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Abstract. In this paper, the trial equation method and the complete discrimination system for polynomial method
are applied to retrieve the exact travelling wave solutions of complex Ginzburg–Landau equation. Both the Kerr
and power laws of nonlinearity are considered. All the possible exact travelling wave solutions consisting of the
rational function-type solutions, solitary wave solutions, triangle function-type periodic solutions and Jacobian
elliptic functions solutions are obtained, and some of them are new solutions. In addition, concrete examples are
presented to ensure the existence of obtained solutions. Moreover, four types of representative solutions are depicted
to present the nature of the obtained solutions.
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1. Introduction

The study of optical solitons occupies an important
position in the field of nonlinear optics. In the past
few decades, the propagation of solitons in long dis-
tance fibres has attracted much attention, and many
valuable results have been achieved [1–8]. Nonlinear
Schrödinger’s equation (NLSE) shows an outstanding
performance in modelling and governing this physical
phenomenon [9–16]. This paper will study the com-
plex Ginzburg–Landau equation (CGLE), which is a
variant of the Schrödinger’s equation and describes the
dynamics of soliton propagation on the basis of nonlin-
ear perturbation effects.

The focus of our study is to find a suitable method to
deal with such an equation. Modified simple equation
method [17], simplest equation method [18], multi-
ple exp-function method [19,20], transformed ratio-
nal function method [21,22], Lie symmetry method
[23], Riemann–Hilbert formulation [24], F-expansion
method [25], Q-function method [26], and other effi-
cacious methods [27–34] are some of the methods
which were used to obtain approximate and exact
solutions of nonlinear partial differential equations. In

recent years, Liu proposed the complete discrimina-
tion system for polynomial method [35–37] and trial
equation method [38–41] to seek the exact travelling
wave solutions of various nonlinear partial differential
equations. Because of the good applicability and effi-
ciency of Liu’s method, the method has been widely
used since it was proposed. For instance, Liu [42]
and Wang et al [43] respectively solved the nonlinear
Schrödinger equation and Camassa–Holm–Degasperis–
Procesi equation by applying Liu’s method. Kai [44]
applied the complete discrimination system for polyno-
mial method to solve the variant Boussinesq equations
and proved that each solution acquired can be realised.
Therefore, solving nonlinear partial differential equa-
tions successfully has proved the effectiveness of Liu’s
method.

In this paper, the complete discrimination system
for polynomial method and trial equation method will
be employed to solve the complex Ginzburg–Landau
equation. Moreover, both Kerr law and the power-law
nonlinearity are considered in this paper, and the cor-
responding exact travelling wave solutions are given.
In addition, concrete examples are also presented to
ensure the existence of such solutions. Furthermore,

http://crossmark.crossref.org/dialog/?doi=10.1007/s12043-018-1603-4&domain=pdf


29 Page 2 of 10 Pramana – J. Phys. (2018) 91:29

some numerical simulations are carried out to reveal
the nature of the solutions.

2. Mathematical analysis

The dimensionless form of complex Ginzburg–Landau
equation [45–48] is presented as follows:

iqt + aqxx + bF(|q|2)q = 1

|q|2q∗
[
a|q|2(|q|2)xx

−β{(|q2|)x }2]+ rq, (1)

where x denotes the non-dimensional distance along the
fibrer t is the non-dimensional time, a, b, α, β and γ

represent real-valued constants. The coefficients a and b
arise from the group velocity dispersion (GVD) and non-
linearity, respectively. The terms with α, β and γ come
from perturbation effects, and in particular, γ comes
from the detuning effect.

In eq. (1), F is a real-valued algebraic function,
F(|q|2)q needs to satisfy the smoothness and is k times
continuously differentiable, so that

F(|q|2)q ∈
∞⋃

m,n=1

Ck((−n, n) × (−m,m); R2). (2)

Then we define wave variable ξ as

ξ = k(x − vt), (3)

where k is a constant and v is the velocity of the soliton.
Therefore, we can obtain the equation ofq(x, t)which

consists of phase and amplitude components.

q(x, t) = g(ξ)ei(−κx+ωt+θ), (4)

where the function g denotes the pulse shape, κ denotes
the soliton frequency, ω represents the soliton wave
number and θ is the phase constant.

By substituting eq. (4) into eq. (1), we can obtain [46]

k2(a − 4β)g′′ − (ω + aκ2 + γ )g + bF(g2)g = 0. (5)

Based on Kerr law and power-law nonlinearity, eq.
(5) will be used to seek exact travelling wave solutions
in the following sections.

3. Complete discrimination system for the
fourth-order polynomial

In Liu’s method, the nonlinear partial differential equa-
tions are simplified to the following elementary integral:

∫
dη√
G(η)

= ±(η − η0), (6)

where G(η) is a polynomial and η0 is an integral con-
stant.

In this paper, the fourth-order polynomial is the
focus of our attention and it can be described as
follows:

G(η) = η4 + pη2 + q. (7)

Then, the complete discrimination system is pre-
sented as

D1 = 4, D2 = −p, D3 = −2p3 + 8pq,

D4 = 4p4q − 32p2q2 + 64q3, E2 = −32pq, (8)

where E2 is the discriminant of 
2(G).
According to the complete discrimination system for

G(η), the roots of G(η) can be classified, and the
detailed classification will be given in §4 and 5.

4. Kerr law

The Kerr law of nonlinearity describes the phenomenon
that a light wave in an optical fibre encounters nonlinear
responses from non-harmonic motion of electrons with
an external electric field [48]. In the case of Kerr law
nonlinearity, F(u) = u, so that eq. (5) can be simplified
as

k2(a − 4β)g′′ − (ω + aκ2 + γ )g + bg3 = 0. (9)

By multiplying g′ on both sides of the equation and
integrating eq. (9) once, we obtain the following equa-
tion:

1

2
g′2 − 1

2
σg2 + 1

4
τg4 = e, (10)

where

σ = ω + aκ2 + r

k2(a − 4β)
, τ = b

k2(a − 4β)

and e is an arbitrary constant.
Then eq. (10) is given by

g′2 = −τ ′g4 + σg2 + e′, (11)

where

τ ′ = b

2k2(a − 4β)
,

e′ = 2e and is an arbitrary constant.
In order to solve eq. (11), when τ ′ < 0, we have the

following transformation:

η = (−τ ′)1/4g, ξ1 = (−τ ′)1/4ξ. (12)
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Then eq. (11) is changed to

η2
ξ1

= G(η) = η4 + pη2 + q, (13)

where

p = σ√−τ ′ , q = e′.

If τ ′ > 0, by the following transformation

η = (τ ′)1/4g, ξ1 = (τ ′)1/4ξ. (14)

Then, eq. (11) is given by

η2
ξ1

= −G(η) = −(η4 + pη2 + q), (15)

where

p = −σ√
τ ′ , q = −e′.

For solving eqs (13) and (15), the complete discrimi-
nation system of the fourth-order polynomial introduced
in §3 is applied, and the solutions in nine cases are dis-
cussed separately.

Case 4.1. When D2 < 0, D3 = 0 and D4 = 0, G(η)

has a pair of conjugate complex roots of multiplicities
two, i.e.

G(η) = ((η − l)2 + s2)2, (16)

where s > 0. In this case, according to eq. (13), we have

±(ξ1 − ξ0) =
∫

dη

(η − l)2 + s2 = 1

s
arctan

η − l

s
. (17)

For example, when a = 1, β = 0, k = κ = 1/
√

2,
b = −1, ω = 1/4 and γ = 1/4, we have l = 0, s = 1.
Then, we obtain the solutions of eq. (13) as

η = ±tan(ξ1 − ξ0). (18)

Therefore, we have

q(x, t) = ±tan

[√
2

2
(x + √

2t) − ξ0

]

e
i
(
−

√
2

2 x+ 1
4 t+θ

)

.

(19)

Case 4.2. When D2 = 0, D3 = 0 and D4 = 0, G(η)

has a real root of multiplicities four, i.e.

G(η) = η4. (20)

By using eq. (13), we have

±(ξ1 − ξ0) =
∫

dη

η2 = − 1

η−1 . (21)

For example, when a = 1, β = 0, k = κ = 1/
√

2,
b = −1, ω = −1/4 and γ = −1/4, we have

η = ± 1

ξ1 − ξ0
. (22)

Hence, the solutions of eq. (1) are given by

q(x, t) = ± ei(−
√

2
2 x− 1

4 t+θ)

(
√

2/2)(x + √
2t) − ξ0

. (23)

Case 4.3. When D2 > 0, D3 = 0, D4 = 0 and E2 > 0,
G(η) has two distinct real roots of multiplicities two,
i.e.

G(η) = (η − μ)2(η − ν)2, (24)

where μ > ν.
For τ ′ < 0, according to eq. (13), we have

± (ξ1 − ξ0) =
∫

dη

(η − μ)(η − ν)

= 1

μ − ν
ln

∣
∣
∣∣
η − μ

η − ν

∣
∣
∣∣. (25)

For η > μ or η < ν, according to eq. (25), we have

η = ν − μ

e±(μ−ν)(ξ1−ξ0) − 1

= ν − μ

2

[
±coth

(μ − ν)(ξ1 − ξ0)

2
− 1

]
+ ν. (26)

For ν < η < μ, we have

η = ν − μ

−e±(μ−ν)(ξ1−ξ0) − 1

= ν − μ

2

[
±tanh

(μ − ν)(ξ1 − ξ0)

2
− 1

]
+ ν, (27)

where eqs (26) and (27) are solitary wave solutions.
For instance, when a = 1, β = 0, k = κ = 1/

√
2,

b = −1, ω = −1 and γ = −1
2 , we have μ = 1, ν =

−1. Then, the solutions of eq. (13) can be obtained as

±(ξ1 − ξ0) = 1

2

∣
∣∣
∣
η − 1

η + 1

∣
∣∣
∣. (28)

Therefore, we have

q(x, t) = ±coth

[√
2

2
(x + √

2t) − ξ0

]

ei(−
√

2
2 x−t+θ).

(29)

Case 4.4. When D2 > 0, D3 = 0, D4 = 0 and E2 = 0,
G(η) has a real root of multiplicities three and a real root
of multiplicity one. When D2 > 0, we have p < 0, but it
is in contradiction with D3 = 0 and E2 = 0. Therefore,
this condition does not exist in this paper.

Case 4.5. When D2D3 < 0 and D4 = 0, G(η) has a
real root of multiplicities two and a pair of conjugate
complex roots. As D4 = 0, we have p2 = 4q or q = 0.
If p2 = 4q, we have D2D3 = 0 and it is in contra-
diction with the known restrictions. If q = 0, we have
D2D3 ≥ 0 and it is also contradictory to the known
restrictions. So this condition does not exist.
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Case 4.6. When D2 > 0, D3 > 0 and D4 > 0, G(η) has four distinct real roots such that

G(η) = (η − α1)(η − α2)(η − α3)(η − α4), (30)

where α1 > α2 > α3 > α4. Then, we have

±(ξ1 − ξ0) =
∫

dη

(η − α1)(η − α2)(η − α3)(η − α4)
. (31)

When α4 > 0, if η > α1 or η < α4, according to eq. (31) and the definition of Jacobian elliptic functions, we
have

η =
α2(α1 − α4)sn2

[
±

√
(α1−α3)(α2−α4)

2 (ξ1 − ξ0),m
]

− α1(α2 − α4)

(α1 − α4)sn2
[
±

√
(α1−α3)(α2−α4)

2 (ξ1 − ξ0),m
]

− (α2 − α4)
(32)

and if α3 < η < α2, then we get

η =
α4(α2 − α3)sn2

[
±

√
(α1−α3)(α2−α4)

2 (ξ1 − ξ0),m
]

− α3(α2 − α4)

(α2 − α3)sn2
[
±

√
(α1−α3)(α2−α4)

2 (ξ1 − ξ0),m
]

− (α2 − α4)
, (33)

where

m2 = (α1 − α4)(α2 − α3)

(α1 − α3)(α2 − α4)
,

For α4 < 0, if α1 > η > α2, we can similarly get the following solutions:

η =
α3(α1 − α2)sn2

[
±

√
(α1−α3)(α2−α4)

2 (ξ1 − ξ0),m
]

− α2(α1 − α3)

(α1 − α2)sn2
[
±

√
(α1−α3)(α2−α4)

2 (ξ1 − ξ0),m
]

− (α1 − α3)
(34)

and if α4 < η < α3, we have

η =
α1(α3 − α4)sn2

[
±

√
(α1−α3)(α2−α4)

2 (ξ1 − ξ0),m
]

− α4(α3 − α1)

(α3 − α4)sn2
[
±

√
(α1−α3)(α2−α4)

2 (ξ1 − ξ0),m
]

− (α3 − α1)
, (35)

where

m2 = (α1 − α2)(α3 − α4)

(α1 − α3)(α2 − α4)

and eqs (32)–(35) are elliptic functions double periodic solutions.
For example, when a = 1, β = 0, k = κ = 1/

√
2, b = −1, ω = −5 and γ = −1/2, we have p = −10, q = 9.

Then, we have α1 = 3, α2 = 1, α3 = −1, α4 = −3,m = ±1/2. Hence, when 1 < η < 3, we obtain

η = −sn2
[±2(ξ1 − ξ0), ±1

2

]− 4

sn2
[±2(ξ1 − ξ0), ±1

2

]− 4
. (36)

Therefore, the solutions to eq. (1) are

q(x, t) =
{
−sn2

〈
±2
[√

2
2 (x + √

2t) − ξ0

]
, ±1

2

〉
− 4
}

ei(−
√

2
2 x−5t+θ)

sn2
〈
±2
[√

2
2 (x + √

2t) − ξ0

]
, ±1

2

〉
− 4

. (37)
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Case 4.7. When D2D3 > 0 and D4 < 0, G(η) has two
distinct real roots and a pair of conjugate complex roots,
i.e.

G(η) = (η − μ)(η − ν)((η − l)2 + s2), (38)

where μ > ν and s > 0. Then, we have

±(ξ1 − ξ0) =
∫

dη

(η − α1)(η − α2)(η − α3)(η − α4)
.

(39)

By the following transformation

a1 = 1

2
(μ + ν)c1 − 1

2
(μ − ν)d1, (40)

b1 = 1

2
(μ + ν)d1 − 1

2
(μ − ν)c1, (41)

c1 = μ − l − s

m1
, (42)

d1 = μ − l − sm1, (43)

λ = s2 + (μ − l)(ν − l)

s(μ − ν)
, (44)

m1 = λ ±
√

λ2 + 1, (45)

the solutions of eqs (13) and (15) can be obtained as

η =
a1cn

[
±

√∓2sm1(μ−ν)
2mm1

(ξ1 − ξ0),m
]

+ b1

c1cn
[
±

√∓2sm1(μ−ν)
2mm1

(ξ1 − ξ0),m
]

+ d1

, (46)

where

m2 = 1

1 + m2
1

,

and expression (46) is an elliptic function double peri-
odic solution. For example, when a = 1, β = 0,
k = κ = 1√

2
, b = −1, ω = 1/2 and γ = 1/2, we

have p = 3, q = −4. Then, we obtain μ = 1, ν = −1
and l = 0, s = 2. Hence, we have

b1 = c1 = 0, a1 = 3,

d1 = −3, m = ±
√

5

5
, (47)

Therefore, the solutions can be shown as

q(x, t) = −cn

〈

±√
5

[√
2

2
(x + √

2t) − ξ0

]

,

±
√

5

5

〉

e
i
(
−

√
2

2 x+ 1
2 t+θ

)

. (48)

Case 4.8. When D2D3 ≤ 0 and D4 > 0, G(η) has two
pairs of conjugate complex roots, i.e.

G(η) = ((η − l1)
2 + s2

1)((η − l2)
2 + s2

2), (49)

where s1 ≥ s2 > 0. If
a1 = l1c1 + s1d1, (50)

b1 = l1d1 − s1c1, (51)

c1 = −s1 − s2

m1
, (52)

d1 = l1 − l2, (53)

λ = (l1 − l2)2 + s2
1 + s2

2

2s2s2
, (54)

m1 = λ +
√

λ2 − 1, (55)

then the solutions of eq. (13) are presented as

η = a1sn [±ε(ξ1 − ξ0),m] + b1cn [±ε(ξ1 − ξ0),m]

c1sn [±ε(ξ1 − ξ0),m] + d1cn [±ε(ξ1 − ξ0),m]
,

(56)
where

m2 = m2
1 − 1

m2
1

and

ε =
s2

√
(c2

1 + d2
1 )(m2

1c
2
1 + d2

1 )

c2
1 + d2

1

and eq. (56) is an elliptic functions double periodic
solution.

For instance, when a = 1, β = 0, k = κ = 1/
√

2,
b = −1 and ω = γ = 1, we have

b1 = 5, c1 = −5

2
, a1 = d1 = 0, ε = 2. (57)

By using eqs (56) and (57), we have

η = −2cn[±2(ξ1 − ξ0), ±
√

3
2 ]

sn[±2(ξ1 − ξ0), ±
√

3
2 ]

. (58)

So we get the solutions as

q(x, t) =
−2cn

〈
±2
[√

2
2 (x + √

2t) − ξ0

]
, ±

√
3

2

〉
e
i
(
−

√
2

2 x+t+θ
)

sn
〈
±2
[√

2
2 (x + √

2t) − ξ0

]
, ±

√
3

2

〉 . (59)

Case 4.9. When D2 > 0, D3 > 0 and D4 = 0, G(η) has
two single real roots and a real root with multiplicities
two, i.e.

G(η) = (η − α1)(η − α2)(η − α3)
2, (60)

where α1 > α2 and α1 
= α3, α2 
= α3. Let

c1 = α1 − α2

2

(
α1 + α2

2
− α3

)
. (61)
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According to eq. (13), we have

±(ξ1 − ξ0) =
∫

dη

(η − α3)
√

(η − α1)(η − α2)
. (62)

From eq. (61), we have c1 
= ±1. For c2
1 − 1 > 0, we

have

±(ξ1 − ξ0) = − 1
√
c2

1 − 1
ln

∣
∣∣
∣
y − c2

y + c2

∣
∣∣
∣. (63)

When c2
1 − 1 < 0, we have

±(ξ1 − ξ0) = −
√

1 − c2
1 arctan

c1 + 1

1 − c1
y, (64)

where

c2 =
√
c1 + 1

c1 − 1

and

y =
√

1 − α1 − α2(
η − α1+α2

2

)+ α1−α2
2

.

For instance, when a = 1, β = 0, k = κ = 1/
√

2,
b = −1 and ω = γ = −1/2, we have p = −1, q = 0.
Then, η is given by

η = 1

cos(ξ1 − ξ0)
. (65)

Therefore, the solution can be obtained as

q(x, t) = e
i
(
−

√
2

2 x− 1
2 t+θ

)

cos
[√

2
2 (x + √

2t) − ξ0

] . (66)

5. Power law

Power-law nonlinearity can be regarded as a general-
isation of Kerr’s power-law nonlinearity. In this case,
F(u) = un , so that eq. (5) can be given as

k2(a − 4β)g′′ − (ω + aκ2 + γ )g + bg2n+1 = 0. (67)

Let

g = U1/n. (68)

Then, eq. (67) can be transformed into

k2(a − 4β)[nUU ′′ + (1 − n)U ′2]
−n2(ω + aκ2 + γ )U 2 + n2bU 4 = 0. (69)

Let

A1 = k2(a − 4β)n, A2 = k2(a − 4β)(1 − n),

A3 = n2(ω + aκ2 + γ ), A4 = n2b. (70)

Then, eq. (69) is changed into

A1UU ′′ + A2U
′2 − A3U

2 + A4U
4 = 0. (71)

Then, we use the trial equation method to solve the
equation. By taking

U ′2 = b4U
4 + b3U

3 + b2U
2 + b1U + b0, (72)

to eq. (71), we have

(2A1b4 + A2b4 + A4)U
4

+
(

3

2
A1b3 + A2b3

)
U 3

+ (A1b2 + A2b2 − A3)U
2

+
(
A1

2
b1 + A2b1

)
U + A2b0 = 0. (73)

Then, we obtain the following algebraic equations:

2A1b4 + A2b4 + A4 = 0, (74)

3

2
A1b3 + A2b3 = 0, (75)

A1b2 + A2b2 − A3 = 0, (76)

A1

2
b1 + A2b1 = 0, (77)

A2b0 = 0. (78)

Solving eqs (74)–(78), we get a family of values to
the parameters

b1 = b3 = 0, b4 = −n2b

k2(a − 4β)(n + 1)
,

b2 = n2(ω + aκ2 + γ )

k2(a − 4β)
. (79)

For b0, its value has two cases, namely b0 = 0 or b0
is an arbitrary constant, and we shall discuss the exact
solutions of CGLE in detail under these two conditions.

Case I: b0 = 0
If b0 = 0, eq. (72) can be transformed into

U ′2 = b4U
4 + b2U

2. (80)

In order to obtain the solutions of eq. (1) with the
power-law nonlinearity, six cases are discussed sepa-
rately as follows:
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Case 5.1.1. When b4 > 0, b2 > 0, according to eq. (80), we have

±(ξ − ξ0) =
∫

dU

U
√
b4U 2 + b2

. (81)

To solve eq. (81), we have

±(ξ − ξ0) = 1√
b2

ln
∣
∣∣

√

1 + b2

b4U 2 +
√
b2√
b4U

∣
∣∣. (82)

Then, the solutions of eq. (1) can be presented as

q(x, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2e
±
√

n2(ω+aκ+γ )

k2(a−4β)
[k(x+2aκt)−ξ0]√n2(ω+aκ+γ )

k2(a−4β)

√
−n2b

k2(a−4β)(n+1)

〈

e
2

√
n2(ω+aκ+γ )

k2(a−4β)
[k(x+2aκt)−ξ0] − 1

〉

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

1/n

ei(−κx+ωt+θ). (83)

Case 5.1.2. When b4 > 0, b2 < 0, we have

±(ξ − ξ0) =
arccos(

√−b2√
b4U

)
√−b2

. (84)

Then, we get the solution as

q(x, t) =

⎧
⎪⎨

⎪⎩

√
−n2(ω+aκ+γ )

k2(a−4β)√
−n2b

k2(a−4β)(n+1)
cos
〈√

−n2(ω+aκ+γ )

k2(a−4β)
[k(x + 2aκt) − ξ0]

〉

⎫
⎪⎬

⎪⎭

1/n

ei(−κx+ωt+θ). (85)

Case 5.1.3. When b4 < 0, b2 > 0, similar to Case 5.1.1, we can obtain the solutions as

q(x, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2e
±
√

n2(ω+aκ+γ )

k2(a−4β)
[k(x+2aκt)−ξ0]√n2(ω+aκ+γ )

k2(a−4β)

√
−n2b

k2(a−4β)(n+1)

〈

e
2

√
n2(ω+aκ+γ )

k2(a−4β)
[k(x+2aκt)−ξ0] − 1

〉

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

1/n

ei(−κx+ωt+θ). (86)

Case 5.1.4. When b4 < 0, b2 < 0, the case has no solution when U is a real function according to eq. (81).

Case 5.1.5. When b4 = 0, b2 > 0, we get

q(x, t) = e
±
√

(ω+aκ+γ )

k2(a−4β)
[k(x+2aκt)−ξ0]+i(−κx+ωt+θ)

. (87)

Case 5.1.6. When b4 > 0, b2 = 0, then we have

q(x, t) =
〈

± 1
√

−n2b
k2(a−4β)(n+1)

[k(x + 2aκt) − ξ0]

〉1/n

× ei(−κx+ωt+θ). (88)

Case II: b0 is an arbitrary constant
If b0 is an arbitrary constant, eq. (72) is given by

U ′2 = b4U
4 + b2U

2 + b0. (89)

In order to solve eq. (89), when b4 > 0, we have the following transformation:

η = (b4)
1/4U, ξ1 = (b4)

1/4ξ. (90)
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Figure 1. (a) The 3D graph of the triangle function-type periodic solution q(x, t) appearing in eq. (19), when ξ0 = 0, θ = π/2
and (b) the corresponding 2D graph for q(x, t), when t = 1.

Figure 2. (a) The 3D graph of the rational function-type solution q(x, t) appearing in eq. (23), when ξ0 = 0, θ = π/2 and
(b) the corresponding 2D graph for q(x, t), when t = 1.

Figure 3. (a) The 3D graph of the solitary wave solution q(x, t) appearing in eq. (29), when ξ0 = 0, θ = π/2 and (b) the
corresponding 2D graph for q(x, t), when t = 1.

Then eq. (89) can be changed into

η2
ξ1

= G(η) = η4 + pη2 + q, (91)

where

p =
n2(ω+aκ+γ )

k2(a−4β)
[ −n2b
k2(a−4β)(n+1)

]1/2 , q = b0.

If b4 < 0, by the following transformation

η = (−b4)
1/4U, ξ1 = (−b4)

1/4ξ (92)

eq. (89) can be changed as

η2
ξ1

= −G(η) = −(η4 + pη2 + q), (93)

where

p =
−n2(ω+aκ+γ )

k2(a−4β)
[

n2b
k2(a−4β)(n+1)

]1/2 , q = −b0.

Similarly, applying the complete discrimination sys-
tem of the fourth-order polynomial introduced in §3,



Pramana – J. Phys. (2018) 91:29 Page 9 of 10 29

Figure 4. (a) The 3D graph of Jacobian elliptic functions solution q(x, t) appearing in eq. (48), when ξ0 = 0, θ = π
2 and (b)

the corresponding 2D graph for q(x, t), when t = 1.

we can also obtain the rational function-type solu-
tions, solitary wave solutions, triangle function-type
periodic solutions and Jacobian elliptic functions solu-
tions. Other conditions are just the same and so we do
not intend to show it here.

6. Numerical simulations for CGL equations

In this section, the numerical simulations of CGL equa-
tions are carried out. According to the solutions obtained
above, four types of representative solutions are chosen
to carry out numerical simulations. The real part of eqs
(19), (23), (29) and (48) is calculated to draw the 3D
and the corresponding 2D graphs. In addition, we only
focus on the positive one if there is a plus-minus sign in
the selected solutions. Numerical simulation for trian-
gle function-type periodic solution is shown in figure 1,
numerical simulation for rational function-type solution
is shown in figure 2, numerical simulation for solitary
wave solution is shown in figure 3 and numerical simu-
lation for Jacobian elliptic functions solution is shown
in figure 4.

By implementing numerical simulations, the evolu-
tion of four types of solutions are presented clearly, and
the existence of the solutions are also proved.

7. Conclusions

This paper aims at finding all possible exact travelling
wave solutions of the CGL equation with Kerr and power
laws of nonlinearity. By applying the complete discrim-
ination system for polynomial method and trial equation
method, the rational function-type solutions, solitary
wave solutions, triangle function-type periodic solutions
and Jacobian elliptic function solutions are obtained,
and some of them are new solutions. In particular, the
solutions with concrete parameters are given to prove

the existence of each solution. Moreover, four types of
obtained solutions are drawn to show the nature of the
solutions. The results show that the technique adopted
by us for solving is efficacious and powerful, and the
obtained solutions can help one to study the nonlinear
dynamics of optical soliton propagations more deeply.
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