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Abstract. In this paper, we present a formalism to generate a family of interior solutions to the Einstein–Maxwell
system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner–
Nordström space–time. By reducing the Einstein–Maxwell system to a recurrence relation with variable rational
coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters.
A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also
analyse the physical viability of our new class of solutions.

Keywords. Relativistic star; exact solutions; Einstein–Maxwell system.

PACS Nos 04.40.Dg; 04.40.Nr; 97.10.q

1. Introduction

Exact solutions to Einstein–Maxwell (EM) system of
field equations play an important role in the study
of self-gravitating spherically symmmetric charged
fluid distributions. Ever since the discovery of the
Reissner–Nordström solution, many investigators have
contributed to the study of EM system which includes
the pioneering works of Papapetrou [1], Majumdar [2],
Bonner [3,4], Stettner [5], Bekenstein [6] and Cooper-
stock and Cruz [7]. A detailed review of exact solutions
to Einstein–Maxwell systems and their physical accept-
ability can be found in the compilation work of Ivanov
[8]. A large class of interior solutions, corresponding to
the exterior Reissner–Nordström space–time, have been
developed to model a wide variety of stellar distributions
such as neutron stars, strange stars and stellar objects
composed of quark–diquark mixtures [9–17]. Stellar
models have also been developed for charged core–
envelope-type configurations [18–20]. Mak and Harko
[21] and Komathiraj and Maharaj [22] have obtained
solutions for charged strange quark stars admitting a lin-
ear equation of state (EOS). Thirukkanesh and Maharaj
[23] have analysed the role of anisotropy on the physi-
cal behaviour of a given charged distribution admitting a
linear EOS. Varela et al [24] have analysed features of a
charged anisotropic fluid distribution admitting linear

as well as nonlinear EOS. Takisa and Maharaj [25]
have obtained a new class of solutions for a charged
quark matter distribution. Feroze and Siddiqui [26] and
Maharaj and Takisa [27] have independently developed
charged stellar models by assuming a quadratic EOS.
Thirukkanesh and Ragel [28,29] have obtained new
solutions for charged fluid spheres by specifying the
polytropic index leading to masses and energy densities
which have been shown to be consistent with observa-
tional data. Maharaj et al [30] have presented a new
family of exact solutions to the Einstein–Maxwell sys-
tem for an anisotropic charged matter on the Finch and
Skea [31] background space–time. A class of charged
anisotropic stellar solutions have been developed and
studied by Murad and Fatema [32]. Hansraj et al [33]
have analysed all static-charged dust sphere models in
general relativity. Recently, Sunzu and Danford [34]
have generated two new classes of exact solutions to the
Einstein–Maxwell system of field equations describing
an anisotropic and charged stellar body which accom-
modates a quark matter like linear EOS.

The main objective of the present work is to contribute
to this rich family of solutions by generating new solu-
tions which can be used as viable models of realistic
astrophysical objects. While generating the solutions,
one needs to ensure that the gravitational, electromag-
netic and matter variables remain finite, continuous,
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well-behaved and the speed of sound remains less than
the speed of light within the distribution. For a charged
fluid sphere, the interior solution must be matched
to the exterior Riessner–Nordström metric across the
boundary. We present here a different family of solu-
tions to the coupled Einstein–Maxwell system where
all the above requirements are fulfilled. This has been
done by choosing a rational form for one of the gravi-
tational potentials and also the fall-off behaviour of the
charged fluid distribution. This particular approach is
similar to the method adopted earlier by Maharaj and
Leach [35] which was, in fact, a generalisation of the
superdense stellar model developed by Tikekar [36].
In our approach, the solutions are generated by reduc-
ing the condition of pressure isotropy to a recurrence
relation with real and rational coefficients so that the
system can be solved by mathematical induction. We
have performed a systematic analysis of the new family
of solutions to examine their physical viability.

The paper is organised as follows: In §2, we have
presented the EM field equations for a static spherically
symmetric charged fluid distribution. The nonlinear sys-
tem was then transformed into a more tractable set of
equations. By assuming a particular form for one of
the metric potentials and also by specifying the elec-
tric field intensity, we have obtained the condition of
pressure isotropy in terms of the undetermined grav-
itational potential in §3. We have assumed a series
solution for the resultant equation which yielded a recur-
rence relation. We have managed to solve the system
from the first principles in §4. In §5, we have pre-
sented polynomials and product of polynomials with
algebraic functions as the first solution. The general
solution containing the integral form was eventually
integrated to yield elementary functions by placing spe-
cific restrictions on the model parameters. We have
demonstrated that it is possible to regain many solu-
tions found earlier by adopting this technique. Finally,
we have provided two different classes of exact solu-
tions to the EM system in simple closed forms. In §6,
we have discussed features of the class of solutions and
showed that the solutions might be used to model realis-
tic compact stellar systems. The results are summarised
in §7.

2. Einstein–Maxwell system

For a static spherically symmetric relativistic charged
fluid distribution, we assume the line element in coor-
dinates (t, r, θ, φ) as

ds2 = −e2ν(r)dt2 + e2λ(r)dr2

+r2(dθ2 + sin2 θ dφ2), (1)

where ν(r) and λ(r) are arbitrary functions of the radial
coordinate r . The Einstein–Maxwell field equations for
the line element (1) are then obtained (in system of units
having 8πG = c = 1) as

1

r2 (1 − e−2λ) + 2λ′

r
e−2λ = ρ + 1

2
E2, (2a)

−1

r2 (1 − e−2λ) + 2ν′

r
e−2λ = p − 1

2
E2, (2b)

e−2λ

(
ν′′ + ν′2 + ν′

r
− ν′λ′ − λ′

r

)
= p + 1

2
E2, (2c)

1

r2 e−λ(r2E)′ = σ, (2d)

where prime (′) denotes differentiation with respect
to r . The energy density ρ and the pressure p are
measured relative to the co-moving fluid 4-velocity
ua = e−νδa0 . The electric field intensity E and the
proper charge density σ appear in the system through the
energy–momentum tensor corresponding to the electro-
magnetic field and the Maxwell equations.

A different but equivalent form of the field equations
can be generated if we introduce a new independent
variable x and introduce new functions y and Z :

x = Cr2, A2y2(x) = e2ν(r), Z(x) = e−2λ(r), (3)

proposed by Durgapal and Bannerji [37], where A and
C are constants. Under the transformation (3), system
(2) becomes

1 − Z

x
− 2Ż = ρ

C
+ E2

2C
, (4a)

4Z
ẏ

y
+ Z − 1

x
= p

C
− E2

2C
, (4b)

4Zx2 ÿ + 2Ż x2 ẏ +
(
Ż x − Z + 1 − E2x

C

)
y = 0,

(4c)

4Z

x
(x Ė + E)2 = σ 2

C
, (4d)

where dots (·) denote differentiation with respect to
the variable x . System (4) determines the gravitational
behaviour of a charged perfect fluid. Consequently, we
have a nonlinear system of four independent equations
in six unknown variables, namely, ρ, p, E , σ , y and
Z . The advantage of this system lies in the fact that a
solution, upon suitable substitutions of Z and E , can
be obtained by integrating the second-order differential
equation (4c) which is linear in y.
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3. Integration procedure

We solve the Einstein–Maxwell system (4) by making
explicit choices for the metric function Z and the electric
field intensity E . For the metric function Z we write

Z = (1 + kx)

(1 + mx)
, k �= m, (5)

where k and m are real constants. Note that the choice
(5) ensures that the metric function e2λ is regular and
continuous in the interior because of the freedom pro-
vided by parameters k and m. It is important to note
that the particular choice of Z is physically reasonable
and contains some special cases of known relativistic
star models. m = 1 case corresponds to the Maharaj
and Komathiraj [38] charged stellar model which is a
generalisation of the stellar models developed previ-
ously by Finch and Skea [31] and Hansraj and Maharaj
[39]. A similar form of Z has also been utilised in refs
[26,27,40] for the construction of a charged anisotropic
stellar model admitting a polytropic EOS.

Substitution of (5) in (4c) yields

4(1 + kx)(1 + mx)ÿ + 2(k − m)ẏ

+
[
m(m − k) − E2(1 + mx)2

Cx

]
y = 0. (6)

It is convenient at this point to introduce the following
transformation:

z = 1 + mx . (7)

This transformation enables us to rewrite the second-
order differential equation (6) in a simpler form

4z(kz + m − k)
d2 ỹ

dz2 + 2(k − m)
d ỹ

dz

+
[
(m − k) − E2z2

C(z − 1)

]
ỹ = 0, (8)

in terms of the new dependent and independent vari-
ables ỹ = y(z) and z, respectively. To integrate (8), it is
necessary to specify the electric field intensity E . Even
though a variety of choices for E is possible, only a
few of them are physically reasonable and can generate
closed form solutions. We reduce (8) to an integrable
form by letting

E2

C
= α

(z − 1)

z2 − β
(z − 1)

z3

= α
mx

(1 + mx)2 − β
mx

(1 + mx)3 , (9)

where α and β are constants. The form E2 in (9) is phys-
ically acceptable as E remains regular and continuous
throughout the sphere. Note that E = 0 at r = 0. Some
special cases of (9) have earlier been studied by Takisa

and Maharaj [40] and John and Maharaj [41] and can
also be reduced to the uncharged stellar model devel-
oped by Maharaj and Mkhwanazi [42]. Substituting (9)
in eq. (8), we obtain

4z2(kz + m − k)
d2 ỹ

dz2 + 2z(k − m)
d ỹ

dz
+[(m − k − α)z + β]ỹ = 0, (10)

which is the master equation for the system of equa-
tions (4). For α = β = 0, the differential equation (10)
reduces to

4z(kz + m − k)
d2 ỹ

dz2 + 2(k − m)
d ỹ

dz
+ (m − k)ỹ = 0,

(11)

which is the limiting case and corresponds to an
uncharged sphere.

4. General series solution

It is difficult to obtain a closed form solution of eq. (10).
However, one can transform it to a differential equation
which can be integrated by the method of Frobenius.
This can be done in the following way.

We introduce a new function u(z) such that

ỹ(z) = zdu(z), (12)

where d is a constant. A similar kind of transformation
was utilised earlier by Komathiraj and Maharaj [43] for
generating charged stellar models. With the help of (12),
differential equation (10) can be written as

4z2(kz + m − k)
d2u

dz2

+2z[4d(kz + m − k) + (k − m)]du

dz
− {[k − m + α − 4kd(d − 1)]z
+2d(2d − 3)(k − m) − β} u = 0. (13)

A substantial simplification of the equation can be
achieved if we set

2d(2d − 3)(k − m) = β. (14)

Equation (13) then reduces to

4z(z − c)
d2u

dz2 + 2[4d(z − c) + c]du

dz
− [c + α̃ − 4d(d − 1)]u = 0, (15)

where we have set

c = k − m

k
, kα̃ = α. (16)
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As the point z = c is a regular singular point of (15),
there exists two linearly independent solutions of the
form of power series with centre z = c. Therefore, we
can write the solution of differential equation (15) by
the method of Frobenius as

u =
∞∑
i=0

ci (z − c)i+b, c0 �= 0, (17)

where ci are the coefficients of the series and b is a
constant.

For a legitimate solution, we need to determine the
coefficients ci as well as the parameter b. Substituting
(17) in differential equation (15), we obtain the indicial
equation

2cc0b(2b − 1) = 0

and the recurrence formula

ci+1 = −{4(i + b)(i + b − 1 + 2d) − T }
2c(i + b + 1)(2i + 2b + 1)

ci , (18)

with i ≥ 0 and T = c + α̃ − 4d(d − 1). As c0 �= 0,
c = k − m �= 0, we must have b = 0 or b = 1/2.
The coefficients c1, c2, c3, . . . can be written in terms
of the leading coefficient c0 and we can generate the
expression as

ci+1 =
i∏

p=0

−4(p + b)(p + b − 1 + 2d) − T

2c(p + b + 1)(2p + 2b + 1)
c0. (19)

It is also possible to establish the result (19) rigorously
by using the principle of mathematical induction.

We generate two linearly independent solutions to
(15) with the help of (17) and (19). For b = 0, we
obtain the first solution

u1 = c0

⎡
⎣1 +

∞∑
i=0

i∏
p=0

−ψ

η
(z − c)i+1

⎤
⎦ ,

where ψ = 4p(p− 1 + 2d) − [c+ α̃ − 4d(d − 1)] and
η = 2c(p + 1)(2p + 1). For b = 1/2, we obtain the
second solution

u2 = c0(z − c)1/2

⎡
⎣1 +

∞∑
i=0

i∏
p=0

−α

β
(z − c)i+1

⎤
⎦ ,

where α = (2p+1)(2p−1+4d)−[c+ α̃−4d(d−1)]
and β = c(2p + 3)(2p + 2). We, therefore, have a
general solution to (15) as the functions u1 and u2 are
linearly independent. In terms of the original variable
x = Cr2, the functions are obtained as

y1 = c0(1 + mx)d

⎡
⎣1 +

∞∑
i=0

i∏
p=0

−ψ1

η1

×
[
m(1 + kx)

k

]i+1
⎤
⎦ , (20)

y2 = c0(1 + mx)d
[
m(1 + kx)

k

]1/2

×
⎡
⎣1 +

∞∑
i=0

i∏
p=0

−α1

β1

[
m(1 + kx)

k

]i+1
⎤
⎦ , (21)

where

ψ1 = 4kp(p − 1 + 2d) − [k − m + α − 4kd(d − 1)],
η1 = 2(k − m)(p + 1)(2p + 1),

α1 = k(2p + 1)(2p − 1 + 4d)

− [k − m + α − 4kd(d − 1)],
β1 = (k − m)(2p + 3)(2p + 2).

Thus, the general solution to differential equation (6),
for the choice of the electric field (9), is given by

y(x) = A1y1(x) + A2y2(x), (22)

where A1 and A2 are arbitrary constants. Using (4)
and (22), we write the exact solution to the Einstein–
Maxwell system in the form

e2λ = 1 + mx

1 + kx
, (23a)

e2ν = A2y2, (23b)
ρ

C
= (m − k)(3 + mx)

(1 + mx)2 − α
mx

2(1 + mx)2

+ β
mx

2(1 + mx)3 , (23c)

p

C
= 4

(1 + kx)

(1 + mx)

ẏ

y
+ k − m

(1 + mx)

+ α
mx

2(1 + mx)2 − β
mx

2(1 + mx)3 , (23d)

E2

C
= α

mx

(1 + mx)2 − β
mx

(1 + mx)3 . (23e)

As the choice of the metric function (5) together with the
electric field intensity (9) have not been considered ear-
lier, to the best of our knowledge, the class of solutions
(23) have not been reported previously. One interesting
feature of the new family of solutions is that by setting
α = 0 and β = 0 (d = 0 or d = 3/2), it is possible to
switch off the effect of charge onto the system. Secondly,
solution (22) has been expressed in terms of a series of
real arguments and not complex arguments which one
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might encounter when mathematical software packages
are used.

5. Terminating series

It is interesting to observe that the series in (20) and (21)
terminates for specific values of the parameters k, m, α

and d. It is, therefore, possible to generate solutions
in terms of elementary functions by imposing specific
restrictions on k, m, α and d. The solutions may be
found in terms of polynomials and algebraic functions.
We use recurrence relation (18), rather than the series
(20) and (21), to find the elementary solutions.

5.1 Elementary solutions

If we fix b = 0 in (18), and set c + α̃ − 4d(d − 1) =
4n(n − 1 + 2d), for integer values of n, we obtain

ci+1 = 4
(n − i)(n + i − 1 + 2d)

c(2i + 1)(2i + 2)
ci , i ≥ 0, (24)

where n is a fixed integer. Obviously, cn+1 = 0. Conse-
quently, the remaining coefficients cn+2, cn+3, cn+4,

. . . vanish. Equation (24) may be solved to yield

ci =
(

4

c

)i n!(n + i − 2 + 2d)!
(2i)!(n − i)!(n − 2 + 2d)!c0, 0 ≤ i ≤ n.

(25)

Using (17) (when b = 0) and (25), we obtain

u(z) = c0

n∑
i=0

(
4

c

)i n!(n + i − 2 + 2d)!
(2i)!(n − i)!(n − 2 + 2d)!(z−c)i ,

(26)

where

c + α̃ − 4d(d − 1) = 4n(n − 1 + 2d).

On substituting b = 1/2 in (18) and by setting c +
α̃ − 4d(d − 1) = (2n + 1)(2n − 1 + 4d), we obtain

ci+1 = 4(n − i)(n + i + 2d)

c(2i + 3)(2i + 2)
ci , i ≥ 0, (27)

where n is a fixed integer. Obviously, cn+1 = 0 and
the subsequent coefficients cn+2, cn+3, cn+4, . . . vanish.
Equation (27) yields

ci =
(

4

c

)i
(n)!(n + i − 1 + 2d)!

(2i + 1)!(n − i)!(n − 1 + 2d)!c0,

0 ≤ i ≤ n. (28)

Using (17) (when b = 1/2) and (28), we obtain

u(z) = c0(z−c)1/2
n∑

i=0

(
4

c

)i
(n)!(n1 + i)!

(2i+1)!(n−i)!n1!(z−c)i ,

(29)

where

n1 = (n − 1 + 2d)

and

c + α̃ − 4d(d − 1) = (2n + 1)(2n − 1 + 4d).

The polynomial (26) and the product of the polynomial
and algebraic function (29) generate a particular solution
of the differential equation (15) for appropriate values
of the parameters c, α̃ and d.

5.2 General solutions

It is possible to obtain solutions to (15) by restricting
the values of c, α̃ and d so that only elementary func-
tions survive. The elementary functions are expressible
as polynomials and product of polynomials with alge-
braic functions. Using (26), we express the first category
of general solutions to differential equation (15) in the
form

u(z) =
n∑

i=0

(
4

c

)i n!(n + i − 2 + 2d)!
(2i)!(n − i)!(n − 2 + 2d)!(z − c)i

×
⎡
⎣B1 + B2

∫
z(1/2)−2d(z − c)−1/2

{∑n
i=0

(4
c

)i n!(n2+i)!
(2i)!(n−i)!n2!(z−c)i }2

dz

⎤
⎦,

(30)

where

n2 = (n − 2 + 2d)

and

c + α̃ − 4d(d − 1) = 4n(n − 1 + 2d).

Using (29), the second category of general solutions to
(15) is obtained as

u(z) = (z − c)1/2

×
n∑

i=0

(
4

c

)i n!(n1 + i)!
(2i + 1)!(n − i)!n1!(z − c)i

×
⎡
⎣B1 + B2

×
∫

z(1/2)−2d(z − c)−3/2

{∑n
i=0

(4
c

)i n!(n1+i)!
(2i+1)!(n−i)!n1!(z − c)i }2

dz

⎤
⎦ ,

(31)
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where

c + α̃ − 4d(d − 1) = (2n + 1)(2n − 1 + 4d).

In (30) and (31), B1 and B2 are integration constants. In
terms of the original variable x = Cr2, it is possible to
write (30) in the form

y(x) = (1 + mx)d
n∑

i=0

(
4k

k − m

)i n!(n2 + i)!
(2i)!(n − i)!n2! t

i

×

⎡
⎢⎢⎢⎣C1 + C2

×
∫

(1 + mx)(1/2)−2d [(1 + kx)]−1/2

{∑n
i=0

(
4k

k−m

)i n!(n2+i)!
(2i)!(n−i)!n2! [m(1+kx)

k ]i
}2 dx

⎤
⎥⎥⎥⎦ ,

(32)

where

k − m + α − 4kd(d − 1) = 4kn(n − 1 + 2d).

Equation (31) in terms of x = Cr2, takes the form

y(x) = C3

n∑
i=0

(
4k

k − m

)i n!(n1 + i)!
(2i + 1)!(n − i)!n1! t

i

×

⎡
⎢⎢⎢⎣C1 + C2

×
∫

(1 + mx)(1/2)−2d [(1 + kx)]−3/2

{∑n
i=0

(
4k

k−m

)i n!(n1+i)!
(2i+1)!(n−i)!n1! t

i

}2 dx

⎤
⎥⎥⎥⎦, (33)

where

k − m + α − 4kd(d − 1) = k(2n + 1)(2n − 1 + 4d),

C3 = (1 + mx)d(1 + kx)1/2

and

t = m(1 + kx)/k.

Thus, we have generated two classes of solutions (32)
and (33) to the differential equation (6) for the assumed
electric field (9) by using the infinite series solution (22).
It should be stressed that the class of solutions can be
used to study stellar properties in the presence as well
as absence of charge. By setting α = 0 and β = 0 (d =
0 or 3/2) in (32) and (33), one obtains solutions for an
uncharged sphere.

We are now in a position to integrate eqs (32) and (33)
for specific values of the parameters k, m, α, d and n.

For n = 0, eq. (32) becomes

y(x) = (1 + mx)d[
C1 + C2

∫
1

(1 + mx)2d−(1/2)(1 + kx)1/2
dx

]
,

(34)

where

k − m + α − 4kd(d − 1) = 0.

Also for n = 0, eq. (33) takes the form

y(x) = C3

×
[
C1 + C2

∫
1

(1 + mx)2d−(1/2)(1 + kx)3/2
dx

]
,

(35)

where

2k − m + α − 4kd2 = 0.

By setting k = −1/2, m = 1, α = 0 and d =
3/2 (or β = 0) in (34), we obtain

y(x) = a1(1 + x)3/2 + a2(2 − x)1/2(5 + 2x),

where we have assumed a1 = C1 and a2 = −(2
√

2/27)

C2. Thus, we have regained the Durgapal and Bannerji
solution [37].

If we set k = 1/2, m = 1, α = 0 and d = 0 (or β =
0) in (35), we obtain

y(x) = (2 + x)1/2(a1 + a2 ln[(1 + x)1/2+(2 + x)1/2])
−a2(1 + x)1/2,

where we have assumed a1 = C1/
√

2 and a2 = 4C2.
This class of solutions was found earlier by Maharaj and
Mikhwanazi [42].

Further, by setting k = 1/3, m = 1, α = 1/3 and
d = 0 (or β = 0) in (35), we obtain

y(x) = (3 + x)1/2(a1 + a2 ln[(1 + x)1/2+(3 + x)1/2])
−a2(1 + x)1/2,

where we have assumed a1 = C1/
√

3 and a2 = 6C2.
This particular solution corresponds to the charged stel-
lar model of John and Maharaj [41]. Note that a minor
error appearing in the John and Maharaj paper [41] has
been addressed in this work.

5.3 New family of solutions

We now aim to generate new closed form solutions for y
which can subsequently be used to model realistic stars.
To achieve our objective, we set k = −1/2, m = 2 and
α = 1. Then, making use of (34), it is possible to obtain
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two categories of solutions for (i) d = 3/2 (β = 0) and
(ii) d = −1/2 (β = −10).

Case I: d = 3/2 (β = 0)

In this case (34) becomes

y(x) = a1(1 + 2x)3/2 + a2(2 − x)1/2(7 + 4x), (36)

where we have set

a1 = C1, a2 = − 2

75
C2.

Subsequently, the general solution to the Einstein–
Maxwell system (23) can be expressed as

e2λ = 2(1 + 2x)

2 − x
, (37a)

e2ν = A2{a1(1 + 2x)3/2

+ a2(2 − x)1/2(7 + 4x)}2, (37b)
ρ

C
= 15 + 8x

2(1 + 2x)2 , (37c)

p

C
= g1(x)

g2(x)
, (37d)

E2

C
= 2x

(1 + 2x)2 , (37e)

where

g1(x) = a1(2 − x)1/2(1 + 2x)1/2(19 + 18x − 40x2)

+ a2(−34 − 111x − 96x2 + 80x3)

and
g2(x) = 2(2 − x)1/2(1 + 2x)2[a1(1 + 2x)3/2

+ a2(2 − x)1/2(7 + 4x)].
Case II: d = −1

2 (β = −10)

In this case (34) becomes

y(x) = a1(1 + 2x)−1/2 + a2

[
−2

√
2 − x(17 + 4x)

−75
√

2(1 + 2x)−1/2 arcsin

(√
2(2 − x)

5

)]
,

(38)

where we have set a1 = C1, a2 = 1
8C2.

The simple form of our class of solutions facilitates
the analysis of matter and gravitational variables of
realistic stellar objects as can be seen in the following
sections.

6. Physical analysis

For a physically viable model, the class of solutions
obtained by our approach should satisfy certain regu-
larity and physical requirements [44]. In this section,
we analyse the features of our solutions and examine

whether the solutions can be used for describing realis-
tic stars.

Note that we should restrict our solutions only to those
values of k and m for which the energy density ρ, pres-
sure p and the electric field intensity E remain finite and
positive. In addition, k and m should be so chosen that
the gravitational potential e2λ remains positive because
the other metric function e2ν is obviously positive. In
(23a) and (23b), we note that e2λ and e2ν are continuous
in the stellar interior. They are also regular at the centre
for all values of the parameters k,m, α and d (or β).

That pressure of a realistic star must vanish at a finite
boundary r = R implies that

4(1 + kCR2)

[
ẏ

y

]
R

+ k − m + αmCR2

2(1 + mCR2)

− βmCR2

2(1 + mCR2)2 = 0,

where y is given by (22). The above equation puts a
restriction on the constants A1 and A2.

The unique solution to the Einstein–Maxwell system
for r > R is given by the Riessner–Nordström line ele-
ment

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2

+
(

1 − 2M

r
+ Q2

r2

)−1

dr2

+ r2(dθ2 + sin2 θ dφ2), (39)

where M and Q are the total mass and the charge of the
star. Matching of the line elements (1) and (39), across
the boundary r = R, yields the relationships between
the constants A1, A2, k,m and R as follows:

1 − 2M

R
+ Q2

R2 = A2[A1y1(CR2) + A2y2(CR2)]2,

(
1 − 2M

R
+ Q2

R2

)−1

= 1 + mCR2

1 + kCR2 .

For the particular solution, using (37c), we obtain the
central density

ρ0 = ρ(r = 0) = 15

2
C,

which implies that C > 0. To obtain bounds on other
parameters, we evaluate the pressure at two different
points. Using eq. (37d) at the centre of the star (r = 0),
we obtain the central pressure

p0 = p(x = 0) = C(19a1 − 17
√

2a2)

2(a1 + 7
√

2a2)
.

Obviously, we must have
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(19a1 − 17
√

2a2)

(a1 + 7
√

2a2)
> 0, (40)

as (C/2) > 0.
At the boundary of the star (r = R), we impose the

condition that the pressure vanishes, i.e., pR = p(x =
CR2) = 0, which yields

a1

√
(2 − CR2)(1 + 2CR2)(19 + 18CR2 − 40C2R4)

+ a2(−34 − 111CR2 − 96C2R4 + 80C3R6) = 0.

(41)

Equation (41) determines the radius R of the star.
From (37c), we note that the density is always positive

and

dρ

dr
= −4C2r(13 + 4Cr2)

(1 + 2Cr2)3 < 0. (42)

We must also have

dp

dr
= −C2r [−8a2

1 f (r)+a1a2 g(r)+8a2
2 h(r)]√

(2 − Cr2)(1 + 2Cr2)7/2n1
< 0,

(43)

where

n1 = [a1(1 + 2Cr2)3/2 + a2

√
2 − Cr2(7 + 4Cr2)]2.

To fulfill the causality condition 0 < dp/dρ < 1, we
must have

0 <
−8a2

1 f (r) + a1a2 g(r) + 8a2
2 h(r)

H(r)
< 1, (44)

throughout the interior of the star where

f (r) =
√

2 − Cr2(1 + 2Cr2)7/2(−12 + 5Cr2),

g(r) = (1 + 2Cr2)2(513 − 28Cr2

−848C2r4 + 320C3r6),

h(r) =
√

(2 − Cr2)(1 + 2Cr2)(−24 − 34Cr2

−153C2r4 − 72C3r6 + 80C4r8),

H(r) = 4
√

(2 − Cr2)(1 + 2Cr2)

×(13 + 4Cr2)[a1(1 + 2Cr2)3/2

+ a2

√
2 − Cr2(7 + 4Cr2)]2. (45)

It is not difficult to note that, at the centre of the star
(x = 0), the causality condition puts a constraint

0 <
96

√
2a2

1 + 513a1a2 − 192
√

2a2
2

52
√

2(a1 + 7
√

2a2)2
< 1. (46)

0.0 0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

r

e2
λ

Figure 1. Behaviour of gravitational potential eλ.
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Figure 2. Behaviour of gravitational potential eν .

Using the matching conditions, we also obtain

1 − 2M

R
+ Q2

R2 = A2[a2(2 − CR2)1/2(7 + 4CR2)

+ a1(1 + 2CR2)3/2]2, (47)(
1 − 2M

R
+ Q2

R2

)−1

= 2(1 + 2CR2)

2 − CR2 . (48)

Equation (47) determines the values of the constants in
terms of the total mass M , radius R and the charge Q.
From eq. (48), we obtain the total mass of the star as

M = CR3(5 + 14CR2)

4(1 + 2CR2)2
.

As all the parameters on the right-hand side of this equa-
tion have positive values, the mass of the star is finite
and positive.

To analyse physical behaviour of a star, we have set
a1 = 1, R = 1, C = 0.6 which are consistent with
the bounds (40)–(46). Using these values in eq. (41),
we have obtained a2 = 0.229275. In figures 1 and 2, we
have plotted the gravitational potentials which have been
shown to be well behaved. The behaviour of the energy
density and the isotropic pressure are shown in figures 3
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Figure 3. Radial variation of density ρ.
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Figure 4. Radial variation of pressure p.

and 4, respectively. We note that the energy density
and pressure are positive and monotonically decreas-
ing within the stellar interior and the pressure vanishes
at the boundary. In figure 5, we have shown the fall-off
behaviour of the electric field intensity E . In figure 6,
we have plotted dp/dρ on the interval 0 ≤ r ≤ 1.
We note that dp/dρ is always positive and less than
unity, i.e., causality condition is not violated. It, there-
fore, can be concluded that there exists a particular set
of model parameters for which solution (37) satisfies all
the requirements of a realistic star.

Another interesting feature of our model is that it
allows us to generate a barotropic relationship between
the energy density and pressure. It is difficult to obtain a
closed form thermodynamics relationship between den-
sity and pressure, in general, from the interior solutions
[45]. However, our solution has the nice feature of pro-
viding a barotropic EOS. To demonstrate this, we first
note from (37c) that the variable x can be expressed
completely in terms of the energy density ρ in the form

x = 2(C − ρ) ± √
2C(11ρ + 2C)

4ρ
= f (ρ), (49)

where f (ρ) denotes the function of ρ.

0.0 0.2 0.4 0.6 0.8 1.0
0.00
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r

Ε
2

Figure 5. Radial variation of electric field E2.
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Figure 6. Radial variation of square of sound speed dp/dρ.

Consequently, the pressure p in (37d) can be obtained
in terms of density ρ as

p = C
f1(ρ)

f2(ρ)
,

where

f1 = a1[2 − f (ρ)]1/2[1 + 2 f (ρ)]1/2

× [19 + 18 f (ρ) − 40 f (ρ)2]
+ a2[−34 − 111 f (ρ) − 96 f (ρ)2 + 80 f (ρ)3],

f2 = 2{[2 − f (ρ)]1/2[1 + 2 f (ρ)]2[a1[1 + 2 f (ρ)]3/2

+ a2[2 − f (ρ)]1/2[7 + 4 f (ρ)]}.

7. Discussion

In this paper, we have presented a new technique to
generate a large family of solutions to the EM system
by making use of Durgapal and Bannerji [37] trans-
formation equations together with a particular fall-off
behaviour of the electric field intensity. A large class
of solutions obtained previously have been shown to be
contained in our general class of solutions. Moreover,



68 Page 10 of 11 Pramana – J. Phys. (2018) 90:68

we have demonstrated that for the specific set of model
parameters, it is possible to obtain closed-form solutions
from the general series solution. Note that different fam-
ilies of the solutions depend crucially on transformation
(12). It should be stressed here that even though the
integral forms in (32) and (33) parametrized by d do not
permit one to regain the previously obtained charge-
independent solutions, it can be done at a later stage.
Once the integrations in (32) and (33) are obtained in
closed forms for specific model parameters, the charged
and uncharged solutions in terms of elementary func-
tions can be obtained independently. This technique has
been used to regain the Durgapal and Bannerji [37] and
Maharaj and Mkhwanazi [42] stellar solutions and also
John and Maharaj [41] charged fluid solution. We have
also provided two separate closed-form solutions to the
EM system. The simple form of the solution facilitates
the analysis of the physical behaviour of a charged fluid
sphere effectively. Interestingly, our solution has also
been shown to provide a barotropic equation of state. It
should, however, be pointed out that we have generated
closed-form solutions for some specific values of the
model parameters. It will be interesting to explore the
possibility of generating new class solutions for values
of model parameters which have not been covered in
this paper. This, however, will be taken up elsewhere.
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