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Abstract. Based on three drive–one response system, in this article, the authors investigate a novel synchronization
scheme for a class of chaotic systems. The new scheme, multiswitching compound antisynchronization (MSCoAS),
is a notable extension of the earlier multiswitching schemes concerning only one drive–one response system model.
The concept of multiswitching synchronization is extended to compound synchronization scheme such that the state
variables of three drive systems antisynchronize with different state variables of the response system, simultaneously.
The study involving multiswitching of three drive systems and one response system is first of its kind. Various
switched modified function projective antisynchronization schemes are obtained as special cases of MSCoAS, for
a suitable choice of scaling factors. Using suitable controllers and Lyapunov stability theory, sufficient condition
is obtained to achieve MSCoAS between four chaotic systems and the corresponding theoretical proof is given.
Numerical simulations are performed using Lorenz system in MATLAB to demonstrate the validity of the presented
method.
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1. Introduction

Synchronization of chaotic systems has been inten-
sively investigated over the past two decades and lots of
theoretical results have been obtained [1–5]. The poten-
tial interdisciplinary applications in physics, biological
systems, electrical engineering, information process-
ing, communication theory and many other fields have
been extensively explored in the literature on chaos
synchronization [6–10]. Due to the diverse nature of
the chaotic systems, many types of synchronization
methods have been proposed and investigated in the
past years such as complete synchronization [11–13],
antisynchronization [14,15], projective synchronization
[16–18], lag synchronization [19–21], phase synchro-
nization [22,23], reduced order synchronization [24,25],
increased order synchronization [26,27], etc. More-
over, to achieve chaos synchronization, various methods
have been developed and widely studied including
active control method [28,29], adaptive control method

[30,31], sliding mode control [32,33], active backstep-
ping method [34,35].

Most of the work in chaos synchronization, upto
now, has been restricted to the synchronization stud-
ies between one drive system–one response system
model. The synchronization problem among three or
more chaotic systems is still a relatively unexplored
area of research and deserves investigation. In the recent
years, new ideas have been initiated in the study of
chaos synchronization wherein three or more chaotic
systems are involved. Synchronization schemes such
as combination synchronization [36–39], combination–
combination synchronization [40–43], compound syn-
chronization [44,45], double compound synchroniza-
tion [46], compound–combination synchronization [47,
48] etc. have recently been presented. In addition to their
own intrinsic interest, these schemes are significant in
enhancing the security of information transmitted via
chaotic signals because of the complexity which they
bring in transmitted signal.
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Recently, Sun et al introduced the scheme of com-
pound synchronization among four chaotic systems in
[44]. In this method, the drive system is divided into
two categories: Scaling drive system and base drive sys-
tem. The scaling drive system scales the signals of two
base drive systems, generating resultant signals. Then
the response system is synchronized with the resultant
signals. This scheme of compound synchronization is an
extension and improvement of the existing synchroniza-
tion schemes in the literature. In the existing literature
on compound synchronization, the corresponding state
variables of the drive systems have been combined to
form a resultant signal which is in turn synchronized
with the corresponding state variable of the response
system.

Multiswitching synchronization was first proposed
by Ucar et al in [49]. In the multiswitching synchro-
nization scheme, different states of the drive system
are synchronized with different state of the response
system. Thus, a wide range of possible synchroniza-
tion directions exist for multiswitching synchronization
schemes. The relevance of this kind of synchroniza-
tion schemes to information security makes them a
very interesting topic to be explored. A few studies of
this kind have been reported in the literature [50–52].
Almost the entire reported work in multiswitching syn-
chronization relates to single drive and single response
system. Only recently, multiswitching combination syn-
chronization scheme involving multiple chaotic drive
and response systems has been reported [53–56]. Nev-
ertheless, the diverse possibilities of multiswitching
synchronization have not been investigated yet with
regards to compound synchronization involving three
drive systems.

Motivated by the above discussions, in this paper,
we present a new multiswitching compound antisyn-
chronization (MSCoAS) scheme, wherein three drive
chaotic systems are multiswitched in various manner to
form a resultant signal which is then antisynchronized
with some state variable of a single response chaotic
system. To the best of our knowledge, multiswitching
synchronization study involving four chaotic systems
has not been reported before. Using Lyapunov stability
theory and nonlinear controllers we propose sufficient
condition for achieving MSCoAS. Numerical simula-
tions have been performed to illustrate and verify the
effectiveness of the proposed method. The main contri-
butions of this study are: (a) The multiswitching scheme
is extended to three drive and one response system and
generalized for a class of chaotic systems. (b) The trans-
mitted resultant compound signal is very complex and
will thus provide improved performances for secure
communication and information processing. (c) Suit-
able controllers are constructed which, in special cases,

adjust themselves accordingly to achieve novel modi-
fied function projective antisynchronization where the
scaling factor is a chaotic system.

The paper is organized as follows. In §2 the formula-
tion of MSCoAS is stated. In §3, three Lorenz multidrive
chaotic systems are compound antisynchronized with
Lorenz response chaotic system in multiswitched com-
pound manner. Numerical simulations are performed to
validate the scheme in §4. Finally, the conclusions are
given in §5.

2. Formulation of multiswitching compound
antisynchronization problem

In this section, we formulate the scheme of MSCoAS
of chaotic systems. We need three chaotic drive systems
and one response system. Let the scaling drive system
be described by

ẋ = f1(x) (1)

and the base drive systems be given by

ẏ = f2(y), (2)

ż = f3(z). (3)

The response system is given by

ẇ = g(w) + u. (4)

Here x = (x1, x2, x3, ..., xn)T , y = (y1, y2, y3, ..., yn)T ,
z = (z1, z2, z3, ..., zn)T , andw = (w1, w2, w3, ..., wn)

T

are state vectors of systems (1)–(4) respectively; f1 =
( f11, f12, f13, ..., f1n)T , f2 = ( f21, f22, f23, ..., f2n)T ,
f3 = ( f31, f32, f33, ..., f3n)T , and g = (g1, g2, g3, ...,

gn)T are four continuous vector functions, u = (u1, u2,

..., un)T : Rn × Rn × Rn × Rn → Rn are controllers
to be designed for the response system (4). To solve
the compound antisynchronization problem the error is
defined as e = AX (BY + CZ) + DW .

DEFINITION 1

If there exist four constant diagonal matrices A, B,C,

D ∈ Rn×n and D �= 0 such that

lim
t→∞ ‖e‖ = lim

t→∞ ‖AX (BY + CZ) + DW‖ = 0, (5)

where ‖ · ‖ is the matrix norm, then the drive systems
(1)–(3) are said to be in compound antisynchronization
with the response system (4). Here we assume X =
diag(x1, x2, x3, ..., xn), Y = diag(y1, y2, y3, ..., yn),
Z = diag(z1, z2, z3, ..., zn), and W = diag(w1, w2,

w3, ..., wn). The constant matrices A, B, C, D are
called the scaling matrices, drive system (1) is called
the scaling drive system and drive systems (2) and (3)
are called the base drive systems.
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Remark 1. In Definition 1 the state vectors x =
(x1, x2, x3, ..., xn)T , y = (y1, y2, y3, ..., yn)T , z =
(z1, z2, z3, ..., zn)T , and w = (w1, w2, w3, ..., wn)

T are
designed as four diagonal matrices X = diag(x1, x2,

x3, ..., xn), Y = diag(y1, y2, y3, ..., yn), Z = diag(z1,

z2, z3, ..., zn) and W = diag(w1, w2, w3, ..., wn)

respectively. Observe that by this definition error is
obtained as a diagonal matrix

e = diag(e1, e2, e3, ..., en)

= AX (BY + CZ) + DW. (6)

Remark 2. If A = diag(α1, α2, α3, ..., αn), B =
diag(β1, β2, β3, ..., βn), C = diag(γ1, γ2, γ3, ..., γn),
and D = diag(δ1, δ2, δ3, ..., δn) then eq. (5) is equiv-
alent to saying that compound antisynchronization is
achieved between systems (1) and (4) when

lim
t→∞ el = lim

t→∞[αi xi (β j y j + γk zk) + δlwl] = 0, (7)

where e = diag(e1, e2, e3, ..., en) and l = 1, 2, ..., n.

Remark 3. Let us rewrite the components of e as

el(i jkl) = αi xi (β j y j + γk zk) + δlwl, (8)

where e = (e1(i jkl) , e2(i jkl) , e3(i jkl) , ..., en(i jkl) )
T , i, j, k,

l = 1, 2, ..., n and the subscript (ijkl) denotes the ith
component of x, jth component of y, kth component of
z, and lth component ofw. In relation to Definition 1, the
indices (ijkl) of the error states el(i jkl) are strictly chosen
to satisfy i = j = k = l (i, j, k, l = 1, 2, ..., n).

DEFINITION 2

If the indices of the error states in (7) are redefined such
that i = j = k �= l or i = j = l �= k or i = k = l �= j
or j = k = l �= i ; or i = j �= k = l or i = k �= j = l
or i = l �= j = k; or i = j �= k �= l or i = k �= j �= l
or i = l �= k �= j or i �= j = k �= l or i �= j �= k = l
or i �= k �= j = l; or i �= j �= k �= l and

lim
t→∞ e = lim

t→∞ ‖AX (BY + CZ) + DW‖ = 0, (9)

where i, j, k, l = 1, 2, ..., n, then the drive systems
(1)–(3) are said to be in multiswitching compound anti-
synchronization with the response system (4).

Remark 4. If A �= 0, B = 0 or C = 0, and D �= 0
then the MSCoAS will be turned into a novel type of
switched modified function projective antisynchroniza-
tion where the scaling factor is a chaotic system. Thus,
the compound of two drive systems can synchronize a
response system in multiswitching manner.

3. Synchronization theory

In this section, we achieve multiswitching compound
antisynchronization among three chaotic drive systems
(1)–(3) and one chaotic response system (4). Let the
control functions be defined as

ul = − 1

δl
φl −gl − 1

δl
K e, i, j, k, l = 1, 2, ..., n, (10)

where

φl = α1 f1i (β j y j + γk zk) + αi xi (β j f2 j + γk f3k),

l, j, k, l = 1, 2, ..., n (11)

and K = (K1, K2, K3, ..., Kn) is the gain matrix con-
trolling the rate of convergence and f1i , f2 j , and f3k ,
are the ith, jth, and kth components of f1, f2, and f3
respectively.

Theorem 1. If the control functions are chosen as
given in (10) then the drive systems (1)–(3) achieve
multiswitching compound antisynchronization with the
response system (4).

Proof. Using (8) the error dynamical system can be
written as

ėl(i jkl) = αi ẋi (β j y j + γk zk) + αi xi (β j ẏ j + γk żk)

+δlwl, i, j, k, l = 1, 2, ..., n

= αi f1i (β j y j + γk zk) + αi xi (β j f2 j + γk f3k)

+δl(gl + ul), (12)

where the indices (ijkl) satisfy one of the generic con-
ditions given in Definition 2.

Let the Lyapunov function be defined as

V = 1

2
eT e

= 1

2

n∑

l=1

(el(i jkl) )
2.

The derivative V̇ is obtained as

V̇ =
n∑

l=1

el(i jkl) ėl(i jkl) . (13)

Using (12) in the above equation we get

V̇ =
n∑

l=1

el(i jkl)[αi f1i (β j y j + γk zk)

+ αi xi (β j f2 j + γk f3k) + δl(gl + ul)].

Using (10) in the above equation, we choose the gain
matrix K in such a way that we get



90 Page 4 of 10 Pramana – J. Phys. (2017) 89:90

V̇ =
n∑

l=1

el(i jkl) (−Klel(i jkl) )

=
n∑

l=1

−Kl(el(i jkl) )
2.

Thus, we see that V̇ is negative definite. Using Lyapunov
stability theory, we get limt→∞ ‖e‖ = 0. This means
that the drive systems (1)–(3) achieve multiswitching
compound antisynchronization with response system
(4). �	

The following corollaries are easily obtained from
Theorem 1 and their proofs are omitted here.

COROLLARY 1

If A �= 0, B = 0, andC �= 0, i, j, k, l = 1, 2, ..., n, and
the control function is chosen as

ul = −αiγk

δl
[ f1i zk + xi f3k]

−gl − 1

δl
K e, i, j, k, l = 1, 2, ..., n

then the drive systems (1) and (3) achieve switchedmod-
ified function projective antisynchronization with the
response system (4).

COROLLARY 2

If A �= 0, B �= 0, andC = 0, i, j, k, l = 1, 2, ..., n, and
the control function is chosen as

ul = − αiβ j

δl
[ f1i y j + xi f2 j ] − gl − 1

δl
K e,

i, j, k, l = 1, 2, ..., n

then the drive systems (1) and (2) achieve switchedmod-
ified function projective antisynchronization with the
response system (4).

COROLLARY 3

If A = 0, and B = C = 0, i, j, k, l = 1, 2, ..., n, and
the control function is chosen as

ul = −gl − Ke, l = 1, 2, ..., n

then the equilibirium point (0, 0, ..., 0) of the response
system (4) is asymptotically stable.

4. Computational results and numerical
simulations

In this section, we achieve multiswitching compound
antisynchronization among four identical Lorenz chaotic

systems. The scaling drive Lorenz system is represented
by
⎧
⎨

⎩

ẋ1 = a1(x2 − x1),

ẋ2 = b1x1 − x1x3 − x2,

ẋ3 = x1x2 − c1x3,

(14)

and the two base drive systems are represented as fol-
lows:
⎧
⎨

⎩

ẏ1 = a2(y2 − y1),

ẏ2 = b2y1 − y1y3 − y2,

ẏ3 = y1y2 − c2y3,

(15)

⎧
⎨

⎩

ż1 = a3(z2 − z1),

ż2 = b3z1 − z1z3 − z2,

ż3 = z1z2 − c3z3.

(16)

The Lorenz response system is described as
⎧
⎨

⎩

ẇ1 = a4(w2 − w1) + u1,

ẇ2 = b4w1 − w1w3 − w2 + u2,

ẇ3 = w1w2 − c4w3 + u3,

(17)

where u1, u2, and u3 are the controllers to be designed.
In our synchronization scheme, we assume A =
diag (α1, α2, α3), B = diag(β1, β2, β3), C =
diag(γ1, γ2, γ3), and D = diag (δ1, δ2, δ3). The nota-
tions αi , β j , γk, δl (i, j, k, l = 1, 2, 3) representing the
scaling factors are set for the convenience of discussion
and may assume different or same values in applications.

Various switching combinations exist for defining
the error states for the drive–response systems (14)–
(17). In this paper, we present results for one randomly
selected error space vector combination formed out of
several switching possibilities. Let us define the error
e = (e1(2231)

, e2(3132)
, e3(1323)

) where

⎧
⎪⎨

⎪⎩

e1(2231)
= α2x2(β2y2 + γ3z3) + δ1w1,

e2(3132)
= α3x3(β1y1 + γ3z3) + δ2w2,

e3(1323)
= α1x1(β3y3 + γ2z2) + δ3w3.

(18)

We refer eq. (18) as Switch 1 for simplicity. For Switch
1, the error dynamical system is given as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1(2231)
= α2 ẋ2(β2y2 + γ3z3) + α2x2(β2 ẏ2 + γ3 ż3)

+ δ1ẇ1,

ė2(3132)
= α3 ẋ3(β1y1 + γ3z3) + α3x3(β1 ẏ1 + γ3 ż3)

+ δ2ẇ2,

ė3(1323)
= α1 ẋ1(β3y3 + γ2z2) + α1x1(β3 ẏ3 + γ2 ż2)

+ δ3ẇ3.

(19)
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Combining with eqs (14)–(17) the error system (19) is
transformed into the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė1(2231)
=α2(b1x1 − x1x3 − x2)(β2y2 + γ3z3)

+ α2x2(β2(b2y1 − y1y3 − y2)

+ γ3(z1z2 − c3z3)) + δ1(a4(w2 − w1))

+ δ1u1,

ė2(3132)
=α3(x1x2 − c1x3)(β1y1 + γ3z3)

+ α3x3(β1a2(y2 − y1) + γ3(z1z2 − c3z3))

+ δ2(b4w1 − w1w3 − w2) + δ2u2,

ė3(1323)
=α1a1(x2 − x1)(β3y3 + γ2z2)

+ α1x1(β3(y1y2 − c2y3)

+ γ2(b3z1 − z1z3 − z2))

+ δ3(w1w2 − c4w3) + δ3u3.

(20)

Theorem 2. If the control functions u1, u2, and u3 are
chosen such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = − 1

δ1
φ1 − a4(w2 − w1)

− 1

δ1
[α2x2(β2y2 + γ3z3) + δ1w1]

+ a1

δ1
[α3x3(β1y1 + γ3z3) + δ2w2]

− a2

δ1
[α1x1(β3y3 + γ2z2) + δ3w3],

u2 = − 1

δ2
φ2 − (b4w1 − w1w3 − w2)

− 1

δ2
[α3x3(β1y1 + γ3z3) + δ2w2]

− a1

δ2
[α2x2(β2y2 + γ3z3) + δ1w1]

+ a3

δ2
[α1x1(β3y3 + γ2z2) + δ3w3],

u3 = − 1

δ3
φ3 − (w1w2 − c4w3)

− 1

δ3
[α1x1(β3y3 + γ2z2) + δ3w3]

+ a2

δ3
[α2x2(β2y2 + γ3z3) + δ1w1]

− a3

δ3
[α3x3(β1y1 + γ3z3) + δ2w2],

(21)

then the drive systems (14)–(16) will achieve mul-
tiswitching compound antisynchronization with the
response system (17) where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ1 = α2(b1x1 − x1x3 − x2)(β2y2 + γ3z3)

+ α2x2(β2(b2y1 − y1y3 − y2)

+ γ3(z1z2 − c3z3)),

φ2 = α3(x1x2 − c1x3)(β1y1 + γ3z3)

+ α3x3(β1a2(y2 − y1) + γ3(z1z2 − c3z3)),

φ3 = α1a1(x2 − x1)(β3y3 + γ2z2)

+ α1x1(β3(y1y2 − c2y3)

+ γ2(b3z1 − z1z3 − z2)).

(22)
Proof. For simplicity, we rewrite system (20) as
⎧
⎪⎨

⎪⎩

Ė1 = φ1 + δ1(a4(w2 − w1)) + δ1u1,

Ė2 = φ2 + δ2(b4w1 − w1w3 − w2) + δ2u2,

Ė3 = φ3 + δ3(w1w2 − c4w3) + δ3u3,

(23)

where E1 = e1(2231)
, E2 = e2(3132)

, and E3 = e3(1323)

and φ1, φ2, and φ3 are as given in eq. (22). Consider the
Lyapunov function in the form of

V (E(t)) = 1

2
(E1

2 + E2
2 + E3

2). (24)

The derivative of V along the trajectories of (23) is
obtained as

V̇ (E(t)) = E1 Ė1 + E2 Ė2 + E3 Ė3

= E1(φ1 + δ1(a4(w2 − w1)) + δ1u1)

+ E2(φ2 + δ2(b4w1 − w1w3

− w2) + δ2u2)

+ E3(φ3 + δ3(w1w2 − c4w3) + δ3u3).

(25)

Substituting the values of u1, u2, and u3 in (25), we get

V̇ (E(t)) = E1

{
φ1 + δ1a4(w2 − w1)

+δ1

{
− 1

δ1
φ1 − a4(w2 − w1)

− 1

δ1
[α2x2(β2y2 + γ3z3) + δ1w1]

+a1

δ1
[α3x3(β1y1 + γ3z3) + δ2w2]

−a2

δ1
[α1x1(β1y1 + γ2z2) + δ3w3]

}}

+E2

{
φ2 + δ2(b4w1 − w1w3 − w2)

+δ2

{
− 1

δ2
φ2 − (b4w1 − w1w3 − w2)

− 1

δ2
[α3x3(β1y1 + γ3z3) + δ2w2]

−a1

δ2
[α2x2(β2y2 + γ3z3) + δ1w1]
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Figure 1. 3D phase plot of compound of multidrive Lorenz system.

+a3

δ2
[α1x1(β1y1 + γ2z2) + δ3w3]

}}

+E3

{
φ3 + δ3(w1w2 − c4w3)

+δ3

{
− 1

δ3
φ3 − (w1w2 − c4w3)

− 1

δ3
[α1x1(β1y1 + γ2z2) + δ3w3]

+a2

δ3
[α2x2(β2y2 + γ3z3) + δ1w1]

−a3

δ3
[α3x3(β1y1 + γ3z3) + δ2w2]

}}
.

This can be written as

V̇ (E(t)) = E1 {−[α2x2(β2y2 + γ3z3) + δ1w1]
+ a1[α3x3(β1y1 + γ3z3) + δ2w2]
− a2[α1x1(β1y1 + γ2z2) + δ3w3]}
+ E2 {−[α3x3(β1y1 + γ3z3) + δ2w2]
− a1[α2x2(β2y2 + γ3z3) + δ1w1]
+ a3[α1x1(β1y1 + γ2z2) + δ3w3]}
+ E3 {−[α1x1(β1y1 + γ2z2) + δ3w3]
+ a2[α2x2(β2y2 + γ3z3) + δ1w1]
− a3[α3x3(β1y1 + γ3z3) + δ2w2]} .

This can be further rewritten as

V̇ (E(t)) = E1(−E1 + a1E2 − a2E3)

+ E2(−E2 − a1E1 + a3E3)

+ E3(−E3 + a2E1 − a3E2)

= − E1
2 − E2

2 − E3
2

= − ET E,

where ET = (E1, E2, E3)
T . Thus, we see that V̇ (E(t))

is negative definite. According to Lyapunov stabil-
ity theory, we know Ei → 0 (i = 1, 2, 3), that is,
limt→∞ ‖E‖ = 0, which means that the drive systems
(14)–(16) will achieve multiswitching compound anti-
synchronization with the response system (17). �	

Remark 5. In many previous studies, one common
problem on the compound of multiple drive system is
that the compound signal often is asymptotically sta-
ble or emanative. This is not desirable as the dynamic
evolution of the signal obtained by compound of mul-
tidrive system is either too easy or completely useless for
transmitting information signals. However, in our work,
the resulting compound system is still chaotic and the
dynamic evolution is more abundant and complex as
can be seen in figure 1. This can be utilized to attain
improved performances for secure communication and
information processing in the future.

Remark 6. In Theorem 2, the designed control inputs
u1, u2, and u3 are highly nonlinear in nature due to
the high nonlinearity present in the structural design of
the drive system signals where the resultant signal of the
sum of two drive systems is being scaled by signals of
the scaling drive system. To design a less complicated
control input for achieving desired multiswitching com-
pound antisynchronization will be the topic of our future
research.

The following corollaries can be easily obtained from
Theorem 2, but their proofs are omitted here for brevity.
Suppose A �= 0, B = 0, and C �= 0, then we have the
following corollary:
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COROLLARY 4

If the control functions u1, u2, and u3 are chosen such
that

u1 = − α2γ3

δ1
[(b1x1 − x1x3 − x2)z3

+ x2(z1z2 − c3z3)]
− a4(w2 − w1) − 1

δ1
[α2γ3x2z3 + δ1w1]

+ a1

δ1
[α3γ3x3z3 + δ2w2]

− a2

δ1
[α1γ2x1z2 + δ3w3],

u2 = − α3γ3

δ2
[(x1x2 − c1x3)z3 + x3(z1z2 − c3z3)]

− (b4w1 − w1w3 − w2)

− 1

δ2
[α3γ3x3z3 + δ2w2]

− a1

δ2
[α2γ3x2z3 + δ1w1]

+ a3

δ2
[α1γ2x1z2 + δ3w3],

u3 = − α1γ2

δ3
[a1(x2 − x1)z2 + x1(b3z1 − z1z3 − z2)]

− (w1w2 − c4w3) − 1

δ3
[α1γ2x1z2 + δ3w3]

+ a2

δ3
[α2γ3x2z3 + δ1w1]

− a3

δ3
[α3γ3x3z3 + δ2w2],

then the drive systems (14) and (16)will achieve a novel
type of switched modified function projective antisyn-
chronization with response system (17).

Suppose A �= 0, B �= 0, and C = 0, then we have the
following corollary:

COROLLARY 5

If the control functions u1, u2, and u3 are chosen such
that

u1 = − α2β2

δ1
[(b1x1 − x1x3 − x2)y2

+ x2(b2y1 − y1y3 − y2)]
− a4(w2 − w1) − 1

δ1
[α2β2x2y2 + δ1w1]

+ a1

δ1
[α3β1x3y1 + δ2w2]

− a2

δ1
[α1β3x1y3 + δ3w3],

u2 = − α3β1

δ2
[(x1x2 − c1x3)y1 + a2x3(y2 − y1)]

− (b4w1 − w1w3 − w2)

− 1

δ2
[α3β1x3y1 + δ2w2]

− a1

δ2
[α2β2x2y2 + δ1w1]

+ a3

δ2
[α1β3x1y3 + δ3w3],

u3 = − α1β3

δ3
[a1(x2 − x1)y3 + x1(y1y2 − c2y3)]

− (w1w2 − c4w3) − 1

δ3
[α1β3x1y3 + δ3w3]

+ a2

δ3
[α2β2x2y2 + δ1w1]

− a3

δ3
[α3β1x3y1 + δ2w2],

then the drive systems (14) and (15)will achieve a novel
type of switched modified function projective antisyn-
chronization with response system (17).

Suppose A = 0 or B = C = 0, then we have the
following corollary:

COROLLARY 6

If the control functions u1, u2, and u3 are chosen such
that

u1 = a4(w1 − w2) − w1 + a1

δ1
δ2w2 − a2

δ1
δ3w3,

u2 = (w1w3 + w2 − b4w1) − w2 − a1

δ2
δ1w1

+ a3

δ2
δ3w3,

u3 = (c4w3 − w1w2) − w3 + a2

δ3
δ1w1 − a3

δ3
δ2w2,

0 5 10 15 20 25 30
time

-1500

-1000

-500

0

500

1000

1500
x2(y2+z3)

w1

Figure 2. Response for states x2(y2 + z3) and w1 for the
drive systems (14)–(16) and the response system (17).
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Figure 3. Response for states x3(y1 + z3) and w2 for the
drive systems (14)–(16) and the response system (17).
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Figure 4. Response for states x1(y3 + z2) and w3 for the
drive systems (14)–(16) and the response system (17).
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Figure 5. Synchronization errors e1(2231)
, e2(3132)

, and e3(1323)

between the drive systems (14)–(16) and the response system
(17).
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Figure 6. Time response of the controllers used to achieve
compound antisynchronization between the drive systems
(14)–(16) and the response system (17).
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Figure 7. Ratios between the controllers u1, u2 and u3 and
the uncontrolled response system signals w1, w2, and w3.

then the equilibrium point (0, 0, 0) of the response sys-
tem (17) is asymptotically stable.

To demonstrate the effectiveness of our proposed method
we perform numerical simulations in MATLAB using
fourth-order Runge–Kutta method and give the results
for Switch 1. In the simulation process we assume α1 =
α2 = α3 = 1, β1 = β2 = β3 = 1, γ1 = γ2 = γ3 = 1,
and δ1 = δ2 = δ3 = 1. Note that δi is the scaling
factor of the response system, and its value is set to
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Figure 8. Ratios between the controllers u1, u2 and u3
and the drive system signals x2(y2 + z3), x3(y1 + z3), and
x1(y3 + z2).

unity to ensure that only the response system antisyn-
chronizes with compound of multidrive system, while
αi , β j , and γk may take any values. The system parame-
ters of Lorenz system are taken as a1 = a2 = a3 = a4 =
10,b1 = b2 = b3 = b4 = 28, and c1 = c2 = c3 = c4 =
8/3 and initial states of the chaotic drive and response
system are given by (x1(0), x2(0), x3(0))=(0, 1, 0.5),
(y1(0), y2(0), y3(0))=(0.1, 0, 1.5), (z1(0), z2(0),

z3(0))=(1, 0.5, 1) and (w1(0), w2(0), w3(0)) = (4,

−2, 3). Figure 1 shows that the switched compound
drive system remains chaotic. The time response of the
synchronized states w1, w2, and w3 of the response sys-
tem with states x2(y2 + z3), x3(y1 + z3), and x1(y3 + z2)

of the drive systems (14)–(16) respectively is illustrated
in figures 2, 3, 4. Figure 5 displays the time response of
synchronization errors e1(2231)

, e2(3132)
, and e3(1323)

. Fig-
ures 2–5 show that the drive systems (14)–(16) achieve
multiswitching compound antisynchronization success-
fully with the response system (17). Figure 6 shows the
time response of the controllers used in Theorem 2 and
figures 7 and 8 display the ratios of the controllers with
the corresponding uncontrolled response system signal
and compound drive system signal respectively.

5. Conclusions

In this paper, we have introduced a new type of syn-
chronization involving four chaotic systems, namely
MSCoAS. Using Lyapunov stability theory some suf-
ficient conditions are obtained for achieving MSCoAS

of four chaotic systems. In this new synchronization
scheme, the state variables involved in the compound
of multidrive system are multiswitched in various ways
to antisynchronize with different state variables of the
response system. The main advantages of the proposed
scheme can be summarized as:

(i) For synchronization achieved in this manner, the
possible combinations for error space vectors in which
synchronization may take place is very large due to
multiswitching. In the context of secure communica-
tion applications [44,45], this scheme will provide better
resistance and antiattack ability than normal synchro-
nization schemes as it would be very difficult for the
intruder to predetermine the combination in which syn-
chronization would occur.

(ii) The proposed scheme theoretically guarantees
good control performance.

(iii) The proposed scheme will be helpful in synchro-
nizing multiple chaotic systems and producing complex
resultant signals which will further strengthen the secu-
rity of the transmitted signals.

(iv) A novel type of switched modified function pro-
jective synchronization is obtained as a special case of
MSCoAS.

The main disadvantage of the obtained results lies in
the highly nonlinear nature of the designed controller.
Numerical simulations are performed using Lorenz sys-
tem to demonstrate the validity and effectiveness of our
proposed scheme. The presented scheme MSCoAS may
form the basis of various other synchronization studies
in future. Using fractional chaotic systems as the drive
and the response systems, or utilizing function scaling
factors or considering the chaotic system with parame-
ter uncertainty are some interesting directions for future
work.
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