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The phenomenon of tristable stochastic resonance driven by α-noise
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Abstract. In this paper, the tristable stochastic resonance (SR) phenomenon induced by α-stable noise is analysed.
The mechanism for realizing resonance is explored based on research concerning the potential function and resonant
output of a system. The rules for resonance system parameters q, p, skewness parameter r and intensity amplification
factor Q of α-stable noise to act on the resonant output are explored under different values of stability index α and
asymmetric skewness β of α-stable noise. The results will contribute to a reasonable selection of parameter-induced
tristable SR system parameters under α-stable noise, and lay the foundation for a practical engineering application
of weak signal detection based on the SR.

Keywords. Tristable stochastic resonance; α-stable noise.

PACS Nos 05.45.−a; 05.40.−a; 05.40.Ca; 05.40.Fb

1. Introduction

Signal detection is designed to obtain useful informa-
tion from noisy observations. However, it is difficult to
detect signals effectively because of strong noise in the
real environment and weak signal amplitude. At present,
signal detection methods can be divided into three major
categories: matched filtering, energy detection, and fea-
ture extraction. All these methods focus mainly on
removing and suppressing noise to detect a useful signal,
but the useful signal itself may be suppressed in the pro-
cess of dealing with the noise. Compared with traditional
methods, application of strong noise in stochastic reso-
nance (SR) for the purpose of detecting a weak signal
does not mask the useful signal, but instead strengthens
weak signals, promoting the detection and extraction
of useful information [1,2]. This concept was put for-
ward by Benzi and other people in 1981 to explain some
problems of the quaternary glacier. Then it was used to
describe a phenomenon in which the output response is
increased by the effect of internal and external noise in
a nonlinear system [3,4]. Subsequently, SR was widely
applied in areas such as physics, biology, chemistry, and
electronics [5–11].

Classical SR was put forward on the basis of bistable
system. The bistable system became the main direc-
tion of SR research because it is easy to construct and

analyse the bistable system [3,4,7,8]. However, with the
advancement of research, besides the bistable system,
SR could also be realized by other kinds of system,
such as monostable system [12], linear oscillator [13],
chaotic system [14], delay system [15], bidimensional
Duffing system [16], fractional linear oscillator [17] and
so on. SR theory is significantly enriched by these mod-
els which expand the application of SR to some degree.
In recent years, a kind of tristable system is put forward
which attracts lots of attention from many scholars. The
utility of tristable system in mechanical failure detec-
tion is studied in [18]. The principles and parameters
of tristable system are analysed in [19]. In [20], the
SR phenomenon is studied in a triple-well system by
varying the depth of the wells. In [21], the steady-state
problems of the tristable system are studied under the
action of colour-correlated multiplicative and additive
coloured noise. The logic SR phenomenon in triple-well
potential systems driven by Gaussian coloured noise is
analysed in [22].

The theory of SR investigated in the above references
is based on Gaussian noise. Actually, Gaussian noise is
the ideal state of random noise which can only simulate
the noise vibrating in a small interval. As to the signal
which has great amplitude fluctuation, it is obviously
not applicable. In fact, non-Gaussian noise with signif-
icant pulse peaking and trailing frequently disturbs our
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daily life. This kind of noise can be described by α-
stable distribution which can reflect really, accurately
and objectively the phenomenon of stochastic distur-
bance. Nowadays, many scholars shift their research to
analyse the phenomenon of SR under α-stable noisy
environment.

The phenomenon of logical SR in a trip-well poten-
tial system driven by a coloured non-Gaussian noise
is investigated in [23]. The parameter-induced SR in
an overdamped system with α-stable noise is stud-
ied in [24]. The signal detection based on symmetric
bistable system under α-stable noisy background is
discussed in [25]. SR of asymmetric bistable system
with α-stable noise is analysed in [26]. The character-
istic of a power function type monostable SR system
inspired by α-stable noise is explored in [27]. So far,
there is no published study of the phenomenon of SR
induced by parameters of tristable system under α sta-
ble noisy environment. In order to ensure the credibility
of the experimental results, it is necessary to accurately
select the appropriate parameters which can produce
the phenomenon of SR. Meanwhile, the effects of each
parameter need to be analysed from the perspective of
physics and mathematics. In this paper, based on [19],
the induction effect of every parameter to SR under
α-stable noisy environment is studied. On this basis,
the SR caused by noise is also analysed and investi-
gated. The influence on resonance output from noise
intensity amplification coefficient Q, skewness r , sys-
tem structural parameters q and p under the α-stable
noisy environment with different characteristic parame-
ter α and symmetry parameter β is studied in this paper.
These results will contribute to reasonably choose the
system parameters and intensity amplification factor of
tristable SR system under the α-stable noise, and pro-
vide a reliable basis for practical engineering application
of weak signal detection by SR.

2. Tristable system

2.1 System model

The first-order nonlinear Langevin equation is the most
widely used system model in SR research. Like the
bistable system model, a tristable SR system driven by
weak signals and α-noise also has the following expres-
sion:

dx

dt
= −dU (x)

dx
+ s(t) + Qη(t), (1)

where U (x) is the tristable system potential function,
s(t) = A sin(2π f t) is the input weak signal to be

detected, η(t) is the input α-noise, Q is the amplification
coefficient of α-noise.

The potential function of the classic tristable system
is

U (x) = a

6
x6 − b

4
x4 + c

2
x2 − r x . (2)

In order to simplify the analysis, let a = 1, then

U1(x) = 1

6
x6 − b

4
x4 + c

2
x2 − r x . (3)

It is a tristable potential function, b and c are system
structural parameters, and b, c > 0, b2 − 4c > 0. r
is the skewness of potential function which shows the
asymmetry of the tristable system. When r = 0, the
potential function is symmetric along y-axis, and the
system is called the symmetric tristable system. The
minimal value of the potential function is the stable equi-
librium point, and the maximum value is the unstable
equilibrium point. In order to simplify the analysis, we
assume two parameters p and q (p < q) both of which
are greater than 0. Then the tristable potential function
should meet the condition
⎧
⎨

⎩

U ′
1(x) = x(x + p)(x − p)(x + q)(x − q) − r

U ′
1(p) − r < 0

U ′
1(q) − r < 0

(4)

where

p =
√

(b −
√
b2 − 4c)/2,

q =
√

(b +
√
b2 − 4c)/2.

The features of tristable system are analysed in detail
on the basis of equilibrium point p and q in [19].

Symmetric tristable system function under α-noise is

V (x) = 1

6
x6 − b

4
x4 + c

2
x2 − r x + Qη(t)x . (5)

In order to make it easy to understand, let r = 0, p =
1, q = 2, Qη(t) = 0.3. Figure 1a shows the curve
of U1(x) and V (x) which are the potential functions
before and after the α-stable noise is added, respectively.
The minimal points of U1(x) are xs1,s2 = ±m, xs3
= 0, the maximum points are xu1,u2 = ±n. Because
of the introduction of α-noise, the extreme points of
V (x) are changed. Under this condition, V (x) also has
three minimal points x ′

s1, x
′
s2, x

′
s3 and two maximum

points x ′
u1, x

′
u2. Obviously, the horizontal ordinates of

these extreme points are the solution of equation
dV (x)/dx = 0.

It is hard to get the closed-form expression of
dV (x)/dx = 0 because it contains the high order terms.
Let

f1(x) = x5 − bx3 + cx − r
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Figure 1. The potential function and its solution of the tristable system: (a) The potential function before and after modulated
by noise and (b) the solution of the tristable system.

and

f2(x) = Qη(t),

where f1 is the derivative of equivalent potential func-
tion without noise and f2 is the additive α-stable noise.
Under the same parameters in figure 1a, two curves
are shown in figure 1b. Then the value of horizon-
tal ordinate for intersection points of f1 and f2 are
the solutions of dV (x)/dx = 0, corresponding to the
extreme points of V (x) in figure 1a, and they per-
haps are the solutions of eq. (5). Under the same
parameters in figure 1a, two curves are shown as in
figure 1b.

Among the five intersections of f1 and f2, x ′
u1 and

x ′
u2 are the maximum values of potential function V (x)

which are also the unstable equilibrium points. With a
slight disturbance, the particle would depart these equi-
librium points which actually are the unstable results of
tristable system eq. (1). Among the five points of inter-
section, only x ′

s1, x
′
s2 and x ′

s3 are the stable results for
eq. (1). They are also the stable equilibrium points of
V (x), the adjusted location of the potential well. The
middle barrier height is

�Um = 2bc − (b2 − 4c)(b − √
b2 − 4c)

24

and the side barrier height is

�Us = (b2 − 4c)
√
b2 − 4c

12
.

Actually, after a short-term evolution of transient pro-
cess, tristable system eq. (1) perhaps only has one stable
result which has three forms: x ′

s1, x
′
s2 and x ′

s3, and the
specific stable output of eq. (1) is decided by the original
environment.

2.2 Characterization of tristable SR

According to Kramer’s rate theory and adiabatic approx-
imation, the transition rate of the particle in the middle
potential well is

rK ,m→s = wuw0

2π
exp

(

−�Um

Q

)

. (6)

The transition rate of the particle in the side potential
well is

rK ,s→m = wuws

2π
exp

(

−�Us

Q

)

, (7)

where wu, ws are the frequencies corresponding to the
potential minimum xs1, xs2 and barrier top xu1, xu2,
respectively. w0 is the frequency corresponding to the
potential minimum xs3. Before the transition from one
stable state to another, the particle needs to get past cer-
tain potential barriers, which means the amplitude of
the input signal should be larger than a specific thresh-
old that can be obtained through a potential function
with the input signal being constant.

When the input signal is a constant A, the potential
function without noise is

V1(x) = 1

6
x6 − b

4
x4 + c

2
x2 + A. (8)

When the potential function meets the conditions
where the limit point coincides with the inflection point,
then
⎧
⎪⎪⎨

⎪⎪⎩

∂V1(x)

∂x
= x5 − bx3 + cx + A = 0

∂2V1(x)

∂2x
= 5x4 − 3bx2 + c = 0

. (9)
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The value of A can be calculated by solving eq. (9).
Then we can obtain the input threshold of the system

{
Ac,m→s = η1(p, q)

Ac,s→m = η2(p, q)
. (10)

When A < Ac,m→s , the particle cannot overcome the
potential barrier in either the middle potential well or
the side wells. When A > max(Ac,m→s, Ac,s→m),
the particle can overcome the potential barrier in all
potential wells and maintain periodic motion. Despite
A < max(Ac,m→s, Ac,s→m), with the influence of noise
and the periodic signal, the system’s output can conduct
periodic motion between the potential wells after over-
coming the barriers. This phenomenon is called tristable
SR.

Therefore, two conditions need to be met to achieve
tristable SR: (1) the noise-driven transition between sta-
ble states should be consistent with the cycle of the input
signal, which means f < min(rK ,m→s, rK ,s→m)/2;
(2) the amplitude A of the weak signal should be slightly
smaller than the critical value max(Ac,m→s, Ac,s→m).
Otherwise, although with the help of noise, the particle
still cannot overcome the barrier to achieve
SR.

Then, we report the effect of different SR stages on
the mean residence time (TMR) on three wells. Before
the resonance, the system switches rarely from one well
to an adjacent well and the residence time in each well
is random. The mean residence time in a higher depth
well is longer than in a lower depth well. As the state
gets closer to resonance, mean residence times in the
wells vary. When the state reaches resonance, there is
almost periodic switching between the wells. The sys-
tem enters the middle well twice, once from the right
well and once from the left well, during one drive cycle
of the periodic input signal f sin ωt . And the sum of the
mean residence times T L

MR + TR
MR + 2TM

MR is T , where
T (= 2π/ω) is the period of the external periodic force.
Periodic switching is lost when the state surpasses res-
onance. After the resonance, erratic switching occurs
among the wells.

In this paper, fourth-order Runge–Kutta algorithm is
utilized to solve eq. (1) (more details could be seen in
[25,27]). If the characteristic index α-becomes bigger,
the intensity of the pulse of α-stable noise will become
weaker, which would result in the fast change of route
in long-term transition. Thus, artificial block should be
executed on the output signal x(t) during the simulation
[28], so as to prevent the infinite jump of particle. The
block function is selected as: when |x(t)| > 2, x(t) =
sign(x(t)) × 2.

3. α-Stable distribution

3.1 Characteristic function of α-stable distribution

When Levy studied the centre limit theory in 1952, he
published α-stable distribution whose probability den-
sity function and distribution function have no explicit
expression except for some special situations, such as
the Levy distribution, Cauchy distribution and normal
distribution. Thus, characteristic function is used to
describe α-stable distribution. If the random variable
x obeys α-stable distribution, its characteristic function
can be expressed as [29,30]

ϕ(t)

=
{

exp
[−γ |t | (1+iβ 2

π
sign(t) log |t |) + iδt

]
, α=1

exp
[−γ α|t |α (

1−iβsign(t) tan πα
2

) + iδt
]
, α �=1

(11)

where α ∈ (0, 2] is the characteristic exponent which
decides the impulse and trailing; β ∈ [−1, 1] is the
skewness which is used to clarify the symmetric degree;
γ ∈ [0, +∞) is the scale parameter to measure the
distribution degree of sample and average value; δ ∈
(−∞, +∞) is the location parameter to decide the
distribution centre. α-stable distribution is expressed
by Sα(γ, β, δ) with three special examples: (1) when
α = 2, the normal distribution is showed in figure 2a
where the average value is δ and the variance is 2γ 2,
(2) when α = 1, β = 0, Cauchy distribution is showed
in figure 2b with the location parameter of δ and scale
parameter of γ , (3) when α = 0.5, β = 1, the Levy
distribution is showed in figure 2c with the location
parameter of δ and scale parameter of γ .

3.2 The generation of α-stable distribution

It is supposed that there are two independent random
variables V,W , where V is the uniform distribution of
(−π/2, π/2) and W is the exponential distribution with
the average value of 1. Then the variable X which obeys
α-stable distribution can be obtained by the method of
Janicki–Weron [24,26].

When α �= 1,

X = Nα,β,σ

sin(α(V + Mα,β))

(cos(V ))1/α

×
[

cos(V − α(V + Mα,β))

W

](1−α)α

+ μ (12)

where

Mα,β = arctan(β tan(πα/2))

α
,

Nα,β,σ = σ [cos(arctan(β tan(πα/2)))]−1/α.
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Figure 2. The probability density function (PDF) of α
distribution Sα(γ, β, δ): (a) the PDF of α distribution
S2(γ, 0, δ), where (γ, δ) ∈ {(1, 0), (1, 1), (1,−1), (2, 0),
(1, 1), (1,−1)}; (b) the PDF of α distribution S1(γ,
0, δ), where (γ, δ) ∈ {(0, 0), (0, 1), (0,−1), (0, 0), (0, 2),
(0,−2)}; (c) the PDF of α distribution S0.5(γ, 1, δ), where
(γ, δ) ∈ {(1, 0), (1, 1), (1,−1), (2, 0), (3, 2), (3,−2)}.

When α = 1,

X = 2σ

π

[

(π/2 + βV ) tan(V )

−β ln

(
(π/2)W cos(V )

π/2 + βV

)]

+ μ. (13)

4. The mean of SNRI

Signal-noise ratio (SNR), signal-noise ratio increase
(SNRI) and the degree of multifactuality (DM) [31] are
the indexes to evaluate the influence on input signal of
system, which are widely used in SR system. Sure, we
can use SNR for evaluating, but for the strength and
improvement effect on input signal from SR system,
SNRI is still better. And compared with DM, SNRI is
easier to calculate. Thus, SNRI is chosen as the indicator
to measure SR system. SNRI is defined as

SNRI = Sout( f0)/nout( f0)

Sin( f0)/nin( f0)
, (14)

where Sout( f0) and Sin( f0) are the input and the output
power of the signal respectively. nout( f0) and nin( f0)
are the input and the output power of the α-stable noise
respectively.

From eq. (14), if the signal of SR system is required to
strengthen and improve, let SNRI > 1, and as SNRI is
increasing, the performance of SR would be improved.

In order to avoid accidental situation and increase
the reliability of data, all the simulation experiments in
this paper use the mean of K times SNRI (MSNRI) to
measure the improved performance of tristable system
which is defined as

MSNRI = 1

K

K∑

k=1

SNRIk, (15)

where K is the time of simulation experiments and
SNRIk is the SNRI of the kth simulation experiment.

5. The SR of tristable system driven by α-stable
noise

In the study of SR phenomenon, the simulation system
chooses the signal

s(t) = A sin(2π f0t)

submerged in α-stable noise, where

A = 0.1, f0 = 0.01 Hz.

The sample frequency fs = 5 Hz, characteristic indexes
are α = 1, β = 0, δ = 1, γ = 0 (α-noise) and
α = 2, β = 0, δ = 1, γ = 0 (Gaussian noise) respec-
tively, and the system parameters are p = 0.5, q = 1.2.
The noise intensity is in the interval of [0, 1], and the
simulation number of times K is 100. As figure 3 shows,
the curve of MSNRI and Am , the mean of K times
spectrum peaks, changes with noise intensity Q when
f = f0.
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Figure 3. The curves of output signal vs. noise intensity Q:
(a) MSNRI–Q curves and (b) Am–Q curves.

Am indicates the absolute intensity of the output char-
acteristic signal. The MSNRI reflects the identification
ability of the output signal relative to the input signals.
Both Am and MSNRI increased first and then decreased
with the increase of Q. What is more, they hit the peak
value under the optimal noisy intensity Qop, which are
the classical features of SR. As a result, SR can be real-
ized by the tristable system described in eq. (1) under
noisy environment.

If the parameters in figure 3 remain unchanged, when
Q = 0.09, the phenomenon of SR can be realized by
the tristable system. Figure 4 shows a part of the low-
frequency wave (0–0.25 Hz) of the input and output
signal respectively. From it we can see that the normal-
ized peak of the output spectrum reached the maximum
value at f = f0, and much larger than that of the
input spectrum. Meanwhile, the noise power of high-
frequency transfer to the region of low frequency and the
spectrum of output signal nearly obeys Lorentz distri-
bution. As a result, noise plays an active role in tristable
SR system. The SR phenomenon can be achieved either
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Figure 4. The SR of the tristable system: (a) waveform, (b)
spectrum of the input signal and (c) spectrum of the output
signal.

under Gaussian noise or α-stable noise. The main dif-
ference is that the intervals of system parameters which
could induce SR effect are distinct. From figure 3, we
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can see that the parameter region of Q that can realize
robust SR under α-stable noise would move to the left
and become larger compared to the case of Gaussian
white noise.

5.1 The SR under different characteristic indexes α

When α = 0.2, 0.6, 1, 1.4 and 1.8 respectively, other
parameters of noise distribution: β = 0, δ = 1, γ =
0, both signals to be detected and sampling frequency
remain unchanged. According to the related parameters,
when Q = 0.09, p = 0.5, the curve of MSNRI vs.
system parameter q is shown in figure 5.

Figure 6 shows the curve of MSNRI vs. p when q =
1.2, Q = 0.09. Figure 7 shows the curve of MSNRI vs.
r when p = 0.5, q = 1.2, Q = 0.09.

Figure 5 shows the curves of MSNRI changing with q
under different α. Thus, SR can be realized by changing
q. When q ∈ [0.5, 2.25], it can be seen that MSNRI
first increased and then decreased. It means that the
particle jumps out of the potential barrier under the
combined action of noise and input signal, then the
SR appears when the particle jumps in different poten-
tial wells. When q is increased from 0.5 to 1.05, the
most suitable match between noise, non-linear system
and input signals would be gradually realized. When
q = 1.05, MSNRI would hit the peak in this interval.
When q is increased from 1.05 to 2.25, the potential
barrier would continue to increase, and the most suit-
able match would disappear, leading to the decrease of
MSNRI.

From figure 6, there is a peak when MSNR changes
with p. And when p ∈ [0.08, 0.92], the curves in fig-
ure 6 show an uptrend at first and then a downtrend which
is the typical phenomenon of SR. Figure 7 shows the
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Figure 7. MSNRI vs. r curves under different α values.

curves when MSNRI changes with symmetric param-
eter r under different α with many wave peaks. When
r = 0, MSNRI is the highest and the curve is symmet-
ric, which means the effect of SR is the best when the
tristable system is symmetric.

For certain values of q (p or r ), there is the interval of
p (q or r ) in which the resonance is better. Meanwhile,
the resonance interval of q (p or r ) basically remains
unchanged when α changes. In q interval (p or r ), when
α = 1, MSNRI is the highest which is the best output
effect of SR. When α diverges from 1, the output effect
of SR system becomes weaker.

Similarly, if q, p are fixed, the curves of MSNRI
changing with Q are shown in figure 8 under different
α. As noise intensity Q increases, all the MSNRI hit the
peak value under every α showing an uptrend and then a
downtrend, indicating that an optimum value is reached
to achieve the best SR effect. Most intervals of Q with
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Figure 8. MSNRI vs. Q curves under different α values.
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Figure 9. MSNRI vs. q curves under different β values.

better resonance effect lie in [0, 0.4]. When α = 1, the
MSNRI hits the highest value. As characteristic index
of α deviates from 1, MSNRI decreases.

5.2 SR under different values symmetric parameter β

The symmetric parameter β is −1, 0 and 1 respectively,
other noise parameters have corresponding values such
as α = 1, δ = 1, γ = 0, signal to be detected and
sampling frequency remains unchanged. It is assumed
that when Q = 0.09, p = 0.5, then a simulated curve of
MSNRI is depicted with different values of q (figure 9).
And when q = 1.2, the MSNRI curve by varying p
is shown in figure 10. When the systematic structure
parameter p = 0.5, q = 1.2, the MSNRI curve is shown
in figure 11 with skewness parameter r changing.

Just like the change of MSNRI under different α, the
curve of MSNRI also has peak value with the change
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Figure 10. MSNRI vs. p curves under different β values.
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Figure 11. MSNRI vs. r curves under different β values.

of system parameters under different β. And with the
change in β and system parameters, similar things have
happened to MSNRI. From figure 9, we can see that the
MSNRI graph fluctuates with different q under different
β. When q ∈ [0.65, 2.25], potential barrier height has
been affected leading to particle jump and SR.

From the MSNRI curves by varyingq, p and r respec-
tively, it can be seen that good resonance effect can be
established in fixed q (p or r) with relevant p (q or r).
And after further and careful observation in every inter-
val, it can be seen that the interval of q, p and r with
better resonance effect does not change with β. By ver-
tical contrast, we also realize that when β = 0, MSNRI
is higher than that when β �= 0.

When the symmetric parameter β differs, the trend of
MSNRI changing with Q is shown in figure 12. It shows
that there is a better resonance effect in the Q interval
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Figure 12. MSNRI vs. Q curves under different β values.

converging in the same area. And when β = 0, MSNRI
is higher than that when β �= 0.

6. Conclusion

In this paper, the SR under α-stable noise environment
centring on tristable system is investigated. The laws
for the resonant output of tristable system, governed by
parameters q and p, the intensity amplification factor Q
of α-noise, the skewness r , are explored under different
values of characteristic index α and symmetry parame-
ter β of α-noise. Results show that no matter whether it
is under any different characteristic index α or symmet-
ric parameter β of the α-noise, the weak signal can be
detected by adjusting the system parameters q (p or r ).
The intervals of q (p or r) which can induce SR are cer-
tain, and do not change with α or β. Moreover, the same
rule is found, which by adjusting the intensity amplifica-
tion factor Q of α-noise, can also realize the synergistic
effect when studying the noise-induced SR, and the
interval of Q does not change with α nor β; the best
value of characteristic index is α = 1 under any system
parameters, and the best value of symmetry parameter is
β = 0 under any system parameters. So, the system per-
formance is best when α = 1 and β = 0, and the more
deflective with 1 the α is, the weaker the SR effect is.
Finally, the function of skewness r is investigated, and
it is found that the system performance is better when
r = 0 and r = ±20. The SR effect is best when r = 0.
Meanwhile, r = 0 is the symmetry axis of the MSNRI
curve, and does not change with α nor β. Put it another
way, the SR becomes strongest in a symmetric tristable
system. These results will contribute to reasonably

choosing the system parameters and intensity amplifi-
cation factor of power function type tristable SR system
under α-noise, and provide a reliable basis for practi-
cal engineering application of weak signal detection by
SR.
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