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Abstract. This article communicates the numerical consideration of 3D Carreau liquid flow under the impact
of chemical responses over a stretched surface. Moreover, the heat transfer exploration is carried out with a view
to improve the heat flux relation. This phenomenon is established upon the theory of Cattaneo–Christov heat
flux relation that contributes by the thermal relaxation. On exploitation of an appropriate transformation a system
of nonlinear ODEs is attained and then elucidated numerically by means of bvp4c scheme. The descriptions of
temperature and concentration fields equivalent to the frequent somatic parameters are graphically scrutinised.
Our analysis carries that the concentration of the Carreau liquid displays similar tendency and decline as the
heterogeneous–homogeneous reaction parameters (k2, k1) augment. Furthermore, it is notable that for shear thinning
(n < 1) liquid, the influence of local Weissenberg numbers (We1, We2) are absolutely conflicting compared with the
instance of shear thickening (n > 1) liquid. Additionally, validation of numerical results is done via benchmarking
with previously stated limiting cases with two different schemes namely, homotopy analysis method (HAM) and
bvp4c scheme. These comparisons initiate a superb correspondence with these outcomes.

Keywords. Three-dimensional flow; Carreau liquid model; Cattaneo–Christov heat flux model; heterogeneous–
homogenous responses.
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1. Introduction

In recent times, because of countless applications in
engineering and industrial progressions, the mecha-
nism of heat transfer phenomenon has exposed var-
ious concerns for the entire world. Certainly, this
phenomenon happened due to temperature difference
between two dissimilar bodies. Heat transfer appli-
ance plays essential roles in cooling nuclear vessel,
biomedical solicitations, conduction of heat in the mus-
cles and prescription targeting. Fourier [1] was the
first one to propose a relation for heat transfer appli-
ance. Fourier law has been extremely efficacious in
a widespread assortment of trade applications. How-
ever, one unphysical property is that it disputes an
infinite velocity of propagation, i.e., the entire structure
is instantaneously exaggerated by the initial disturbance.
To overcome this obstacle, Cattaneo [2] improved the
Fourier law by inserting relaxation time to heat flux. This

additional term in the energy equation turns the parabolic
diffusion equation into a hyperbolic one. Later on,
Christov [3] established Maxwell–Cattaneo relation by
considering the frame in different formulation. After
this, numerous researchers worked on heat transfer with
diverse norms (see refs [4–11]). Hayat et al [12] inves-
tigated the second-grade fluid flow by utilising the
improved heat conduction theory. The flow is thermally
stratified in the existence of variable properties. This
exploration exposes that the temperature distribution is
an augmenting function of thermal stratified parameter.
Hashim and Khan [13] explored the features of Carreau
liquid flow by using advanced heat conduction rela-
tion. The results showed that the heat transfer rate was
pointedly enhanced by advanced wall thickness param-
eter while for thermal relaxation parameter, conflicting
behaviour was initiated. Aspects of advanced heat flux
relation and chemical processes on third-grade fluid flow
was studied by Imtiaz et al [14]. They concluded from
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their observations that the liquid velocity augments by
increasing third-grade liquid parameters and Reynolds
number.

An analysis of non-Newtonian (refs [15–20]) flow
behaviour owing to the chemical processes has attracted
the attention of numerous investigators. Chemical pro-
cesses can be catogorised as homogeneous and het-
erogeneous chemical processes. This discrepancy is
interrelated to the circumstance that whether they arise
in liquid substance or transpire in some catalytic exte-
riors. A homogeneous process occurs consistently in
the entire phase, whereas the heterogeneous process
proceeds in a circumscribed region or inside the phase
boundary. The prominence of chemical processes is
more apparent in diverse trade solicitations, for example,
dispensation of foods, hydrometallurgical production,
plantations of fruit plants, destruction of yields via freez-
ing. Additionally, the homogeneous and heterogeneous
processes allied with the improvement and consump-
tion of the reactant sort at numerous rates both inside
the fluid and on the catalytic exteriors are extremely
sophisticated. For the exploration of homogeneous–
heterogeneous processes on the flow of viscous liquids,
Merkin [21] proposed an isothermal relation. This
scrutiny exposes that because of the surface reaction
this utilisation is dominant. Further, by considering
both sorts of identical diffusivities, Chaudhary and
Merkin [22] studied the properties of homogeneous–
heterogeneous reaction in viscous fluid flow. Khan et al
[23] scrutinised the 3D Burgers liquid in the existence of
homogenous–heterogeneous procedure. They noticed
that by enriching the values of homogeneous process
parameter the concentration profile reduces whereas it
augments for Schmidt number. Rana et al [24] explored
the features of the heterogeneous–homogeneous pro-
cess on mixed convection Casson fluid. They established
that with a rise in the slip parameter the concentration
of chemical species on the surface declines. Numerous
studies pertinent to the chemical reaction in different
liquid models can be seen in refs [25–30]. Recently,
impact of Cattaneo–Christov heat flux relation with
heterogeneous–homogeneous chemical reaction on 3D
Sisko fluid was reported by Khan et al [31]. Their analy-
sis reveals that there is a decay in the liquid temperature
and thickness of thermal boundary layer for enlargement
in the thermal relaxation parameter.

In all the above quoted literatures, the foremost atten-
tion of the current exertion is to scrutinise the features
of homogeneous–heterogeneous reaction for steady 3D
flow of Carreau fluid over a bidirectional stretch-
ing surface. Additionally, heat transfer phenomenon is
established by utilising the advanced heat flux rela-
tion. By means of proper conversion, a set of combined
non-linear PDEs are transformed into coupled

non-linear ODEs and then resolved numerically by
utilising the bvp4c function in Matlab. The impact of
scheming parameters on temperature and concentration
fields are exposed graphically and conferred in details.
Furthermore, a tabular comparison between bvp4c (refs
[32–35]) and HAM (refs [36–38]) with existing studies
are also presented in limiting cases.

2. Problem formulation

Consider the steady, 3D incompressible forced convec-
tive flow of a Carreau fluid over a bidirectional stretched
surface. The sheet is stretched with linear velocity u =
ax and v = by, respectively, in which a, b > 0 are taken
as constants and the flow occupies the domain z > 0
(see figure 1). The heat transfer phenomenon is estab-
lished in the presence of an improved heat conduction
relation. Additionally, the influence of heterogeneous–
homogeneous reactions is presented. Homogeneous
response for cubic autocatalysis is of the form

G + 2H → 3H, rate = kcgh
2, (1)

whereas on the catalyst surface, the isothermal response
of the first-order is of the form

G → H, rate = ksg, (2)

where the chemical species (G, H) have the concen-
tration (g, h) and rate constants (kc, ks), respectively.
Moreover, it is supposed that both processes are isother-
mal and far away from the sheet at the ambient fluid,
there is a uniform concentration g0 of reactant G and
there is no autocatalyst H.

Under these considerations, the governing flow prob-
lem with boundary conditions [39,40] can be written
as
∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (3)

Figure 1. Flow configuration.
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Figure 2. Temperature distribution θ(η) for different values of thermal relaxation parameter β when (a) n = 0.5 and (b)
n = 1.5.
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Figure 3. Temperature distribution θ(η) for different values of Prandtl number Pr when (a) n = 0.5 and (b) n = 1.5.

l(
)

0.6

0.7

0.8

0.9

1
n = 0.5

(a)

We1 = 1, 2, 3, 4

We2 = 1.0, k1 = k2 = 0.5

= = 0.2, Pr = 2.0, Sc = 1.2

l(
)

0.6

0.7

0.8

0.9

1
n = 1.5

(b)

We1 = 1, 2, 3, 4

We2 = 1.0, k1 = k2 = 0.5

= = 0.2, Pr = 2.0, Sc = 1.2

0 2 4 6 0 2 4 6

Figure 4. Concentration distribution l(η) for different values of local Weissenberg number We1 when (a) n = 0.5 and (b)
n = 1.5.
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Figure 5. Concentration distribution l(η) for different values of local Weissenberg number We2 when (a) n = 0.5 and (b)
n = 1.5.
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Figure 6. Concentration distribution l(η) for different values of ratio of stretching rate parameter α when (a) n = 0.5 and
(b) n = 1.5.
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Figure 7. Concentration distribution l(η) for different values of Schmidt number Sc when (a) n = 0.5 and (b) n = 1.5.
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Figure 8. Concentration distribution l(η) for different values of homogeneous reaction parameter k1 when (a) n = 0.5 and
(b) n = 1.5.
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Figure 9. Concentration distribution l(η) for different values of heterogeneous reaction parameter k2 when (a) n = 0.5 and
(b) n = 1.5.
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Figure 10. A comparison of Prandtl number (a) and thermal relaxation time parameter β (b) on temperature distribution θ(η)
for two different techniques.
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Table 1. A comparison of local skin friction coefficient with two different techniques in limiting cases
when We1 = We2 = 0 and n = 3.

f ′′(0)

α Wang [42] Liu and Anderson [43] Munir et al [44] Present (bvp4c) Present (HAM)

0.0 −1 −1 −1 −1 −1
0.25 −1.048813 −1.048813 −1.048818 −1.048813 −1.048810
0.50 −1.093097 −1.093096 −1.093098 −1.093095 −1.093095
0.75 −1.134485 −1.134486 −1.134487 −1.134485 −1.134486
1.0 −1.173720 −1.173721 −1.173721 −1.173720 −1.173720

Table 2. A comparison of local skin friction coefficient with two different techniques in limiting cases
when We1 = We2 = 0 and n = 3.

g′′(0)

α Wang [42] Liu and Anderson [43] Munir et al [44] Present (bvp4c) Present (HAM)

0.0 0 0 0 −1 −1
0.25 −0.194564 −0.194565 −0.194567 −0.1945649 −0.1945645
0.50 −0.465205 −0.465206 −0.465207 −0.4652052 −0.4652049
0.75 −0.794622 −0.794619 −0.794619 −0.7946182 −0.7946182
1.0 −1.173720 −1.173721 −1.173721 −1.1737205 −1.1737210

Table 3. A comparison of local Nusselt number with two different techniques in limiting
cases when We1 = We2 = β = 0 and n = 3.

θ ′ (0)

α Liu and Anderson [43] Munir et al [44] Present (bvp4c) Present (HAM)

0.25 −0.665933 −0.665939 −0.665933 −0.665926
0.50 −0.735334 −0.735336 −0.735335 −0.735332
0.75 −0.796472 −0.796472 −0.796473 −0.796471

Table 4. A comparison of local Nusselt number with two different techniques for different values of
Prandtl number when We1 = We2 = β = 0 and n = 3.

−θ ′(0)

Pr Khan and Khan [45] Wang [46] Gorla and Sidawi [47] Present(bvp4c) Present(HAM)

0.70 0.4539 0.4539 0.4539 0.453935 0.453933
1.0 − − − 0.581979 0.581977
1.3 − − − 0.693029 0.693023
1.5 − − − 0.760293 0.760298
1.7 − − − 0.823311 0.823327
2.0 0.9113 0.9114 0.9114 0.911362 0.911336
7.0 1.8954 1.8954 1.8954 1.895420 −
20.0 3.3539 3.3539 3.3539 3.353950 −
70.0 6.4621 6.4622 6.4622 6.462250 −
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(6)

u
∂g

∂x
+ v

∂g

∂y
+ w

∂g

∂z
= DG

∂2g

∂z2 − kcgh
2, (7)

u
∂h

∂x
+ v

∂h

∂y
+ w

∂h

∂z
= DH

∂2h

∂z2 + kcgh
2, (8)

u = Uw(x) = ax, v = Vw(y) = by, w = 0,

T = Tw, DG
∂g

∂z
= ksg, DH

∂h

∂z
= −ksg at z = 0,

(9)

u→0, v→0, T→T∞, g→g0, h→0 as z→∞,

(10)

where (u, v, w) represent the velocity components
along x-,y- and z-directions, respectively, ν is the kine-
matic viscosity, � is the material rate constant, n is
the power law index, T is the liquid temperature, α1
is the thermal diffusivity of the liquid, λ is the thermal
relaxation time and (DG, DH ) are the diffusion species
coefficients of G and H, respectively.

The transformations are as follows:

u = ax f ′(η),

v = ayg′(η),

w = −√
aν[ f (η) + g(η)],

θ (η) = T − T∞
Tw − T∞

,

g = g0l(η), h = h0m(η), η = z

√
a

ν
. (11)

In view of overhead transformations, the incompress-
ibility condition is satisfied identically and eqs (4)–(10)
yield

f ′′′[1 + We2
1 f

′′2](n−3)/2[1 + nWe2
1 f

′′2]
− f ′2 + f ′′( f + g) = 0, (12)

g′′′[1 + We2
2g

′′2](n−3)/2[1 + nWe2
2g

′′2]
−g′2 + g′′( f + g) = 0, (13)

θ ′′ + Pr ( f + g)θ ′ − Pr β[( f + g)( f ′ + g′)θ ′

+( f + g)2θ ′′] = 0, (14)
1

Sc
l ′′ + ( f + g)l ′ − k1lm

2 = 0, (15)

λ1

Sc
m′′ + ( f + g)m′ + k1lm

2 = 0, (16)

f (0) = 0, g(0) = 0, f ′(0) = 1, g′(0) = α,

θ(0) = 1, l ′(0) = k2l(0), λ1m
′(0) = −k2l(0), (17)

f ′ → 0, g′ → 0, θ → 0, l → 1, m → 0 as η

→ ∞. (18)

In the above expressions, We1

(
=

√
�2aU2

w

ν

)
and

We2

(
=

√
�2aV 2

w

ν

)
are the local Weissenberg numbers,

Pr
(
= ν

α1

)
is the Prandtl number, β (= λa) is the ther-

mal relaxation time parameter, λ1

(
= DH

DG

)
is the ratio

of diffusion coefficient, Sc
(
= ν

DG

)
is the Schmidt

number, α
(= b

a

)
is the ratio of stretching rates param-

eter and (k2, k1) are the measures of the strength of
heterogeneous–homogeneous processes.

In physical circumstances, the diffusion coefficients
DG and DH are taken to be equivalent, i.e. λ1 = 1,

which will provide us

l(η) + m(η) = 1. (19)

Subsequently, eqs (15) and (16) yield

1

Sc
l ′′ + ( f + g)l ′ − k1(1 − l)2l = 0, (20)

with boundary conditions

l ′(0) = k2l(0), l → 1 as η → ∞. (21)

3. Physical quantities

3.1 The skin friction coefficients

Essential features of flow are the local skin friction coef-
ficients C f x and C f y which are defined as

C f x = τxz
1
2ρU2

w

and C f y = τyz
1
2ρU2

w

, (22)
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and in the dimensionless forms, we have

1

2
C f xRe1/2

x = f ′′(0)[1 + We2
1 f

′′2(0)](n−1)/2,

1

2

(
Uw

Vw

)
C f yRe1/2

x = g′′(0)[1 + We2
2g

′′2(0)](n−1)/2,

(23)

in which Rex = ax2/ν is the local Reynolds number.

4. Numerical results and discussion

This section predominantly emphasises the somatic fea-
tures of heterogeneous–homogeneous responses on the
non-Fourier’s heat conduction relation by utilising 3D
Carreau fluid flow past a stretched surface. The set of
eqs (12)–(14) and (20) with boundary restrictions (17),
(18) and (21) are established and resolved via bvp4c
scheme. The main purpose of the following discussion
is to showcase the influence of emergent parameters
such as the local Weissenberg numbers (We1, We2),
ratio of stretching rate parameter α, Prandtl number Pr,
thermal relaxation time parameter β, heterogeneous–
homogeneous reaction parameters (k2, k1) and Schmidt
number Sc on the temperature and concentration fields
in both circumstances (i.e. shear thinning/thickening)
liquids. Additionally, the numerical and analytical out-
comes in comparison of some former existing literature
are available for diverse values of ratio of stretching rate
parameter α and Prandtl number Pr.

4.1 Temperature field

Figures 2a, 2b, 3a and 3b are portrayed to visualise the
impact of thermal relaxation parameter β and Prandtl
number Pr on the temperature of the Carreau liquid
for both shear thinning and shear thickening liquids,
respectively. From these plots, we see that the liquid
temperature and thickness of the thermal boundary layer
decrease for increasing values of Prandtl number and
thermal relaxation parameter for both cases. Physically,
this happen because, for increased values of thermal
relaxation parameter, the liquid needs extra time to
transfer heat to its adjacent elements which raises the
temperature gradient and hence decreases the temper-
ature distribution. Moreover, for the case of Fourier’s
law the temperature field is better when compared with
Cattaneo–Christov heat flux relation. This coincides
with that of ref. [41]. Moreover, it can be noticed that
θ(η) and related thickness of the layer decrease when Pr
increases. An increase in Pr causes a decrease in thermal
diffusion and temperature field.

4.2 Concentration field

Figures 4a, 4b, 5a and 5b are plotted to interpret the fea-
tures of the local Weissenberg numbers We1 and We2
on the concentration profile of the Carreau liquid. The
result shows that with the enlargement of the local Weiss
enberg numbers, the concentration distribution increases
whereas the thickness of the concentration boundary
layer reduces for shear thinning liquid. Shear thickening
liquid’s moderately conflicting behaviour is identified
for the increased values of local Weissenberg numbers.

The impact of increasing values of the ratio of stretch-
ing rate parameter α and the Schmidt number Sc on
the concentration of the Carreau fluid for both instances
(n < 1) and (n > 1) are shown in figures 6a, 6b, 7a
and 7b respectively. From these plots, the analogous
behaviours for the emergent values of the ratio of stretch-
ing rate parameter and the Schmidt number for shear
thinning/thickening liquids are perceived. Increase in
values of these parameters results in enhanced concen-
tration field while thickness of concentration boundary
layer reduces. For physical point of vision advance
values of ratio of the stretching rates parameter, stretch-
ing beside the y-direction growths which reasons the
escalation of the concentration of the Carreau liquid.
Moreover, as the Schmidt number is the relation of
the viscous diffusion rate to the molecular diffusion
rate. However, higher values of Schmidt number cause
greater viscous diffusion rate, which is fit to intensify
the liquid concentration.

Figures 8a, 8b, 9a and 9b respectively explore the
properties of homogeneous and heterogeneous response
parameters for the shear thinning and shear thick-
ening situations on the concentration scattering. The
concentration field is moderate for both conditions
(n<1) and (n>1) for increased values of homogeneous/
heterogeneous parameters. However, for larger values
of homogeneous–heterogeneous parameters there is a
decline in the concentration and allied thickness of
concentration boundary layer. Physically, from these
plots, this behaviour occurs because of the fact that
throughout the homogeneous reaction the reactants are
disbursed. Instead, one can notice from figures 9a and 9b
that the advanced values of the heterogeneous response
parameter k2 results in the decline of the concentration
distribution. This coincides with the overall physical
behaviour of homogeneous and heterogeneous reac-
tions. Hence, the concentration field decays for k2.

4.3 Tabular and graphical comparisons

Figures 10a and 10b depict the impact of Pr and β for
two dissimilar schemes namely, the homotopy analysis
method (HAM) and bvp4c approach. From these plots,
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we can see that plots for both techniques agree quite bril-
liantly. The authenticity of the numerical consequences
is also established by assessing the analytical outcomes
achieved by the HAM as shown in tables 1–3. More-
over, these results are compared with former available
literature as an exceptional instance of the problem and
outstanding settlement is noticed. The discrepancy of
the Nusselt number for different values of Prandtl num-
ber are presented in table 4. A comparison between
HAM and numerical scheme (bvp4c) with some former
studies is also presented in this table. Consequently, we
assure that the present outcomes are very accurate.

5. Concluding remarks

The features of homogenous–heterogeneous reaction on
3D Carreau fluid flow induced by a stretched surface
was examined in this paper. The improved heat con-
duction model is executed to reveal the heat transfer
phenomenon of Carreau liquid. From the present exam-
ination, the following inferences are summarised:

• Both the Prandtl number and thermal relaxation
parameter diminished the temperature field and
the boundary layer thickness in both instances for
increased values of these parameters.

• The impact of Weissenberg numbers for shear thin-
ning (n < 1) liquid was quite reverse to the thinning
(n > 1) liquid for larger values of these numbers.

• Conflicting behaviours for n < 1 and n > 1
of homogeneous response parameter and Schmidt
number were detected for the concentration distri-
bution.
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