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Abstract. Two three-dimensional (3D) lattice Boltzmann models in the framework of coupled double-distribution-
function approach for compressible flows, in which specific-heat ratio and Prandtl number can be adjustable, are
developed in this paper. The main differences between the two models are discrete equilibrium density and total
energy distribution function. One is the D3Q25 model obtained from spherical function, and the other is the
D3Q27 standard lattice model obtained from Hermite expansions of the corresponding continuous equilibrium
distribution functions. The two models are tested by numerical simulations of some typical compressible flows, and
their numerical stability and precision are also analysed. The results indicate that the two models are capable for
supersonic flows, while the one from Hermite expansions is not suitable for compressible flows with shock waves.
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1. Introduction

The lattice Boltzmann method (LBM) [1–3] has become
a prominent tool in computational fluid dynamic (CFD).
Unlike the conventional numerical methods, which are
based on discretization of macroscopic governing equa-
tions, and unlike the molecular dynamics method, which
is based on molecular representation with complicated
molecule collision rules, the LBM is based on micro-
scopic models and mesoscopic kinetic equations for
particle distribution functions. It simulates fluid flows
by tracking the evolutions of the distribution functions
and then accumulates the distributions to obtain macro-
scopic averaged properties. As a mesoscopic numerical
method based on the kinetic theory, LBM can describe
complex flows from an intuitive view of particle distri-
bution. Its advantages include high efficiency in parallel
computing, complex boundary conditions can be eas-
ily formulated in terms of elementary mechanics rules,
and simple programming [4,5]. It has been applied to
various fluid applications successfully [6–13].

The basic idea of LBM is to solve discrete Boltzmann
Bhatnagar–Gross–Krook (BGK) equation, in which the
key issue is the distribution function. The distribution
function is the discrete velocity Boltzmann equation

(DVBE)-based method. Once the DVBE model is deter-
mined, the fluid flows can be simulated by solving
the Boltzmann BGK equation directly. The number
of DVBE and expression of distribution functions are
determined according to specific physical problems.
For instance, the distribution function should satisfy
constraints with five equations in order for BGK equa-
tion to recover the conventional Euler equation, while
it is seven equations for Navier–Stokes equation. This
leads to more complex DVBE model for the latter.
The widely used two-dimensional nine-velocity (D2Q9)
DVBE model [1], which is also called standard lattice
model, is usually applied for incompressible isothermal
fluid flow. When it comes to thermal or compressible
problem, the standard D2Q9 DVBE model is not enough
to satisfy constraints. Then, more complex DVBE mod-
els or additional treatments are needed. For the sake of
clarity, we focus on compressible fluid flows.

The main approaches for constructing compress-
ible fluid flow fall into two classes: the multispeed
approach [14–20] and the double-distribution-function
(DDF) approach [21–25]. The multispeed approach
is a straightforward extension of the incompressible
isothermal LBM. In this approach higher-order velocity
moments of the density distribution function are used to
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describe more equations. The first multispeed approach
was devised by Alexander et al as a third-order D2Q13
model [14]. Yan et al proposed a D2Q17 model with two
rest energy levels, which can recover the Euler equa-
tion [15]. Kataoka and Tsutahara proposed a D2Q16
model for compressible Navier–Stokes equations with
a flexible specific-heat ratio [16]. Qu et al proposed
a D2Q13 model for inviscid compressible flows with
adjustable specific-heat ratio, in which the conventional
Maxwellian distribution function is replaced by a circu-
lar function. This model has the ability for the simulation
of compressible flows at high Mach number [17]. Watari
proposed a 2D model with 65 discrete velocities for
Navier–Stokes that allow arbitrary values to be set for
the specific heat ratio [18]. Recently, Xu and his co-
workers have done a lot of work in multispeed approach
for compressible flows: Gan et al improved Watari’s
model [18] for high Mach number [26] and flexible
Prandtl (Pr) number [27]. Chen et al developed Kataoka
and Tsutahara’s model [16] by introducing artificial vis-
cosity [28] and using multiple-relaxation-time (MRT)
scheme [29], respectively; Gan et al proposed a D2Q16
model for compressible Navier–Stokes equations with
adjustable specific heat ratio [19]. Following Gan et
al’s idea, Xu et al proposed a D2Q24 MRT model for
combustion [20]. In multispeed approach, in order to
satisfy 2D compressible Navier–Stokes equations with
a flexible specific-heat ratio and Pr number, the lattice
Boltzmann (LB) model will become very complex, not
to mention 3D cases.

Fortunately, these terms can be easily considered
in the DDF approach, which makes LB equation and
DVBE quite clear and simple. The DDF approach uti-
lizes two different distribution functions, one for the
flow field and the other for the temperature field. The
first DDF model was devised by He et al [21]. This
model has attracted much attention since its emergence
because of its excellent numerical stability and adjusta-
bility of the Pr number. However, this model includes
complicated gradient terms involving temporal and spa-
tial derivatives of the macroscopic flow variables, which
may introduce some additional errors and harm the
numerical stability. Inspired by He et al’s idea, Guo et al
proposed another version by introducing a total energy
distribution function to replace the internal energy dis-
tribution function [22]. This is a decoupling model that
the temperature field does not affect the flow field. Fol-
lowing Guo et al’s treatment, Li et al proposed a coupled
finite-difference (FD) DDF model for 2D compressible
Navier–Stokes equations with a flexible specific-heat
ratio and Pr number [23]. They also introduce Qu et al’s
[17] DVBE into the model to achieve high Mach number.
Wang et al also developed a DDF LB model for viscous
compressible flows with flexible specific-heat ratio and

Prandtl number with a different total energy distribution
function [24]. Li et al proposed a coupled DDF LB
model on standard D2Q9 lattice model, which can deal
with flows at low Mach number with streaming-collision
process [25]. The distribution functions are obtained
from the Hermite expansions of the corresponding con-
tinuous equilibrium distribution functions.

Although LBM has been well developed in com-
pressible flows, there is a very few 3D compressible
LB modes, especially for compressible Navier–Stokes
equations with a flexible specific-heat ratio and Pr num-
ber. Kataoka and Tsutahara presented a D3Q15 model
for compressible Euler equations [30]. This model is
only for subsonic flows. Chen et al improved Kataoka
and Tsutahara’s [30] model for high-speed flow [31].
Watari and Tsutahara proposed a D3Q73 model for
Euler equations, which can achieve Mach number 1.7
[32]. Li et al developed Qu et al’s [17] D2Q13 model
to D3Q25 model for compressible Euler equations [33].
He et al proposed a 3D DDF LB model for compressible
Navier–Stokes equations [34]. It can be seen that most
3D compressible LB models are for Euler equations.
If the treatments of the existing 2D model for Navier–
Stokes equations are complicated, their 3D models will
become much more complex.

In this paper, two 3D DDF LB models for compress-
ible Navier–Stokes equations with flexible specific-heat
ratio and Pr number are developed. They can be viewed
as extended work of Li et al in ref. [23] and ref. [25]. This
work presents alternative 3D LB models for compress-
ible flows, and shows the convenience and simplicity
of DDF approach. The rest of the paper is organized as
follows. In §2, the basic method for constructing DDF
LB model is described, and two 3D models are given.
In §3, numerical simulations are carried out for some
typical compressible flows to test the models. Finally,
conclusions are drawn in §4.

2. Three-dimensional compressible coupled
double-distribution-function model

2.1 Coupled double-distribution-function approach
for Navier–Stokes equations

The DDF LB approach is also called the two-relaxation-
time kinetic model [23–25]. The kinetic equations from
the Boltzmann equation with the BGK approximation
for the two-relaxation-time kinetic model can be written
as follows:

∂ fα
∂t

+ (eα · ∇) fα = − 1

τ f
( fα − f eq

α ), (1)
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∂hα

∂t
+ (eα · ∇) hα = − 1

τh
(hα − heq

α )

+ 1

τh f
(eα · u) ( fα − f eq

α ), (2)

where fα is the density distribution function and hα is
the total energy distribution function, f eq

α and heq
α are

the corresponding equilibrium distribution functions,
eα is the discrete particle velocity in α direction, u is
the macroscopic velocity, τ f and τh are density and
energy relaxation times, and τh f is defined as τh f =
τhτ f /(τ f − τh). τ f can be determined by the equa-
tion τ f = μ/p, where μ is the dynamic viscosity and
p = ρRT is the pressure, in which R is the specific gas
constant and T is the temperature. The Pr number of
the system can be made arbitrary by adjusting the two
relaxation times as Pr = τ f /τh .

The equilibrium density distribution function should
satisfy the following velocity moment condition to
recover the compressible Navier–Stokes equations:
∑

α

f eq
α = ρ, (3a)

∑

α

f eq
α eαi = ρui , (3b)

∑

α

f eq
α eαi eα j = ρuiu j + pδi j , (3c)

∑

α

f eq
α eαi eα j eαk

= ρuiu juk + p(ukδi j + u jδik + uiδ jk), (3d)

where ρ is the density. The subscripts i , j and k indi-
cate the x , y or z component. δi j , δik and δ jk are the
Kronecker delta functions.

The equilibrium total energy distribution function
should satisfy the following velocity moment condition:
∑

α

heq
α = ρE, (4a)

∑

α

eαi h
eq
α = (ρE + p) ui , (4b)

∑

α

eαi eα j h
eq
α = (ρE + 2p) uiui + p(E + RT ) δi j ,

(4c)

where E = bRT /2 + u2/2 is the total energy, b is a
constant, which is related to the specific-heat ratio γ by
γ = (b + 2)/b.

So far, the framework of coupled DDF LB approach
for compressible Navier–Stokes equations with flexible
specific-heat ratio and Pr number is given. Once the
DVBE model, in which the density distribution function
f eq
α and the total energy distribution function heq

α satisfy

eqs (3) and (4) respectively, is determined for 3D case,
the coupled DDF LB model is established.

2.2 Discrete velocity Boltzmann equation model

In the LB community, the equilibrium distribution func-
tion can be determined by several methods. The widely
used method is based on the Maxwellian equilibrium
distribution function, which includes the Taylor expan-
sion approach [35] and the Hermite expansion approach
[36]. The former is limited to low- and moderate-Mach-
number flows, which mainly results from the Taylor
expansion in terms of the Mach number and too many
free parameters [16,23]. The latter allows for simu-
lating high-Mach-number flows. There are also some
methods that use another function, which satisfies the
needed statistical relations (as eqs (3) and (4)) and is
employed to replace the Maxwellian function as the
continuous equilibrium distribution function to simulate
high-Mach-number flows [17,37].

In this subsection, we show two DVBE models for
3D DDF LB model, in which equilibrium distribu-
tion functions are obtained from spherical function and
Maxwellian equilibrium distribution function by Her-
mite expansion, respectively.

2.2.1 Spherical function-based model. Qu et al pro-
posed the method to construct equilibrium distribution
function by circular function [17]. Li et al introduced
this 2D model into the coupled DDF model for the
equilibrium density distribution function [23], while a
simple and general model is adopted for the equilibrium
total energy distribution function. Here we extended this
D2Q13 DVBE model for the 3D case. Fortunately, Li et
al have proposed a 3D model based on spherical func-
tion [33], which follows Qu et al’s idea about circular
function in the 2D case. We adopted this D3Q25 DVBE
model (figure 1) for the equilibrium density distribution
function,

eα =

⎧
⎪⎨

⎪⎩

(0, 0, 0), α = 0,

(1, 0, 0)FSc̃, α = 1, 2, . . . , 6,

(1, 1, 0)FSc̃, α = 7, 8, . . . , 18,

(2, 0, 0)FSc̃, α = 19, 20, . . . , 24,

(5)

where c̃ = √
3RTc is the characteristic speed of the lat-

tice fluid, in which Tc is the characteristic temperature,
and the subscript ‘FS’ denotes a fully symmetric set of
points.

The 3D equilibrium density distribution function
based on spherical function is given by

f eq
0 = 1

60
ρ(60 − 75r̄2 − 75ū2 − 75v̄2 − 75w̄2

+21r̄4 + 15ū4 + 15v̄4 + 15w̄4 + 70ū2r̄
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Figure 1. Discrete velocities of the D3Q25 model.

+70v̄2r̄ + 70w̄2r̄ + 60ū2v̄2 + 60ū2w̄2

+60v̄2w̄2), (6a)

f eq
1 = − 1

90
ρ(15ū4 + 15ū3 − 60ū

+ 45ūr̄2 + 45ūv̄2 + 45ūw̄2

+ 45ū2v̄2 + 45ū2w̄2 + 60ū2r̄2

+ 15v̄2r̄2 + 15w̄2r̄2 − 60ū2

+ 9r̄4 − 20r̄2), (6b)

f eq
7 = 1

60
ρ(15ū2v̄2 + 15ū2v̄ + 15ūv̄2

+ 15ūv̄ + 5ū2r̄2 + 5v̄2r̄2

+ 5ūr̄2 + 5v̄r̄2 + r̄4), (6c)

f eq
19 = 1

360
ρ(15ū4 + 30ū3 + 30ū2r̄2 + 30ūr̄2

−15ū2 − 30ū − 5r̄2 + 3r̄4), (6d)

and others are

f eq
2 (ū, v̄, w̄) = f eq

1 (−ū, v̄, w̄),

f eq
3 (ū, v̄, w̄) = f eq

1 (v̄, ū, w̄),

f eq
4 (ū, v̄, w̄) = f eq

1 (−v̄, ū, w̄),

f eq
5 (ū, v̄, w̄) = f eq

1 (w̄, v̄, ū),

f eq
6 (ū, v̄, w̄) = f eq

1 (−w̄, v̄, ū), (6e)

f eq
8 (ū, v̄, w̄) = f eq

7 (−ū, −v̄, w̄),

f eq
9 (ū, v̄, w̄) = f eq

7 (ū, −v̄, w̄),

f eq
10 (ū, v̄, w̄) = f eq

7 (−ū, v̄, w̄),

f eq
11 (ū, v̄, w̄) = f eq

7 (ū, w̄, v̄),

f eq
12 (ū, v̄, w̄) = f eq

7 (−ū, −w̄, v̄),

f eq
13 (ū, v̄, w̄) = f eq

7 (ū, −w̄, v̄),

f eq
14 (ū, v̄, w̄) = f eq

7 (−ū, w̄, v̄),

f eq
15 (ū, v̄, w̄) = f eq

7 (v̄, w̄, ū),

f eq
16 (ū, v̄, w̄) = f eq

7 (−v̄, −w̄, ū),

f eq
17 (ū, v̄, w̄) = f eq

7 (v̄, −w̄, ū),

f eq
18 (ū, v̄, w̄) = f eq

7 (−v̄, w̄, ū), (6f)

f eq
20 (ū, v̄, w̄) = f eq

19 (−ū, v̄, w̄),

f eq
21 (ū, v̄, w̄) = f eq

19 (v̄, ū, w̄),

f eq
22 (ū, v̄, w̄) = f eq

19 (−v̄, ū, w̄),

f eq
23 (ū, v̄, w̄) = f eq

19 (w̄, v̄, ū),

f eq
24 (ū, v̄, w̄) = f eq

19 (−w̄, v̄, ū), (6g)

where ū = ux/c̃, v̄ = uy/c̃, w̄ = uz/c̃ and r̄ = √
T/Tc.

f eq
3 (ū, v̄, w̄) = f eq

1 (v̄, ū, w̄) means f eq
3 (ū, v̄, w̄) is

calculated with the same form of f eq
1 (v̄, ū, w̄), and the

locations of the parameters in f eq
1 (v̄, ū, w̄) are per-

muted.
Besides, the equilibrium total energy distribution

function of the model has the relationship with corre-
sponding equilibrium density distribution function as:

heq
α = [E + (eα − u) · u] f eq

α + �α

p

c̃2 RT, (7)

where �α should satisfy the constraints as follows [23]:

∑

α

�α

p

c̃
RT = 0, (8a)

∑

α

eαi�α

p

c̃2 RT = 0, (8b)

∑

α

eαi eα j�α

p

c̃2 RT = pRT δi j . (8c)

The above equations give constraints for �0, �1,2,...,6,
�7,8,...,18 and �19,20,...,24 as follows:

�0 + 6�1,2,...,6 + 12�7,8,...,18 + 6�19,20,...,24 = 0,

(9a)

�1,2,...,6 + 4�7,8,...,18 + 4�19,20,...,24 = 1/2, (9b)

which are obviously not enough for determining these
parameters. We have to choose some of them artificially.
In this paper, we adopted �0 = 0, �1,2,...,6 = −5.0/14,
�7,8,...,18 = 1.0/7 and �19,20,...,24 = 1.0/14. It should
be noticed that selection of these parameters will influ-
ence the numerical stability of the model. Besides, as
this DDF model uses different kinds of equilibrium
distribution functions for density and total energy, the
consistency of the model is not very good, which has
some impact on numerical stability. Thus, although Li
et al [23] have shown good numerical stability for the 2D
DDF model, the performance of the present 3D model
should be further examined.
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Figure 2. Discrete velocities of the D3Q27 model.

2.2.2 Hermite expansions-based model. Shan et al
presented the determination method of equilibrium dis-
tribution function by the Hermite expansion approach
[36]. In the Hermite expansion approach, the equi-
librium distribution function can be determined by
projecting the Maxwellian function onto the tensor Her-
mite polynomial basis in terms of the particle velocity
and up to a certain order. As pointed out by Shan et al,
the Hermite expansion approach allows for simulations
of high Mach number flows. Li et al introduced this
method into the DDF LB approach and formulated a
thermal model on standard lattices with D2Q9 model
[25]. Following this idea, we adopted D3Q27 standard
DVBE model (figure 2) for the 3D coupled DDF com-
pressible model,

eα =

⎧
⎪⎨

⎪⎩

(0, 0, 0), α = 0,

(1, 0, 0)FSc̃, α = 1, 2, . . . , 6,

(1, 1, 0)FSc̃, α = 7, 8, . . . , 18,

(±1, ±1, ±1) c̃, α = 19, 20, . . . , 26,

(10)

where c̃ = √
3RTc.

In order to satisfy eqs (3) and (4), third-order expan-
sion and second-order Hermite expansions are used for
f eq and heq, respectively [25,36]. Therefore, they can
be written as follows:

f eq
α = �αρ

{
1 + 	

eα · 	
u + 1

2

[(
	
eα · 	

u
)2 − 	

u
2

+(θ − 1)
(

	
e

2
α − D

)]
+ 	

e α ·	u
6

[(
	
eα · 	

u
)2

−3
	
u

2 + 3(θ − 1)
(

	
e

2
α − D − 2

)]}
(11a)

heq
α = E f eq

α

+�α p

[
	
eα · 	

u + (
	
eα · 	

u)
2 − 	

u
2 + θ

2
(
	
e

2
α − D)

]
,

(11b)

where
	
eα = eα/

√
RTc,

	
u = u/

√
RTc, θ = T/Tc and

D is the spatial dimension.

Since this D3Q27 DVBE model is on standard lattices,
the simple and effective streaming-collision process can
be implemented, which means the basic advantages of
the standard LBM are retained. In this paper, for con-
venience and stability, we adopted FD approach for
simulation like the D3Q25 model above.

2.2.3 Analysis of the two DVBE models. Here, we
make a preliminary discussion about the two DVBE
models. In the spherical function-based model, a com-
plete third-order polynomial with 19 terms for the 3D
case is needed for f eq to satisfy eq. (3). However, it
would be difficult to form a symmetric lattice velocity
model with 19 points. Then additional 6 fourth-order
terms are used. And heq is given by the relationship with
the corresponding f eq. In the Hermite expansions-based
model, f eq and heq are formulated through third-order
expansion and second-order Hermite expansion, respec-
tively. From this point of view, the D3Q25 spherical
function-based model has higher order than the D3Q27
Hermite expansion-based model in equilibrium distri-
bution function.

On the other hand, the stability strongly depends on
the positivity of the equilibrium function. The positivity
ranges of f eq and heq for the two models are studied
through one-dimensional analysis [38], in which the
Mach number is defined as Ma = u/

√
RTc and b = 5.

Figure 3 gives the positivity region of the equilibrium
functions. The shaded area is where all f eq or heq are
positive. For the spherical function-based model, f eq

may be negative when Mach number is smaller than 2
at low temperature, while f eq is positive when Mach
number is larger than 2. heq at high Mach number are
positive only when the temperature is also high. On the
contrary, f eq and heq are positive at low Mach number
and temperature in the Hermite expansion-based model.
Thus, the spherical function-based model is more stable
at high Mach number, while the Hermite expansion-
based model is the opposite.

The two DVBE models are based on different
approaches, which results in their different numerical
features. Thus, we shall compare their performance
using several numerical tests below.

3. Numerical tests

In this section, the two 3D coupled DDF models
are tested by several numerical cases with compress-
ible flows ranging from 1D to 3D. For convenience,
the spherical function-based model and the Hermite
expansion-based model are called Model I and Model
II, respectively. To solve eqs (1) and (2) numerically,
the first-order implicit-explicit (IMEX) Runge–Kutta
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Figure 3. Positivity region (shaded) of all the f eq and heq in the two models: (a) f eq of the spherical function-based
model, (b) heq of the spherical function-based model, (c) f eq of the Hermite expansion-based model, (d) heq of the Hermite
expansion-based model.

scheme [39,40] is employed for the time discretization
and the non-free-parameter dissipation (NND) scheme
[41], which is a total variation diminishing (TVD)
scheme, is applied for the space discretization. The ref-
erence density ρ0, the reference temperature T0, the
reference length L0 and the time spacing �t are used in
the simulations, and the reference velocity and the refer-
ence pressure are defined as u0 = √

RT0, p0 = ρ0RT0.
Here, ρ0 = 1.165 kg/m3, R = 287 J/(kg K), T0 =
303 K, μ = 1.86 × 10−5 kg/(m s), τ0 = μ/p0. The
specific-heat ratio is set to be 1.4 with b = 5 and the
Prandtl number is set to be 0.71. The relaxation times
are τ f = 1.84 × 10−10 and τh = 2.59 × 10−10.

3.1 1D Riemann problems

The 1D Riemann problem is a typical case for testing
numerical methods in the simulation of compressible
flows. We conducted the Sod shock tube with initial
condition as follows:

(ρ/ρ0, ux/u0,p/p0) = (1.0, 0, 1.0) , 0 < x/L0 ≤ 1

2
,

(ρ/ρ0, ux/u0,p/p0) = (0.125, 0, 0.1) ,
1

2
< x/L0 < 1.

The Nx × Ny × Nz = 400 × 5 × 5 lattices are used,
where Nx , Ny and Nz are lattice numbers along the
x , y and z directions, respectively. In the x direction,
fα = f eq

α is set and the periodic boundary conditions are
imposed in the y and z directions. The characteristic time
of the system is defined as t0 = L0/u0 and L0 = 2m.
In the simulations, Tc = 4/3T0 is set for Model I and
Tc = 2T0 is set for Model II, and �t = 30000τ0. Sim-
ulation results by Models I and II of the Sod shock tube
at t = 0.1644t0 are given in figure 4. Generally speak-
ing, the results by the two models agree well with the
analytical solutions. Both the models have some numer-
ical fluctuations between x/L0 = 0.6 and x/L0 = 0.8,
especially for the temperature distribution. This may be
caused by the time discretization that just first-order
IMEX Runge–Kutta scheme we used. Besides, a lit-
tle deviation appears at about x/L0 = 0.5 for Model
II. The magnified results between x/L0 = 0.46 and
x/L0 = 0.54 are shown in figure 5. Although the same
FD schemes are used by the two models, results by
Model II disagrees with analytical solutions at about
x/L0 = 0.5, while Model I still performs well. That is,
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Figure 4. Simulation results by Models I and II of the Sod shock tube for (a) density, (b) velocity, (c) pressure, (d) temperature.

Figure 5. Comparisons of discontinuity between Models I and II in Sod shock tube simulation for (a) density, (b) velocity,
(c) pressure, (d) temperature.

Model II is not very good at simulating compressible
flows with discontinuity.

3.2 2D Couette flow

The Couette flow is a classical heat-transfer problem
which can provide a good test of numerical model to

describe viscous heat dissipation. Consider a viscous
fluid flow between two infinite parallel flat plates, sep-
arated by a distance H . The top plate at temperature T1
moves at speed U , and the bottom plate at temperature
T0 is stationary. In a steady state, the temperature pro-
files satisfy the following relation when the variation
of the viscosity and thermal conductivity is neglected:
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Figure 6. Dimensionless temperature profiles in steady Cou-
ette flow at U = u0 for different Pr and γ by (a) Model I and
(b) Model II.
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Figure 7. Dimensionless temperature profiles in steady Cou-
ette flow at different U by Models I and II.
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where y is the distance from the bottom boundary.
Nx × Ny × Nz = 40 × 40 × 5 lattices are adopted.
The periodic boundary condition is applied to the inlet
and outlet in x direction, the nonequilibrium extrap-
olation method [42] is applied to the two plates in
y direction, and the periodic boundary condition is
also implemented in z direction. In the simulations,
Tc = 4/3T0 is set for Model I and Tc = 2/3T0
is set for Model II, and other parameters are L0 =

2.7 × 10−6 m, �t = 0.1τ0. The dimensionless tem-
perature profiles in steady Couette flow at U = u0
for different Pr and γ by the two models are given
in figure 6. The results by the two models agree well
with the analytical results. The Mach number in this
case is 0.85. We also tested their performances for high
Mach numbers. Figure 7 shows dimensionless temper-
ature profiles in steady Couette flow at U = 3u0,
U = 5u0 and U = 7u0, in which Mach numbers
are 2.54, 4.23 and 5.92 respectively, by the two mod-
els. The characteristic temperature is Tc = 40/3T0
for the two models in this case. They both agree
well with the analytical results at U = 3u0 and
U = 5u0. However, at U = 7u0, Model I becomes
unstable, while model still works well. We found that
selection of �α influences stability of Model I here.
At present, the two models are both suitable for high
Mach number flows without shock wave, and the
numerical stability of Model II is better than Model
I. Besides, the FD schemes also have influence on
their numerical stability. One can choose higher order
or more appropriate FD schemes for better numerical
stability.

3.3 2D regular shock reflection

A steady 2D compressible flow, a regular shock reflec-
tion on a wall, is considered in this test. This problem
involves three flow regions separated by an oblique
shock and its reflection from a wall. The incoming shock
wave of Mach number 2.9 has an incident angle to the
wall. The Dirichlet conditions

(ρ/ρ0, ux/u0, uy/u0, uz/u0, p/p0)|Left

= (1.0, 2.9, 0, 0, 1.0/1.4),

(ρ/ρ0, ux/u0, uy/u0, uz/u0, p/p0)|Top

= (1.69997, 2.61934, −0.50633, 0, 1.52819).

are imposed on the left and top boundaries, respec-
tively. The bottom boundary is a reflecting surface.
The right boundary is the supersonic outflow where the
zeroth-order extrapolation is used. The periodic bound-
ary condition is applied in the z direction. Nx × Ny ×
Nz = 150×50×5 lattices are used. The two models are
also tested in this case. Unfortunately, Model II failed,
while Model I performs well. That is, Model II is not
suitable for dealing with compressible flows with shock
wave. The exact reason for the failure of Model II is
still unknown. However, according to our preliminary
discussion about the two models above, the equilibrium
distribution function in Model I has higher order than
Model II, and this may be a possible reason.

Figure 8 gives numerical results of the regular shock
reflection problem by Model I. In the simulations,



Pramana – J. Phys. (2017) 89:81 Page 9 of 11 81

Figure 8. Numerical results of regular shock reflection problem by Model I for (a) density, (b) velocity in x direction,
(c) pressure, (d) temperature.

Tc = 2T0 and �t = 20000τ0. The density, velocity,
pressure and temperature contours in which the shock
reflection are well captured, are shown.

3.4 3D explosion in a box

The case of 3D explosion in a box [43], in which
a spherical shock wave expands in an enclosed box,
is tested by the two models. It is an unsteady 3D
compressible flow and the reflected shocks interact
in a complex manner. The computational domain is
[0, 1.0] × [0, 1.0] × [0, 1.0]. At the initial time, the
velocity is zero; ρ/ρ0 = 5.0 and p/p0 = 5.0 are set
in a sphere with radius 0.3, whose centre is at (0.4, 0.4,
0.4), and ρ/ρ0 = 1.0 and p/p0 = 1.0 are set for others.

In the simulations, a Nx×Ny×Nz = 100×100×100
mesh is used. The rest of the parameters are set to be
Tc = T0, L0 = 1 m and �t = 20000τ0. Model I suc-
cessfully completes the 3D explosion simulation, while
Model II becomes unstable after t = 0.25t0. This test
also demonstrates that Model II is not suitable for com-
pressible flows with shock wave. The density isosurfaces
at t = 0.125t0, 0.25t0 and 0.375t0 are given in figure 9.
The results reported in ref. [43] are also presented for
comparison. The results by the two models agree well
with the results given in ref. [43] at t = 0.125t0 and
0.25t0. Moreover, the result by Model I at t = 0.375t0
is still in good agreement. Besides, the density contour
by Model I at z = 0.4 and t = 0.5t0 is also compared
with result of ref. [43]. It can be found that they are in
good agreement (figure 10).

4. Conclusions

In this paper, two 3D DDF LB models for compressible
flows with flexible specific-heat ratio and Pr num-
ber are developed. In the framework of coupled DDF
approach, a key issue is the DVBE model. The spherical

Figure 9. Density isosurfaces of 3D explosion in a box:
(a) t = 0.125t0, Model I, (b) t = 0.125t0, Model II,
(c) t = 0.125t0, ref. [43], (d) t = 0.25t0, Model I, (e)
t = 0.25t0, Model II, (f) t = 0.25t0, ref. [43], (g) t = 0.375t0,
Model I, (h) t = 0.375t0, ref. [43].

function-based D3Q25 model and Hermite expansions-
based D3Q27 standard model are adopted for the 3D
velocity moment condition to recover the compressible
Navier–Stokes equations. Several numerical simula-
tions of some typical compressible flows ranging from
1D to 3D are conducted to test the two 3D models. They
are both capable for supersonic flows, while the latter
is not suitable for compressible flows with shock wave.
This work presents alternative LB models for 3D super-
sonic flows and shows convenience and simplicity of
DDF LB approach for complex compressible flows.
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Figure 10. Density contour of 3D explosion in a box at z = 0.4 and t = 0.5t0: (a) Model I, (b) ref. [43].
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