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Abstract. In this paper, the energy spectra of the general molecular potential are obtained using the asymptotic
iteration method within the framework of non-relativistic quantum mechanics.With the energy spectrum obtained,
the vibrational partition function is calculated in a closed form and is used to obtain an expression for other
thermodynamic functions such as vibrational mean energy U , vibrational mean free energy F , vibrational entropy
S and vibrational specific heat capacityC . These thermodynamic functions are studied for the electronic state X1�+

g
of K2 diatomic molecules.
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1. Introduction

The central point of studying the thermodynamics prop-
erties of a given system is to calculate its partition
function. The partition function, which is a function
of temperature, is usually regarded as the distribu-
tion function and if it is known, other thermodynamics
properties can be obtained from it. The vibrational
partition function of diatomic molecules for certain
potential models can easily be obtained by calculat-
ing the rotation–vibrational energy levels of the sys-
tem whose applications are widely used in statistical
mechanics and molecular physics [1,2]. Strekalov [3]
obtained a closed form expression for the partition func-
tion for Morse oscillators. The Morse oscillator has
been identified as the simplest and the most realis-
tic oscillator model that has many applications in the
description of vibrational state of diatomic molecules
[4]. A simple analytic formula for the partition function
has been derived by Strekalov [5]. Maximum num-
bers of vibrational and rotational states are needed to
evaluate the partition function for the vibrational and
rotational states of diatomic molecules [6]. The result-
ing partition function had been reported to have been

used to calculate the thermodynamic properties of par-
tially ionised and dissociated gas of stellar atmosphere
[7]. Recently, Song et al [8] studied the thermodynamic
properties of sodium dimer with Rosen–Morse potential
and Jia et al [9] investigated the thermodynamic prop-
erties of lithium dimer with improved Manning–Rosen
potential model. In another development, Jia et al [10]
obtained the partition function for improved Tietz oscil-
lators. Different mathematical techniques have been
employed by many researchers in evaluating parti-
tion function such as Poisson summation fornula [11],
commulant expansion method [12], standard method
[13] and Wigner–Kirkwood formulation [14]. Moti-
vated by the recent achievement in the determination
of the thermodynamic properties of some diatomic
molecules, we shall attempt to obtain the rotation–
vibrational energy spectrum for the general potential
model using asymptotic iteration method (AIM) [15]
and use the result to obtain a closed form expression
for the partition function which we shall use in calcu-
lating other thermodynamic properties of the diatomic
molecules.

The general molecular potential (GMP) model is
given by [16]
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V (r) = A − Be−α(r−re) + q̃
(
C − De−α(r−re)

)2

(
1 − qe−α(r−re)

)2 , (1)

where A, B,C, α are adjustable potential parameters, q̃,
q are dimensionless parameters and re is the equilibrium
bond length. To the best of our knowledge, no one has
reported the thermodynamic properties of GMP.

2. Ro-vibrational energy spectrum

The radial Schrödinger equation is defined as [17]

d2ψ(r)

dr2 + 2μ

h̄2

(
E − V (r) − J (J + 1)h̄2

2μr2

)
ψ(r) = 0,

(2)

where μ is the reduced mass, E is the ro-vibrational
energy, h̄ is the reduced Planck’s constant and J is
the rotational quantum number. Substituting eq. (1) into
eq. (2) yields,

d2ψ(r)

dr2 + 2μ

h̄2

×
(

E − A − Be−α(r−re) + q̃
(
C − De−α(r−re)

)2

(
1 − qe−α(r−re)

)2

− J (J + 1)h̄2

2μr2

)

ψ(r) = 0. (3)

In order to solve eq. (3), we invoke the following approx-
imation for the centrifugal term r−2 as [18]

1

r2 ≈ D0 + D1

1 − qe−α(r−re)
+ D2

(
1 − qe−α(r−re)

)2 , (4)

where

D0 = (3−αre)−2(3+αre)q+(
3+3αre+α2r2

e

)
q2

α2q2r4
e

,

D1 = 2(q − 1)2 (−3 + αre + 3q + 2αqre)

α2q2r4
e

,

D2 = (q − 1)3 [3(q − 1) + (q + 1)αre]

α2q2r4
e

. (5)

In order to solve eq. (3) with the AIM, then we must
transform eq. (3) into the form [15]

y′′(x) = λ0(x)y
′(x) + s0(x)y(x). (6)

To do this, we make a coordinate transformation z =
qe−α(r−re) and this transform eq. (3) into the following
equation:

z(1 − z)ψ ′′(z) + (1 − z)ψ ′(z)

+ 1

z(1 − z)

{
γ1z

2 + γ2z + γ3
}
ψ(z) = 0, (7)

where

γ1 = 2μE

h̄2α2
− J (J + 1)D0

α2 − 2μD2q̃

h̄2α2q2
,

γ2 = −4μE

h̄2α2
+ 2J (J + 1)D0

α2 + J (J + 1)D1

α2

+ 2μB

h̄2q2α2
+ 4μCDq̃

h̄2α2q2
,

γ3 = 2μE

h̄2α2
− J (J + 1)D0

α2 − J (J + 1)D1

α2

− J (J + 1)D2

α2 − 2μA

h̄2α2
− 2μq̃C2

h̄2α2
. (8)

A close inspection of eq. (7) shows that it has two sin-
gular points at z = 0 and z = 1. Thus, we can write the
solution of eq. (7) as

ψ(z) = zμ(1 − z)σ f (z). (9)

Substituting eq. (9) into eq. (7), we obtain

f ′′(z) = (2μ + 2σ + 1)z − (1 + 2μ)

z(1 − z)
f ′(z)

+
(
σ 2 + 2μσ + γ1 − γ3

)

z(1 − z)
f (z), (10)

where

μ = i
√

γ3,

σ = 1

2
+

√
1

4
− (γ1 + γ2 + γ3). (11)

Now comparing eqs (10) and (6), we get the values of
λ0(z) and s0(z) as follows:

λ0(z) = (1 + 2μ + 2σ)z − (1 + 2μ)

z(1 − z)

s0(z) =
(
σ 2 + 2μσ + γ1 − γ3

)

z(1 − z)
. (12)

The corresponding ro-vibrational energy spectrum is
calculated by means of the quantisation condition [15].
With these, we obtain

s0λ1 − s1λ0 = 0 ⇒ μ0 = −1

2

(
γ1 − γ3 + σ 2

σ

)
,

s1λ2 − s2λ1 = 0 ⇒ μ1

= −1

2

(
γ1 − γ3 + σ 2 + 2σ + 1

σ + 1

)
,

s2λ3 − s3λ2 = 0 ⇒ μ2

= −1

2

(
γ1 − γ3 + σ 2 + 4σ + 4

σ + 2

)
(13)
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and generally for arbitrary n, we have

μn =
(

γ3 − γ1

2(ν + σ)
− ν + σ

2

)
, (14)

where ν is the vibrational quantum number.
Using eqs (8) and (11), we obtain the ro-vibrational

energy spectrum for the GMP as

Enl = − h̄2α2

2μ

(
Q1

2(ν + σ)
+ ν + σ

2

)2

+ Q2, (15)

where

Q1 = J(J + 1)(D1 + D2)

α2

+ 2μ

h̄2α2

(
q̃ D

q2 + A + q̃C2
)

,

Q2 = J (J + 1)h̄2

2μ
(D0 + D1 + D2)

+ (
A + q̃C2) . (16)

3. Partition function and thermodynamic
properties

The total contribution of the bound state to the ro-
vibrational partition function of a diatomic molecule at
temperature T can be written as

Z(β) =
νmax∑

ν=0

e−βEn,J , (17)

where β = (kBT )−1 with kB being the Boltzmann con-
stant and Eν,J is the rotation–vibrational energy of the
νth bound state. Substituting eq. (16) into eq. (17) gives

Z(β) =
νmax∑

ν=0

e
−β

[
Q2− h̄2α2

2μ

(
Q1

2(ν+σ)
+ ν+σ

2

)2
]

, (18)

where

νmax = √
Q1 − 1

2

(
1 + √

1 − 4(γ1 + γ2 + γ3)
)

.

(19)

In order to evaluate partition function, we write the Pois-
son summation formula as [3,5,11],
νmax∑

ν=0

f (n) = 1

2
[ f (0) − f (νmax + 1)]

+
∞∑

m=−∞

∫ νmax+1

0
f (x)e−i2πmxdx . (20)

However, for the lowest order approximation, the
Poisson summation formula becomes [3,5,11]

νmax∑

ν=0

f (n)= 1

2
[ f (0)− f (νmax + 1)] +

∫ νmax+1

0
f (x)dx .

(21)

Applying eq. (21) for the partition function of eq. (18),
we get

Z(β) = 1

2

[
e−β

(
Q2−p1 p2

2

)
− e−β

(
Q2−p1 p2

3

)

+
∫ νmax

0

(
e
−aβ− bβ

ρ2 −cβρ2
)

dρ

]
(22)

where

p1 = h̄2α2

2μ
, p2 =

(
Q1

2νmax
+ νmax

2

)
,

p3 =
(

Q1

2(νmax + 1 + σ)
+ (νmax + 1 + σ)

2

)
,

ρ = x + σ, a = h̄2α2Q2
1

4μ
− Q2,

b = h̄2α2Q2
1

8μ
, c = h̄2α2

4μ
. (23)

Evaluating the integral in eq. (22), we obtain the ro-
vibrational partition function for the diatomic molecules
with GMP model as

Z(β) = 1

2

⎡

⎣e−β
(
Q2−p1 p2

2

)
− e−β

(
Q2−p1 p2

3

)

+ e−cβρ2−aβ
√
bβ

⎛

⎝2νmaxe
− bβ

ν2
max√

bβ

+
2
√
bπβerf

(√
bβ

νmax

)

√
bβ

− 2
√

π

⎞

⎠

⎤

⎦ , (24)

where erfi(x) is the imaginary error function defined as
[8,9]

erfi(x) = −ierf(i x) = 2√
π

∫ x

0
et

2
dt (25)

and erf(x) denotes the error function which is a special
function of the sigmoid shape [8,9]. In Maple software
the imaginary error function is given as erfi(x) and can
be used in many numerical calculations.

We have plotted in figure 1a, the exact and semiclas-
sical partition functions as a function of temperature.
Also, we have plotted the exact, semiclassical partition
including zero temperature in figure 1b. As shown in fig-
ure 1a, the semiclassical partition function is very close
to the exact partition function. It deviates from exact par-
tition function as the temperature increases. Similarly,
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Figure 1. (a) Plot of the exact partition function (eq. (18))
and the semiclassical partition function (eq. (22)) as a function
of β at νmax = 25, (b) plot of the exact partition function (eq.
(18)) and the semiclassical partition function (eq. (22)) as
a function of β at zero temperature and at νmax = 25 and
(c) vibrational partition function Z as a function of β for
different νmax.

as shown in figure 1b the semiclassical partition func-
tion deviates from the exact partition function and it is
approximately the same at zero temperature.

With the help of the vibrational partition function of
eq. (24), we can determine the thermodynamic proper-
ties for the potential model as follows:

(1) The vibrational mean energy U

U (β) = −∂nZ(β)

∂β

= −
⎛

⎝1

2
e−cρ2β−aβ

√
βb

⎛

⎝2νmaxe
− βb

ν2
max√

βb

+
2
√

βberf
(√

βb
νmax

)

√
βb

− 2
√

π

⎞

⎠

+1

2

[
e−β

(
Q2−p1 p2

2

)
− e−β

(
Q2−p1 p2

3

)]
⎞

⎠

−1

× [�1 + �2] , (26)

where

�1 = −1

2

(
cρ2 + a

)
e−cρ2β−aβ

√
βb

⎛

⎝2νmaxe
− βb

ν2
max√

βb

+
2
√

πβberf
(√

βb
νmax

)

√
βb

− 2
√

π

⎞

⎠

+1

4
e−cρ2β−aβ

√
βb

⎛

⎝2νmaxe
− βb

ν2
max√

βb

+
2
√

πβberf
(√

βb
νmax

)

√
βb

− 2
√

π

⎞

⎠ B, (27)

�2 = 1

2
e−cρ2β−aβ

√
βb

⎛

⎝−νmaxe
− βb

ν2
max b

(bβ)
3
2

−
b

3
2
√

βπerf
(√

βb
νmax

)

(bβ)
3
2

+
√

βberf
(√

βb
νmax

)

√
βb

−2
√

π

⎞

⎠ + 1

2

(
e−β

(
Q2−p1 p2

2

)
− e−β

(
Q2−p1 p2

3

))
.

(28)
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(2) Vibrational mean free energy F

F = − 1

β
nZ(β) = − 1

β
n

⎛

⎝1

2

⎡

⎣e−β
(
Q2−p1 p2

2

)
− e−β

(
Q2−p1 p2

3

)

+ e−cβρ2−aβ
√
bβ

⎛

⎝2νmaxe
− bβ

ν2
max√

bβ
+

2
√
bπβerf

(√
bβ

νmax

)

√
bβ

− 2
√

π

⎞

⎠

⎤

⎦

⎞

⎠ . (29)

(3) Vibrational specific heat capacity C

C = ∂U

∂T
= −kβ2 ∂U (β)

∂β
= −kβ2 1

�

(
ϒ

�

)
(30)

where

� =
⎛

⎝1

2
e−βcρ2−aβ

√
bβ

⎛

⎝2νmaxe
− βb

ν2
max√

βb
+

2
√

πβberf
(√

βb
νmax

)

√
βb

− 2
√

π

⎞

⎠ + 1

2
e−β

(
Q2−p1 p2

2

)
− 1

2
e−β

(
Q2−p1 p2

3

)
⎞

⎠

2

,

(31)

� =
⎛

⎝1

2
e−βcρ2−aβ

√
βb

⎛

⎝2νmaxe
− βb

ν2
max√

βb
+

2
√

πbβerf
(√

βb
νmax

)

√
βb

− 2
√

π

⎞

⎠ + 1

2
e−β

(
Q2−p1 p2

2

)
− 1

2
e−β

(
Q2−p1 p2

2

)
⎞

⎠

−

⎛

⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜
⎜⎜
⎜⎜
⎜⎜
⎝

1
2

(−cρ2 − a
)

e−βcρ2−aβ√
βb

(
2νmaxe

− βb
ν2
max√

βb
+ 2

√
πbβerf

( √
βb

νmax

)

√
βb

− 2
√

π

)

+1
4

e−βcρ2−aβ√
βb

(
2νmaxe

− βb
ν2
max√

βb
+ 2

√
πbβerf

( √
βb

νmax

)

√
βb

− 2
√

π

)

b

+1
2 e−βcρ2−aβ√

βb

⎛

⎜
⎜
⎜
⎝

−2be
− βb

ν2
max

νmax
√

βb
− νmaxbe

− βb
ν2
max

(bβ)
3
2

+
√

πbβerf
( √

βb
νmax

)

β
√
b

− b
√

πβbβerf
( √

βb
νmax

)

(βb)
3
2

+2be
− bβ

ν2
max

νmax
√

βb

⎞

⎟
⎟
⎟
⎠

+1
2 e−β

(
Q2−p1 p2

2

)
− 1

2 e−β
(
Q2−p1 p2

2

)

⎞

⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟
⎟⎟
⎟⎟
⎟⎟
⎠

2

, (32)

ϒ =
⎛

⎝1

2

(−cρ2 − a
)2

e−βcρ2−aβ
√
bβ

⎛

⎝2νmaxe
− bβ

ν2
max√

bβ
+

2
√

πbβerf
(√

bβ
νmax

)

√
bβ

− 2
√

π

⎞

⎠

⎞

⎠

+1

2

(−cρ2 − a
)

e−βcρ2−aβ

√
bβ

⎛

⎝2νmaxe
− bβ

ν2
max√

bβ
+

2
√

πbβerf
(√

bβ
νmax

)

√
bβ

− 2
√

π

⎞

⎠ b

+
√
bβerf

(√
bβ

νmax

)

β
√
b

+ 2be
− bβ

ν2
max

νmax
√
bβ

−
√

πbβerf
(√

bβ
νmax

)
b

(bβ)
3
2

+ (−cρ2 − a
)

e−βcρ2−aβ
√
bβ

×
⎛

⎝−2be
− bβ

ν2
max√

bβ
− νmaxbe

− bβ

ν2
max

(bβ)
3
2

⎞

⎠ − 1

8

e−βcρ2−aβ

(bβ)
3
2

⎛

⎝2νmaxe
− bβ

ν2
max√

bβ

+
2
√
bπβerf

(√
bβ

νmax

)

√
bβ

− 2
√

π

⎞

⎠ b2 + 1

2

e−βcρ2−aβ

√
bβ

⎛

⎝−2be
− bβ

ν2
max

νmax
√
bβ

− 2νmaxbe
− bβ

ν2
max

(bβ)
3
2
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+
√
bπβerf

(√
bβ

νmax

)

β
√
b

+ 2be
− bβ

ν2
max

νmax
√
bβ

−
√
bπβerf

(√
bβ

νmax

)
b

(bβ)
3
2

− 2
√

π

⎞

⎠ b

+1

2
e−βcρ2−aβ

√
bβ

⎛

⎜
⎜⎜
⎝

2b2e
− bβ

ν2
max

ν3
max

√
bβ

+ 2b2e
− bβ

ν2
max

νmax(bβ)
3
2

− 1
2

√
bβerf

( √
bβ

νmax

)

β
3
2
√
bβ

+ 3
2

νmaxb2e
− bβ

ν2
max

(bβ)
5
2

−
√
bπerf

( √
bβ

νmax

)
b

√
β(bβ)

3
2

+ be
− bβ

ν2
max

βνmax(bβ)
1
2

− 2b
5
2 e

− bβ
ν2
max

ν3
max

√
bβ

− 2b
5
2 e

− bβ
ν2
max

νmax(bβ)
3
2

+ 3
2

√
bβπerf

( √
bβ

νmax

)
b2

(bβ)
5
2

⎞

⎟
⎟⎟
⎠

+1

2

(
p1 p

2
2 − Q2

)2
e−β

(
Q2−p1 p2

2

)
− 1

2

(
p1 p

2
3 − Q2

)2
e−β

(
Q2−p1 p2

3

)
. (33)

(4) Vibrational entropy S

S = knZ(β) − kβ
∂

∂β
nZ(β)

= knZ(β) − kβ

Z(β)
(�1 + �2) , (34)

where

�1 = 1

2

(−cρ2 − a
)

e−βcρ2−aβ
√
bβ

×
⎛

⎝2νmaxe
− bβ

ν2
max√

bβ
+

2
√

πbβerf
(√

bβ
νmax

)

√
bβ

− 2
√

π

⎞

⎠

Figure 2. Vibrational partition function Z as a function of
νmax for different β.

+1

4

e−βcρ2−aβ

√
bβ

⎛

⎝2νmaxe
− bβ

ν2
max√

bβ

+
2
√

πbβerf
(√

bβ
νmax

)

√
bβ

− 2
√

π

⎞

⎠ b, (35)

�2 = 1

2
e−βcρ2−aβ

√
bβ

⎛

⎝−νmaxbe
− bβ

ν2
max

(bβ)
3
2

+
√

πberf
(√

bβ
νmax

)

β
√
b

−
b

3
2
√

πβerf
(√

bβ
νmax

)

(bβ)
3
2

⎞

⎠

+1

2

(
p1 p

2
2 − Q2

)2
e−β

(
Q2−p1 p2

2

)

−1

2

(
p1 p

2
3 − Q2

)2
e−β

(
Q2−p1 p2

3

)
. (36)

Figure 3. Vibrational mean energy U as a function of β for
different νmax.
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Figure 4. Vibrational mean energy U as a function of νmax
for different β.

Figure 5. Ro-vibrational entropy S as a function of β for
different νmax.

4. Discussions

In this paper, we consider electronic state of the potas-
sium dimer K2(X1�+

g ) molecules using the energy
eigenvalues of eq. (15). We take into account the GMP
with the following potential parameters as [16]

A + q̃C2 = De,

(B + 2q̃CD) = 2De,

q = − exp(−αre) . (37)

Figure 6. Vibrational entropy as a function of νmax for dif-
ferent β.

Figure 7. Vibrational specific heat capacity as a function of
β for different νmax.

The experimental values of X1�+
g states of potas-

sium (K2) dimer are taken from ref. [19]: De =
4400.00 cm−1, re = 3.9244 A, α = 0.0562×103 cm−1

and μ = 19.4800 U. Now using these experimental data
as our input, we plot the vibrational partition function for
the X1�+

g states of K2 for various upper bound vibration
quantum number νmax = 25, 50 and 75 and temper-
ature β = 0.005, 0.008 and 0.01 in figures 1 and 2
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Figure 8. Vibrational specific heat capacity as a function of
νmax for different β.

Figure 9. Vibrational free energy F as a function of β for
different νmax.

respectively. It is observed that the partition function Z
monotonically increases as β and νmax increase for the
potassium dimer. We show in figures 3 and 4 the plot
of the vibrational mean energy for various values of β

and νmax. It shows that the mean energy U decreases
monotonically with increasing values of β and νmax.
We plotted the entropy S as a function of temperature

Figure 10. Vibrational free energy as a function of νmax for
different β.

β and upper bound vibration quantum number νmax in
figures 5 and 6 respectively. It is shown that the entropy
S monotonically increases as β and νmax increase for
the potassium dimer. Figures 7 and 8 show the plot of
the vibrational specific heat capacity C of potassium
dimer. In figure 7 the specific heat capacity C decreases
with increase in temperature. However, in figure 8, the
specific heat capacity first increases to maximum values
and converge as νmax is increased. The plot of the mean
free energy F is shown in figures 9 and 10. As shown
in figure 9 the mean free energy F decreases monoton-
ically with increasing νmax while F increases with β as
shown in figure 10.

5. Conclusions

In this work, we solved the Schrödinger equation with
GMP within the framework of asymptotic iteration
method and obtained the energy spectra in a closed form.
We calculated the vibrational partition function Z in a
closed form and used it to study the thermodynamic
properties of vibrational mean energy U , vibrational
entropy S, vibrational mean free energy F and vibra-
tional specific heat capacity C . We have plotted the
behaviour of the thermodynamic functions as a func-
tion of temperature β and the upper bound vibration
quantum number νmax for the electronic state X1�+

g of
potassium dimer. Finally, the improved Rosen–Morse
[20] and Manning–Rosen potentials [21,22] are all spe-
cial cases of general molecular potential [16] and this
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study has many applications in entropy of a gaseous
system [23] and in non-central potential model [24].
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