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Abstract. A periodic breather-wave solution is obtained using homoclinic test approach and Hirota’s bilinear
method with a small perturbation parameter u0 for the (2+1)-dimensional generalized Kadomtsev–Petviashvili
equation. Based on the periodic breather-wave, a lump solution is emerged by limit behaviour. Finally, three
different forms of the space–time structure of the lump solution are investigated and discussed using the extreme
value theory.
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1. Introduction

In the present paper, we shall consider the (2 + 1)-
dimensional generalized Kadomtsev–Petviashvili equa-
tion ((2 + 1)-dimensional GKPE) [1] as follows:

(ut + cuux + buxxx)x + c0

2
uyy = 0, (1)

where u = u(x, y, t) denotes a scalar function of the
space variables x, y, and time variable t , the parameters
c is the nonlinear term coefficient, b is the dispersion
coefficient along the x-axis, c0 is the velocity of the lin-
ear wave, and c0/2 is the dispersion coefficient along
the y-axis. It is worth noting that eq. (1) is sometimes
referred to as the KP(II) equation or negative dispersion
KP equation in y direction. If (c0/2)uyy is replaced by
−(c0/2)uyy in eq. (1), then eq. (1) is called the KP(I)
equation or positive dispersion KP equation in y direc-
tion. We know that the (2+1)-dimensional KP equation
can be used to model water waves of long wavelength
with weakly nonlinear restoring forces and frequency
dispersion. In recent years, some researchers have done
a lot of research on (2 + 1)-dimensional KP equation
by different methods [2–13], and have obtained many
useful conclusions.

When c = 6, b = 1 and (c0/2) = −1, eq. (1) is
reduced to the equation

uxt + 6(uux )x + uxxxx − uyy = 0. (2)

Xu et al [3] obtained two-wave solution and rational
breather-wave solution (also known as rogue wave solu-
tion) of eq. (2) by using the homoclinic (heteroclinic)
breather limit method (HBLM). Ma [4] studied a class of
lump solution of eq. (2) by selecting a special quadratic
function with Hirota’s bilinear form, and they also anal-
ysed the rational localization of the lump solutions of
eq. (2).

When c = −6, b = −1 and (c0/2) = ±3, eq. (1) is
reduced to equation

uxt − 3(u2)xx − uxxxx ± 3uyy = 0. (3)

Dai et al [5] obtained exact periodic soliton solution of
eq. (3) by using the two-soliton and generalized Hirota
methods. Guo and Ling [6] studied rogue wave solu-
tions (lump solutions) and high-order lump solutions of
eq. (3) by using generalized binary Darboux transfor-
mation method.

There are some distinct versions of the KP equation.
When c = 6, b = 1 and (c0/2) = ±3 in eq. (1), we can
get the following normalized form:

(ut + 6uux + uxxx)x ± 3uyy = 0. (4)

Wang and Dai [7] obtained breather-type multisolitary
wave solution with fission and fusion behaviours of
eq. (4) by using Hirota’s bilinear method and gener-
alized three-wave type of ansatz approach. Zha and Li
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[8] discussed N periodic-soliton solutions and 2N line-
soliton solutions using Hirota’s bilinear method.

When c = 6, b = 1 and (c0/2) = 0, eq. (1) is reduced
to the famous Korteweg–de Vries (KdV) equation

ut + 6(uux ) + uxxx = 0. (5)

Dai et al [9] obtained exact periodic solitary-wave solu-
tion of eq. (5) by using the extended homoclinic test
technique. Sun et al [10] obtained blow-up solutions and
non-singular solutions using a complex Miura transfor-
mation and Darboux transformation method.

Soliton solution of nonlinear partial differential equa-
tion (NLPDEs) play a very important role in nonlinear
science fields such as nonlinear optics, thermodynamics,
fluid dynamics, solid-state physics, etc. They can pro-
vide more information and more physical insight into
the nonlinear aspects problems, which lead to further
applications [14–19]. Therefore, the research and inves-
tigation of soliton solution for NLPDEs has become
more and more important and attractive. Numerous
methods have been proposed to obtain soliton solutions
of NLPDEs [20–23]. Lump solution, also called the vor-
tex and antivortex solution, is a specific type of soliton
solution, and was introduced in 1976 by Zakharov [24]
and later by Craik [25]. In contrast to other forms of soli-
ton solutions, lump solution is a kind of rational function
solution, decayed polynomially in all directions in the
space. Very recently, lump solutions were presented
for many nonlinear systems [26–30]. In this paper, a
periodic breather-wave solution is obtained via Hirota’s
bilinear method and homoclinic test technique [31] with
a small perturbation parameter u0, and a lump solution
based on periodic breather-wave solution is studied by
a limit behaviour. More importantly, we have also dis-
cussed that the space–time structure changes of lump
solution not only depends on the small perturbation
parameter u0, but also has a relationship with the non-
linear term coefficient c, dispersion coefficient b, linear
wave speed c0 and some other parameter. By changing
the values of these parameters (u0, b, c, c0, α, α1), we
obtain a lump solution of three different forms of the
space–time structures: bright lump structure, dark lump
structure and linear lump structure. Finally, the math-
ematical reason of different space–time structures are
analysed using the extreme value theory of multivariate
function. Some new and interesting phenomena of the
lump solution are discovered.

2. The emergence of lump solution

In eq. (2), Xu and his collaborators are using a trans-
formation ξ = x + t to reduce the (2 + 1)-dimensional
KP equation to the (1+1)-dimensional NLPDEs. Some

two-wave solution and rational breather wave solution
are derived by the application of the HBLM with bilin-
ear form of (1 + 1)-dimensional equation [3]. Here, a
periodic breather-wave solution and a lump solution
which is different from the paper [3,4] for (2 + 1)-
dimensional GKPE are obtained using extended homo-
clinic test approach [32] and Hirota’s bilinear method.
It is easy to note that u = u0 is a seed solution of eq. (1),
where u0 is a free real number. Therefore, by Painlevé
analysis, we assume that the solution of eq. (1) takes the
form

u(x, y, t) = u0 + 12b

c
(ln f )xx , (6)

where f (x, y, t) is an unknown real function which will
be selected later. Substituting eq. (6) into eq. (1), we have

(ln f )xxt + cu0(ln f )xxx + 12b(ln f )xx (ln f )xxx

+ b(ln f )xxxxx + c0

2
(ln f )xyy = 0, (7)

which when integrated once with respect to x , yields

(ln f )xt + cu0(ln f )xx + 6b(ln f )2
xx + b(ln f )xxxx

+c0

2
(ln f )yy = 0. (8)

Therefore, eq. (8) can be converted into the following
bilinear equation which is quite different from the work
in [2–13]:
(
Dx Dt + cu0D

2
x + bD4

x + c0

2
D2

y

)
f · f = 0, (9)

where the D-operator is defined by [33]

Dm
x Dn

t f · g =
(

∂

∂x
− ∂

∂x ′

)m (
∂

∂t
− ∂

∂t ′

)n

× f (x, t)g(x ′, t ′)|x ′=x,t ′=t . (10)

Now, with regard to eq. (9), by choosing a test function
that is different from [3–5], using the extended hetero-
clinic test approach, we choose the test function of the
form

f (x, y, t) = e−ξ + b0 cos(η) + b1eξ , (11)

where ξ = p(x + αy + βt + γ ), η = p1(x + α1y +
β1t +γ1) and α, β, α1, β1, p, p1, b0, b1, γ, γ1 are some
free real numbers to be determined later. Substituting
eq. (11) into eq. (9) and collecting the coefficients of
cos(η), sin(η), eξ and e−ξ , then equating coefficients of
these terms to zero, we obtain a set of algebraic equation
about α, β, α1, β1, p, p1, b1 and b0. By using symbolic
computation with Maple 16 to solve these algebraic
equations, we can obtain the following relations:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β = b
(
3p2

1 − p2
)

−cu0 − c0
(
2 p1

2α1α − p1
2α1

2 + p2α2
)

2(p2 + p1
2)

,

β1 =b
(
p1

2−3 p2
) − cu0

+c0
(
p2α2 − 2 p2α1α − p1

2α1
2
)

2(p2 + p1
2)

,

b1 =
b0

2 p1
2
(

1
2c0 p2 (α − α1)

2 − 3 b
(
p2 + p1

2
)2

)

4p2
(

1
2c0 p1

2 (α − α1)
2 + 3 b

(
p2 + p1

2
)2

) .

(12)

Taking 0 < b1 ∈ R, substituting eqs (12) with eq. (11)
into eq. (6), an exact solution of eq. (1) was obtained as
follows:

u(x, y, t) = u0

+ 12b

c

(2
√
b1 cosh(ξ + 1

2 ln(b1))p2 − b0 cos(η)p1
2)

2
√
b1 cosh(ξ + 1

2 ln(b1)) + b0 cos(η)

−
(
2
√
b1 sinh

(
ξ + 1

2 ln(b1)
)
p − b0 sin(η)p1

)2

(
2
√
b1 cosh

(
ξ + 1

2 ln(b1)
) + b0 cos(η)

)2 .

(13)

In order to obtain the lump solution from the exact
solution eq. (13) for the (2+1)-dimensional GKPE, then
taking p1 = p and b0 = −2 in eq. (13). So, solution
eq. (13) can be written as

u(x, y, t) = u0

+ 12b

c

(
√

� cosh(ξ + 1
2 ln(�))p2 + cos(η)p2)√

� cosh(ξ + 1
2 ln(�)) − cos(η)

− (
√

� sinh(ξ + 1
2 ln(�))p + sin(η)p)2

(
√

� cosh(ξ + 1
2 ln(�)) − cos(η))2

,

(14)

where

� = c0(α − α1)
2 − 24bp2

c0(α − α1)2 + 24bp2 ,

ξ = p

(
x + αy +

(
2bp2 − cu0

+ c0

2

(
1

2
α2

1 − αα1 − 1

2
α2

))
t + γ

)
,

η = p

(
x + α1y −

(
2bp2 + cu0

+ c0

2

(
1

2
α2

1 + αα1 − 1

2
α2

))
t + γ1

)

and u0, b, c, c0, p, α, α1, γ, γ1 are some free real num-
bers. The exact solution u(x, y, t) (eq. (13)) (or eq. (14))
is actually a periodic breather-wave solution, which

Figure 1. Space–time structure of eq. (13) with
u0 = 1/10, c0 = −6, b = 1, α = 1, α1 = −1/2,
b0 = −2, p = 1/2, γ = γ1 = t = 0, when (a) c = 1 and
(b) c = −1. Curved lines drawn at the bottom of this figure
are contour lines.

includes a number of free parameters. That is to say,
the homoclinic breather-wave solution is a homoclinic
wave homoclinic to a fixed point u0 of eq. (14) when
t → ±∞ [34], and is a periodic wave with period 2π

along X = ξ [35]. From figure 1 we can clearly see that
amplitude periodically oscillates with the evolution of y
or t . The space–time structure of the y–t plane of eq. (13)
has changed, when the values of u0, b, c, c0, p, α, α1, γ

and γ1 are changed. Through deep analysis we know that
homoclinic wave is hidden under the plane wave, when
the nonlinear term coefficient c < 0 (see figure 1b);
homoclinic wave is exposed on the plane wave, when
c > 0 (see figure 1a).

Notice that

� = c0(α − α1)
2 − 24bp2

c0(α − α1)2 + 24bp2 → 1

in eq. (14), when p → 0. Therefore, if p → 0 in
eq. (14), we can derive the following lump solution:
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u(x, y, t) = u0 −
12b

(
8θϑ + 192b

c0(α−α1)2

)

c
(
θ2 + ϑ2 − 48b

c0(α−α1)2

)2 , (15)

where

θ = x + α y

+
(

−cu0 + c0

2

(
1

2
α2

1 − αα1 − 1

2
α2

))
t + γ,

ϑ = x + α1y

−
(
cu0 + c0

2

(
1

2
α2

1 + αα1 − 1

2
α2

))
t + γ1.

Take bc0 < 0 and α �= α1 in eq. (15) to avoid the
singularity. Obviously, the exact solution eq. (15) repre-
sents a kind of exact solitary wave solution in the form
of the rational function, and this kind of soliton solution
is actually called lump solution [15]. Some researchers
also call this as rogue wave solution [3], and the peri-
odic feature has disappeared, as compared with solution
eq. (13). Here, it is interesting to note that the amplitude
pulse decays algebraically to the perturbation param-
eter u0. In fact, the asymptotic behaviour of the lump
solution eq. (15) can be found u(x, y, t) → u0, either
x → ±∞ or y → ±∞ or t → ±∞. The lump solution
(eq. (15)) with specific values of the involved parameters
are plotted, as illustrative examples. The curves with dif-
ferent independent variables (u−t and u−y) in figure 2b
and 2c show that the solution in the form of eq. (15) has
the properties of impulsive solutions. Meanwhile, we
noticed that the lump solution (eq. (15)) has a number
of free parameters α, α1, γ, γ1, b, c and c0, and when
these free parameters take different values, the space–
time structure of the lump solution is changed, and we
get three different forms of lump structure: bright lump
structure (see figure 2a), dark lump structure (see fig-
ure 3a) and linear lump structure (see figure 3b). From
figure 2a we can clearly see that the bright lump structure
has one upward peak and two small downward projec-
tions, the main peak forms a much higher hill, the two
downward projections are hidden under the plane wave.
On the contrary, the dark lump structure contains two
small upward projections and one downward peak, the
downward peak is hidden under the plane wave. These
new and interesting phenomena of space–time structure
of the (2+1)-dimensional GKPE are discovered for the
first time.

For the KdV eq. (5), by variable transformation
u(x, t) = u0 + 2(ln f )xx , where u0 is a free real
number and

f (x, t) = e−p(x+β t+γ ) + b0 cos(p1(x + β1t + γ1))

+ b1ep(x+β t+γ ). (16)

Figure 2. Space–time structure of eq. (15) with u0 = 0,
c0 = −2, b = 1, c = 6, α = −1/2, α1 = 1, γ = γ1 = x= 0:
(a) Three-dimensional plot, (b) t-curves and (c) y-curves.

The calculation is similar to the (2 + 1)-dimensional
GKPE, and we can obtain the following relations:
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Figure 3. Space–time structure of eq (15) with c0 = −2,
b = 1, c = −6, α = −1/2, α1 = 1, γ = γ1 = x = 0: (a)
u0 = 0, (b) u0 = −5/48. Curved lines drawn at the bottom
of this figure are contour lines.

b0 =−2
√
b1, p1 = i p, β1 = −β−12u0 − 8p2,

(17)

where i is the imaginary unit and b1, β, γ, γ1, p are
some free real numbers. So, we obtain a single soliton
solution of (1 + 1)-dimensional KdV

u(x, t) = u0 + 2p2 − 2p2
(
sinh p

(
x + βt + γ + 1

2 ln(b1)
) + sinh p(x − (β + 12u0 + 8p2)t + γ1)

)2

(
cosh p

(
x + βt + γ + 1

2 ln(b1)
) − cosh p(x − (β + 12u0 + 8p2)t + γ1)

)2 . (18)

Letting b1 = 1, and taking p → 0 in eq. (18), we
obtain a rational function solution

u(x, t) = u0 − 8

(2x − 12u0t + γ + γ1)2 . (19)

3. Theoretical analysis of space–time structure
changes

Here, we shall discuss the reason for space–time struc-
ture changes of the exact lump solution (eq. (15)) using
the extreme discriminant theory of multivariate func-
tion. Through the analysis of the extreme value theory,
we can know that the space–time structure of lump solu-
tions are very rich and diverse. Now, consider the critical
point of the two-element function U (y, t) = u(0, y, t).
In order to obtain the extremum of the function U (y, t),
we need to calculate the necessary condition⎧
⎪⎨
⎪⎩

∂U (y, t)

∂y
= 0,

∂U (y, t)

∂t
= 0.

(20)

Thus, solving eq. (20) leads to a critical point p(y, t),
where⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

y= 2(γ1−γ )(c0αα1+2cu0)+c0(γ1+γ )(α2−α2
1)

(α − α1)(c0α2 + c0α
2
1 − 4cu0)

,

t = 4(α1γ − αγ1)

(α − α1)(c0α2 + c0α
2
1 − 4cu0)

.

(21)

Substituting eq. (21) into two-element functionU (y, t),
through complicated calculation, we can get the extreme
value as

U (y, t)|p = u0 − c0(α − α1)
2

c
. (22)

Furthermore, at the point p, the second-order deriva-
tive can be obtained as⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�= ∂2

∂y2U (y, t)=−c2
0(α−α1)

4(α2 + α2
1 + αα1)

12bc
,

H(U ) =

∣∣∣∣∣∣∣∣

∂2

∂y2U (y, t)
∂2

∂y∂t
U (y, t)

∂2

∂t∂y
U (y, t)

∂2

∂t2U (y, t)

∣∣∣∣∣∣∣∣
p

= c4
0(α − α1)

10(c0α
2 + c0α

2
1 − 4cu0)

1536b2c2 .

(23)

Notice that α2 + α2
1 + αα1 > 0 in eqs (23). We can get

the following results by using the discriminant theory
of the extreme value of the two-element function.



77 Page 6 of 7 Pramana – J. Phys. (2017) 89:77

(i) If bc > 0 and c0α
2+c0α

2
1 −4cu0 > 0, that is, � <

0 and H(U ) > 0, the critical point p(y, t) is a maximum
point and U (y, t)max = u0 − [c0(α − α1)

2/c], U (y, t)
shows single bright lump structure characteristics (see
figure 2a).

(ii) If bc < 0 and c0α
2 + c0α

2
1 − 4cu0 > 0, that

is, � > 0 and H(U ) > 0, the critical point p(y, t) is a
minimum point andU (y, t)min = u0−[c0(α − α1)

2/c],
U (y, t) shows dark lump structure characteristics (see
figure 3a).

(iii) If c0α
2+c0α

2
1 ≤ 4cu0, that is, H(U ) ≤ 0, the test

is inconclusive at p(y, t) via the extreme discriminant
theory, U (y, t) shows linear lump structure characteris-
tics (see figure 3b).

Through the above theoretical analysis, numerical
simulation and three-dimensional image simulation,
theoretical reasons for the change of space–time struc-
ture of lump solution for the (2+1)-dimensional GKPE
is clearly displayed. The space–time structure of the
exact lump solution is mainly used to determine the
value of the perturbation parameter u0, nonlinear term
coefficient c, dispersion coefficient b and linear wave
speed c0. Under different parameters conditions, we
obtained three different forms of space–time structure
of the lump solution: bright lump structure, dark lump
structure and linear lump structure.

4. Conclusions

In summary, a class of lump solutions based on quadratic
function has been analysed in refs [12,14,20] and [27]
by Prof. Ma. But, in this manuscript, applying the
extended homoclinic test approach and Hirota’s bilin-
ear method with a perturbation parameter u0 to the
(2 + 1)-dimensional GKPE, we obtained a periodic
breather-wave solution. Meanwhile, a lump solution was
emerged from the periodic breather-wave solution by
limit behaviour. The exact analytic solutions (periodic
breather-wave solution and lump solution) contain some
free parameters u0, b, c, α, α1 and c0. Some new and
interesting space–time structures of lump solution were
investigated: bright lump structure, dark lump struc-
ture and linear lump structure varies with values of
these parameters. Finally, we analysed the reasons for
the change of space–time structure using the extreme
discriminant theory of the two-element function. In
addition, we obtained a single soliton solution and a
rational function solution of the (1 + 1)-dimensional
KdV equation. Our results show the diversity of the
spatial and space–time structures of solitary waves in
nonlinear dynamic systems. Meanwhile, we also hoped
that our results will provide some valuable information
in the field of nonlinear science.
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