve
the problem. On the other hand, although aperiodic VR
is studied in [31], in that work, the signal form is not
in the amplitude-modulated form. In engineering fields,
the random pulse is usually modulated by another signal
[10,12]. As a result, it is important to improve aperiodic
binary signal in the amplitude-modulated form. More-
over, in the earlier work [31], the random pulse width
cannot be arbitrary because we need to match the sys-
tem parameters with the minimal random pulse width.
To our knowledge, no theoretical framework is proposed
to clarify the match condition in detail. We shall solve
this problem in the present work.

To obtain some more general results, we use a general
bistable system instead of the classical bistable system.
Specifically, the governing equation in which the VR
phenomenon will be discussed is as follows:

dx

dt
= −∂V (x)

∂x
+ s(t), (3)

where V (x) is a bistable potential function with the
expression

V (x) = −a

2
x2 + b

α + 1
|x |α+1. (4)

V (x) has one unstable equilibrium x0 = 0 and two
stable equilibria x1,2 = ±(a/b)1/(α−1). The exponent
α > 1 can have fractional or integer values. This kind
of potential function is widely used in modelling some
engineering problems [32–34]. If α = 3, the potential
function is the classical bistable potential function which
has been used in volumes of literatures.

The rest of the paper is organised as follows. In §2, we
shall give the re-scaled and twice sampling VR theories
to process the amplitude-modulated harmonic signal
with an arbitrary frequency. In §3, the re-scaled and
twice sampling VR methods are proposed to improve
the amplitude-modulated aperiodic signal with an arbi-
trary minimal random pulse width. Moreover, the effect
of the fractional exponent α on the VR will be discussed.
In §4, the main results of this work will be presented.

2. The amplitude-modulated harmonic signal case

First, we use the re-scaled and twice sampling VR
methods to improve the amplitude-modulated harmonic
signal, i.e. the signal described in eq. (1). Under the exci-
tation of this kind of signal, eq. (3) turns to

dx(t)

dt
= ax(t) − bx(t)|x(t)|α−1

+[ f + F cos(�t)] sin(ωt). (5)

2.1 Re-scaled VR

If ω � 1, the parameters a and b are usually in the order
of 1. For example, a and b may lie in 0.1 or 1 for several
times. If ω � 1, the parameters a and b should be large
to induce the VR phenomenon.

Let

τ = βt, x(t) = z(τ ), (6)

where β is the re-scaled parameter and τ is the new time
scale. Substituting it into eq. (5), we have

dz(τ )

dτ
= a

β
z(τ ) − b

β
z(τ )|z(τ )|α−1

+ 1

β

[
f + F cos

(
�

β
τ

)]
sin

(
ω

β
τ

)
. (7)
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Then, letting

a1 = a

β
, b1 = b

β
, (8)

eq. (7) turns to

dz(τ )

dτ
= a1z(τ ) − b1z(τ )|z(τ )|α−1

+ 1

β

[
f + F cos

(
�

β
τ

)]
sin

(
ω

β
τ

)
. (9)

By choosing an appropriate re-scaled parameter β, the
excitation in eq. (9) can be in the low-frequency form.
Furthermore, compare eq. (9) with eq. (5). Although
the excitation has the same frequency, the amplitude of
the excitation in eq. (9) is 1/β of the original strength
in eq. (5). Equation (9) aims to obtain the parameter
matching condition only. Hence, to obtain the equivalent
system to eq. (5), we need to recover the amplitude of
the excitation. That is to say, the equivalent system to
eq. (5) is in the form

dz(τ )

dτ
= a1z(τ ) − b1z(τ )|z(τ )|α−1

+
[
f + F cos

(
�

β
τ

)]
sin

(
ω

β
τ

)
. (10)

As a result, the original signal can be improved in the
following system, i.e.

dx(t)

dt
= ax(t) − bx(t)|x(t)|α−1

+β[ f + F cos(�t)] sin(ωt). (11)

Furthermore, in eq. (10), the frequency of the signal is
low and the system parameters are in the order of 1.
The traditional VR can occur in eq. (10). In eq. (11), the
frequency of the signal is an arbitrary high value and
the system parameters may be large and need to match
the signal frequencies automatically. Through the above
procedures, the VR can occur in the high-frequency sig-
nal excited system. We name VR in eq. (11) as re-scaled
VR. In the following, we shall give some numerical
examples to verify the re-scaled VR theory.

To quantify the amplification of the harmonic com-
ponent through the nonlinear system, an index called
response amplitude at the frequency ω is defined, specif-
ically

Q =
√
Bs

2 + Bc
2
/
f , (12)

where Bs and Bc are the Fourier coefficients of the time
series. Furthermore, Bs and Bc are calculated by
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Figure 1. The response amplitude vs. the fractional expo-
nent α and the auxiliary signal amplitude F . The simulation
parameters are: a1 = 1, b1 = 1, f = 0.1, ω = 10, n = 50
and β = 100.

Bs = 2

nT

∫ nT

0
x(t) sin(ωt) dt,

Bc = 2

nT

∫ nT

0
x(t) cos(ωt) dt. (13)

In fact, the response amplitude Q expresses the
amplification of the low-frequency signal by the coop-
eration of the nonlinear system and the high-frequency
signal. When the re-scaled VR occurs, the response
amplitude achieves the maximal value.

In figure 1, the response amplitude Q is plotted as a
function of α and F . On the one hand, with the increase
of α, the response amplitude will decrease. On the other
hand, with the increase of F , the resonance peak appears
clearly. In other words, re-scaled VR occurs in nonlinear
system. Furthermore, for a larger α, the resonance curve
is much more apparent.

To express the dependence of Q on the variables F
and α better, we give several two-dimensional curves
in figure 2. If F is a controllable parameter, as shown
in figure 2a, the response amplitude Q has an identi-
cal peak value for different values of α. In other words,
the fractional exponent α does not influence the peak
of the Q–F curve. In figure 2b, the response ampli-
tude Q vs. the fractional exponent α is presented. When
F = 2.0 and 5.0, Q is nonlinearly decreasing with α.
When F = 3.3, Q increases first and then decreases
with α. There is a weak resonance peak at α = 1.5.
It indicates that Q is a nonlinear function of α. More-
over, the monotonicity of the Q–α curve depends on the
value of F closely. In summary, in figures 1 and 2, the
output of the system can be controlled by the parame-
ters F and α effectively. They also show that there is
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Figure 2. (a) The response amplitude Q vs. the auxiliary
signal amplitude F and (b) the response amplitude Q vs. the
fractional exponent α. The simulation parameters are: a1 = 1,
b1 = 1, f = 0.1, ω = 10, n = 50 and β = 100.
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Figure 3. Time series of the output (blue lines) and the signal
10 f sin(ωt) (red lines). (a) α = 1.5, (b) α = 2.0, (c) α = 3.0
and (d) α = 4.5. Other simulation parameters are: a1 = 1,
b1 = 1, f = 0.1, ω = 10, F = 3.9, n = 50 and β = 100.

a fractional value which can induce optimal resonance.
Furthermore, optimal resonance usually does not occur
at α = 3. In other words, the traditional bistable system
may not be the optimal system for the signal processing
by the VR method.

In figure 3, we show some output time series
corresponding to the resonance peaks in figure 2a.
That is to say, the output has achieved the optimum
in figure 3. To make a striking contrast, 10 times the
strength of the weak signal f sin(ωt), i.e. 10 f sin(ωt),
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Figure 4. The response amplitude Q vs. the scale parame-
ter β and the auxiliary signal amplitude F . The simulation
parameters are: a1 = 1, b1 = 1, α = 2, f = 0.1, ω = 10 and
n = 50.
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Figure 5. The response amplitude Q vs. the auxiliary sig-
nal amplitude F under different values of β. The simulation
parameters are: a1 = 1, b1 = 1, α = 2, f = 0.1, ω = 10 and
n = 50.

is plotted for comparison. Evidently, in the output, the
low-frequency component ω in eq. (1) is improved and
the high-frequency � is suppressed excellently.

In figure 4, the response amplitude Q vs. the scale
parameter β and the auxiliary signal amplitude F is
given in a three-dimensional surface. Obviously, the
parameter F can induce re-scaled VR in a wide scope
of β. Furthermore, the scale parameter β influences the
location and height of the response amplitude Q. In
other words, β determines the resonance degree and
the strength of the auxiliary signal which can induce
optimal resonance output. It can also be seen clearly
in figure 5 by choosing different values of β and
keeping other parameters fixed. We find that with the
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Figure 6. The response amplitude Q vs. the auxiliary signal amplitude F under different values of β and ω. (a) β = 100, (b)
β = 1000, (c) β = 10,000 and (d) β = 10, 100 and 1000 corresponding to ω = 100, 1000 and 10000, respectively. Other
simulation parameters are: a1 = 1, b1 = 1, α = 2, f = 0.1 and n = 50.

increase of β, the maximal value of Q increases and the
corresponding F , which is located at the resonance peak,
turns smaller. It is because larger β makes the equiva-
lent frequency ω/β in eq. (10) to have a smaller value,
which induces a stronger resonance.

The effect of the scale parameter β is further explained
in figure 6. In figure 6a, we let β = 100. Hence, for
ω = 10, 100 and 1000, the low-frequency ω/β is 0.1,
1 and 10 in the equivalent system described by eq. (10),
respectively. For ω = 100 and 1000, the excitation fre-
quency ω/β is 1 and 10, respectively. They are large
values. It leads to the corresponding results, which are
very small in the subplot. In figure 6b, the scale param-
eter is 1000. It changes the low-frequency ω/β to be
0.01, 0.1 and 1. The response amplitude is improved for
ω = 10 and 100. For ω = 1000, the response amplitude
cannot be improved almost through the VR method. In
figure 6c, the low-frequency ω/β in eq. (10) is 0.001,
0.01 and 0.1. The response amplitude curves are pre-
sented as the subplot. Interestingly and importantly,
in figure 6d, ω and β have different values. However,
ω/β has the same value in three lines. It is because
we always have ω/β = 0.1 for them. Therefore, the
response amplitude curves are completely identical for
three curves. It indicates that we can obtain the same
results by choosing an appropriate scale parameter under
different excitation frequencies.

From figures 1–6, the amplitude-modulated signal
with an arbitrary frequency is improved by the re-scaled

VR method. The results show the validity of the
re-scaled VR method.

2.2 Twice sampling VR

Besides the re-scaled method to process the high-
frequency signal, the twice sampling idea is another
important way to process the signal. It has been success-
fully applied in extracting the weak character informa-
tion in the strong noisy background [29,30]. Specifically
speaking, the procedure of the twice sampling VR is as
follows. First, we carry out twice sampling for the orig-
inal input signal. We use a constant γ as the frequency
reduced ratio. The original sampling frequency is fs0.
The twice sampling frequency is fs. Then, the frequency
reduced ratio is γ = fs0/ fs. Through this transforma-
tion, the original frequency ω will be reduced to ω/γ .
Then, we input the transformed signal to the nonlinear
system. Finally, the output is transformed inversely to
the original sampling frequency to obtain the new out-
put time series. The new output time series are analysed
and the twice sampling VR will be obtained with the aid
of an auxiliary signal.

In figure 7, the dependence of the response amplitude
Q on the auxiliary signal amplitude F and the frequency
reduced ratio γ is shown. The resonance phenomenon
is obvious. By choosing appropriate F and γ , the weak
amplitude-modulated signal can be improved to a large
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extent. Moreover, the maximal of the resonance peak
depends on the frequency reduced ratio closely.

The effect of the frequency reduced ratio γ is shown
in figure 8. In figure 8a, according to the frequency
reduced ratio, the original frequency ω = 10, 100 and
1000 is reduced to 0.1, 1 and 10, respectively, by the
twice sampling process. Their corresponding response
amplitude results are shown as the subplots. In figure 8b,
the original frequency is reduced to 0.01, 0.1 and 1
before the signal inputs the nonlinear system. It leads
to the response amplitude curves shown in figure 8b. In
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Figure 7. The response amplitude Q vs. the auxiliary signal
amplitude F and the frequency reduced ratio γ . The simula-
tion parameters are: a = 1, b = 1, α = 2, f = 0.1, ω = 10
and n = 50.

figure 8c, the original frequency is reduced to 0.001, 0.01
and 0.1. In figure 8d, although the original frequency and
the frequency reduced ratio have different values, they
have the same frequency after the twice sampling pro-
cess and before they input the nonlinear system. Hence,
the three curves in figure 8d are identical completely.
That is to say, the response amplitude mainly depends
on the frequency of the twice sampled signal, i.e. the
value of γ .

From figures 7 and 8, we know that the twice sampling
method can induce VR of the amplitude-modulated
signal at an arbitrary frequency value. The system can
achieve optimal output. Moreover, on comparing fig-
ures 7 and 8 with figures 4 and 6, we find that the twice
sampling VR has the same effect on improving the weak
amplitude-modulated signal at an arbitrary frequency as
that of the re-scaled VR method.

3. The amplitude-modulated aperiodic binary
signal case

In this section, we study VR in eq. (3) when the sig-
nal is in the amplitude-modulated aperiodic form that is
described in eq. (2). The governing equation turns to

dx(t)

dt
= ax(t) − bx(t)|x(t)|α−1

+ [ f + F cos(�t)]
+∞∑

j=−∞
R j�(t − jT ) . (14)
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Figure 8. The response amplitude Q vs. the auxiliary signal amplitude F under different values of γ and ω. (a) γ = 100,
(b) γ = 1000, (c) γ = 10000 and (d) γ = 100, 1000 and 10,000 corresponding to ω = 10, 100 and 1000, respectively. Other
simulation parameters are: a = 1, b = 1, α = 2, f = 0.1 and n = 50.
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3.1 Re-scaled VR

We still use the transform formula in eq. (6). Then,
substituting it into eq. (14), we obtain

dz(τ )

dτ

= a

β
z(τ ) − b

β
z(τ )|z(τ )|α−1

+ 1

β

[
f +F cos

(
�

β
τ

)] +∞∑

j=−∞
R j�

(
τ

β
− j

T

β

)
.

(15)

By eq. (8), we have

dz(τ )

dτ

= a1z(τ ) − b1z(τ )|z(τ )|α−1

+ 1

β

[
f +F cos

(
�

β
τ

)] +∞∑

j=−∞
R j�

(
τ

β
− j

T

β

)
.

(16)

Recovering the signal to the original strength, then we
obtain
dz(τ )

dτ

= a1z(τ ) − b1z(τ )|z(τ )|α−1

+
[
f + F cos

(
�

β
τ

)] +∞∑

j=−∞
R j�

(
τ

β
− j

T

β

)
.

(17)

Finally, we use the following equation to induce the VR
phenomenon, i.e.

dx(t)

dt
= ax(t) − bx(t)|x(t)|α−1

+ β[ f + F cos(�t)]
+∞∑

j=−∞
R j�(t − jT ). (18)

Some numerical examples will be given to verify the
method. To quantify the degree of the VR phenomenon
of an aperiodic signal, the character cross-correlation
coefficient is needed to be calculated. Specifically,
we use Csx to label the cross-correlation coefficient
between the input signal and the system output. When
Csx achieves a large enough value, resonance may occur
and the weak input aperiodic signal may be enhanced.
The cross-correlation coefficient Csx is calculated by

Csx =
∑m

j=1[s( j) − s̄][x( j) − x̄]
√∑m

j=1 [s( j) − s̄]2 ∑m
j=1 [x( j) − x̄]2

, (19)
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Figure 9. (a) The cross-correlation coefficient Csx vs. the
auxiliary signal amplitude F and (b) the cross-correlation
coefficient Csx vs. the fractional exponent α. The simulation
parameters are: a1 = 1, b1 = 1, f = 0.1, T = 0.4, n = 50
and β = 100.
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Figure 10. Time series of the output (blue lines) and the sig-
nal 10s(t) (red lines). (a) α = 1.5, (b) α = 2.0, (c) α = 3.0
and (d) α = 4.5. Other simulation parameters are: a1 = 1,
b1 = 1, f = 0.1, T = 0.4, n = 50 and β = 100.

where ū and x̄ are the averages of the input signal and
the system output, respectively.

In figure 9a, the curves ofCsx–F are plotted. First, the
curves present the VR phenomenon with the increase
of F under different values of α. It demonstrates
the effectiveness of the re-scaled VR method for the
amplitude-modulated aperiodic binary signal. Secondly,
for the curves in the subplot of figure 9a, we find that the
peak value of the curve will decrease with the increase
of α. The reason for it will be discussed in figure 10.
Moreover, the effect of the fractional exponent α is
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different from that in figure 2a. In figure 9b, under
different values of F , the curves Csx vs. the fractional
exponent α are given. Apparently, resonance can be
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Figure 11. The cross-correlation coefficientCsx vs. the scale
parameter β and the auxiliary signal amplitude F . The simu-
lation parameters are: a1 = 1, b1 = 1, f = 0.1, T = 0.4 and
n = 50.

induced by the fractional exponent. In other words, when
the excitation amplitude is fixed, the classical bistable
system (for α = 3) is not the optimal one for the VR
system. It is also one of the reasons for choosing the
fractional power system.

In figure 10, the optimal output corresponding to the
resonance peaks in figure 9a is given. In each subplot of
figure 10, the input signal is improved to a great degree
by the twice sampling VR method. What is worth men-
tioning is that the amplitude of the output will decrease
with the increase of α. It is consistent with the result in
figure 9a in which the resonance peaks decrease with
the increase of α.

In figure 11, the three-dimensional curve shows the
dependence of the cross-correlation coefficient on the
scale parameter β and the auxiliary signal amplitude
F . The scale parameter β is a key factor to determine
the location and value of the resonance peak. It is the
same as its effect in the amplitude-modulated harmonic
excitation case shown in figure 4.

To make the re-scaled VR in the amplitude-modulated
aperiodic binary signal excited system clear further, we
give the resonance curves in figure 12 under different
values of T and β. In figure 12a, the equivalent minimal
random pulse period in eq. (17) is T = 40, 4 and 0.4,
under the scale parameterβ = 100. Obviously, the curve
corresponding to T = 0.4 has the maximal resonance
value. In figure 12b, the equivalent minimal random
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Figure 12. The cross-correlation coefficient Csx vs. the auxiliary signal amplitude F under different values of β and T . (a)
β = 100, (b) β = 1000, (c) and (d) β = 10000 and (e) β = 10, 100 and 1000 corresponding to T = 0.4, 0.04 and 0.004,
respectively. Other simulation parameters are: a1 = 1, b1 = 1, α = 2, f = 0.1 and n = 50.
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pulse period in eq. (17) is T = 400, 40 and 4, under the
scale parameter β = 1000. Although the curves are cor-
responding to T = 0.4 and 4.0, both have the resonance
peaks. However, the resonance peak corresponding to
T = 0.4 has a larger value. In figure 12c, the equivalent
minimal random pulse period in eq. (17) is T = 4000,
400 and 40, under the scale parameter β = 10000. There
are obvious resonance peaks. Figure 12d is the locally
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Figure 13. The cross-correlation coefficientCsx vs. the aux-
iliary signal amplitude F and the minimal random pulse width
stretching ratio γ . The simulation parameters are: a1 = 1,
b1 = 1, α = 2, f = 0.1, T = 0.4 and n = 50.

enlarged image for figure 12c. In figure 12d, we can
observe the structure of the resonance peak much more
clearly. In figure 12e, by choosing different values of T
and β, we make the equivalent minimal random pulse
width in eq. (17) to have the same value. As a result,
the curves in figure 12d are identical completely. The
results shown in figure 12 are the same as in figure 6.

From figures 9–12, the validity of the re-scaled VR
method to process the amplitude-modulated aperiodic
binary signal is verified. The results are similar to those
in the amplitude-modulated harmonic signal excited
system.

3.2 Twice sampling VR

The amplitude-modulated aperiodic binary signal can
also be processed by the twice sampling VR method.
The procedure is the same as that used in §2.2. In the
following, we use some numerical examples to verify
it.

In figure 13, the three-dimensional curve of the cross-
correlation coefficient vs. the parameters γ and F is
given. Here, γ is used to label the stretched ratio
of the minimal random pulse width. Specifically, the
amplitude-modulated aperiodic binary signal will be
extended γ times in the time scale before it inputs the
nonlinear system. Certainly, the output will transform to
the original time scale to carry out the cross-correlation
coefficient analysis. Apparently, the value and location
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Figure 14. The cross-correlation coefficient Csx vs. the auxiliary signal amplitude F under different values of γ and T . (a)
γ = 100, (b) γ = 1000, (c) and (d) γ = 10000 and (e) γ = 100, 1000 and 10000 corresponding to T = 0.4, 0.04 and 0.004,
respectively. Other simulation parameters are: a1 = 1, b1 = 1, α = 2, f = 0.1 and n = 50.
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of the resonance peak depend on γ closely. The results
in figure 13 are similar to that in figure 7.

In figure 14, under different values of γ and T , the
cross-correlation coefficient Csx vs. the auxiliary signal
amplitude F is plotted. The results in this figure are sim-
ilar to that in figures 8 and 12. The equivalent minimal
random pulse width γ T is the crucial factor to determine
the improvement of the character signal.

As to the two proposed methods, although their sig-
nal processes are different, they can achieve the same
goal. Furthermore, we can construct the experimentally
realisable equipment using hardware systems, such as a
signal amplifier, a sampling processor, a bistable electro-
circuit, etc. In fact, we have described a similar problem
in our earlier papers [35,36].

4. Conclusions

The amplitude-modulated signal is an important signal
used in many disciplines. It is important to improve
an amplitude-modulated signal with an arbitrary fre-
quency or pulse width. In this paper, we present the re-
scaled VR method and the twice sampling VR method
to process the amplitude-modulated harmonic sig-
nal and amplitude-modulated aperiodic binary signal,
respectively.

For the amplitude-modulated harmonic signal case,
by the re-scaled VR method, the harmonic component
of the character signal can be improved excellently. The
scale parameter is the crucial factor. By choosing an
appropriate scale parameter, we can obtain an ideal res-
onance output and then achieve great improvement of
the character signal. Without this analysis, it is diffi-
cult to choose the system parameters to achieve optimal
resonance, especially when the considered frequency is
high. When the twice sampling VR method is used, we
can achieve the optimal output by choosing an appropri-
ate frequency reduced ratio. The effect of the frequency
reduced ratio is the same as that of the scale parameter
used in the re-scaled VR method.

For the amplitude-modulated aperiodic binary signal
case, the re-scaled VR method and the twice sampling
VR method are still having good performance in signal
improvement. The scale parameter and the minimal ran-
dom pulse width stretched ratio are key factors when the
two methods are applied. By choosing appropriate val-
ues of the scale parameter and the minimal random pulse
width stretched ratio, the weak amplitude-modulated
aperiodic binary signal can be improved greatly.

The results in this paper give two VR methods to
improve the amplitude-modulated signal. By our meth-
ods, there is no limitation in the frequency or the
minimal random pulse width. We can obtain the match

condition of the system parameters with the signal
parameters quickly and accurately. It provides an effec-
tive way to improve the weak amplitude-modulated sig-
nal. However, some questions are still not answered in
the present paper. For example, if the modulated signal
is submerged into noise, especially for the strong noise
case, how to use the re-scaled VR method or the twice
sampling VR method to extract the weak amplitude-
modulated signal with an arbitrary frequency or pulse
width? In the engineering field, such as mechanical engi-
neering, the vibration signal collected from a bearing
with inner or rolling faults is an amplitude-modulated
signal with high frequency. Can we use the proposed
VR methods to extract the characteristics successfully?
Our future works will try to answer these questions.
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