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Abstract. In this article, effects of heat transfer on particle–fluid suspension induced by metachronal wave have
been examined. The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account
with the help of Ohm’s law and Roseland’s approximation. The governing flow problem for Casson fluid model
is based on continuity, momentum and thermal energy equation for fluid phase and particle phase. Taking the
approximation of long wavelength and zero Reynolds number, the governing equations are simplified. Exact
solutions are obtained for the coupled partial differential equations. The impact of all the embedding parameters
is discussed with the help of graphs. In particular, velocity profile, pressure rise, temperature profile and trapping
phenomena are discussed for all the emerging parameters. It is observed that while fluid parameter enhances the
velocity profile, Hartmann number and particle volume fraction oppose the flow.
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1. Introduction

Flagella and cilia are two names that are simultaneously
used for similar structures of eukaryotic cells. In Latin
language cilia means eyelashes and the term cilia is often
used when the cellular appendages are very small and
bound in one cell. Their inner arrangement is formed
by a cylindrical core known as ‘axoneme’. Axoneme is
the cylindrical arrangement of microtubules (elastic ele-
ments) and dynein (molecular motors). It is well known
that motion of cilia is similar to an active sliding which
is the same as the well-known phenomenon in muscle.
The diameter of cilia is about 0.2 μm and the length of
cilia ranges from 2 μm to many millimeters [1]. When
many cilia are adjoined together, they exhibit waves
known as ‘metachronal waves’ on a very large scale.
Cilia are basically organized in rows along and across
the surface of the cell and respiratory tract epithelia. The
motion of closed cilia interacting with hydrodynamics
process form a metachronal wave [2,3]. The propulsion
of different fluids through ciliated surfaces have better
efficiency compared to the random transport of cilia. The
motion of cilia induced by a metachronal wave enhances

the fluid propulsion and control the continuity of the
flow.

Individually, ciliary motion takes various shapes,
depending on the structure of ciliary system [4–6].
Examples include oscillatory, excitable beating, pla-
nar, helical etc. When a metachronal wave propagates
along the same direction as the effective stroke, then
this phenomenon is known as metachronism. When
an effective stroke and a metachronal wave point in
reverse direction then this coordination is known as
antiplectic. When a viewer observes in the direction of a
metachronal wave, he observes an effective stroke which
is perpendicular to the direction of a wave. This mecha-
nism is known as dexioplectic, and the mirror image of
this composition is known as laeoplectic. For the past
few years, the motion of cilia attracted the attention of
many researchers. For instance, Nadeem et al [7] con-
sidered ciliary motion of non-Newtonian Carreau fluid
through the asymmetric channel. He obtained pertur-
bation solution for the nonlinear differential equation.
Bhatti et al [8] studied the influence of magnetohy-
drodynamics on the metachronal wave of particle–
fluid suspension due to the motion of cilia through a
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planar channel and presented the exact solution for the
fluid and particle phases. Siddiqui et al [9] explored the
Newtonian effects on hydromagnetic flow induced by
the motion of cilia through a channel. Later, Siddiqui
et al [10] considered the effects of non-Newtonian fluid
induced by metachronal wave through a tube. Akbar
et al [11] examined the influence of magnetic field for
a metachronal beating of cilia for nanofluid with New-
tonian heating. Haroon et al [12] analysed the ciliary
motion of power-law fluid through an axisymmetric
tube.

The heat transfer and magnetohydrodynamics (MHD)
on metachronal wave due to cilia motion have been
studied by many researchers using different media.
Akbar and Butt [13] considered the effects of Hart-
mann number and heat transfer on the metachronal
beating of cilia motion. Nadeem and Sadaf [14] stud-
ied theoretically and mathematically the Cu–blood
nanofluid for metachronal wave induced by cilia motion
through a curved channel. Akbar and Butt [15] anal-
ysed the impact of heat transfer on the metachronal
wave of copper nanofluids and obtained the exact
solutions. Siddiqui et al [16] investigated the influ-
ence of magnetic field on ciliary motion of New-
tonian fluid through a cylindrical tube. Akbar and
Butt [17] studied the heat transfer effects on New-
tonian fluid flow due to the metachronal wave of
cilia. Akram et al [18] explored the influence of
inclined magnetic field on Jeffrey fluid flow due to
metachronal wave. Akbar [19] presented the biomath-
ematical analysis of carbon nanotubes due to cilia
motion. Bhatti et al [20] examined the simultane-
ous effects of slip and endoscopy on blood flow
of particle–fluid suspension induced by a peristaltic
wave. Akbar and Khan [21] examined the cilia motion
of biviscosity fluid through a symmetric channel. A
few recent studies on the said topic can be seen in refs
[22–25].

Motivated by the above studies, in this paper, we aim
to analyse the heat transfer effects on MHD particle–
fluid suspension induced by the metachronal wave. An
approximation of creeping flow and long wavelength has
been used to model the governing flow problem for fluid
phase and particle phase. The resulting coupled linear
partial differential equation for the fluid phase and the
particle phase are solved analytically and exact solution
is obtained. The impact of all emerging parameters is
discussed with the help of graphs and streamlines. This
paper is designed in the following way: Section 1 deals
with the Introduction, §2 describes the mathematical
formulation of the governing flow problem, §3 deals
with the solution methodology and finally, §4 is devoted
to graphical and numerical results of different emerging
parameters.

2. Mathematical formulation

Let us consider the unsteady irrotational, hydromag-
netic and sinusoidal motion of Casson particle–fluid
which is incompressible and electrically conducting
when an external magnetic field is applied through a
two-dimensional channel. Let a metachronal wave trav-
els with a constant velocity c̃ that is generated by a
collective beating of cilia along the walls of the channel
whose inner surfaces are ciliated. We have selected a
Cartesian coordinate system for the channel in such a
way that X̃ -axis is taken along the axial direction and
Ỹ -axis is taken along the transverse direction.

The envelope for the cilia tips is assumed to be written
as [22]

Ȳ = F̄(X̃ , t̃) = ã + ãε cos
2π

λ
(X̃ − c̃t̃), (1)

X̄ = Ḡ(X̃ , t̃) = X̃0 + ãεα cos
2π

λ
(X̃ − c̃t̃). (2)

X̃ , Ỹ are the Cartesian coordinates, t̃ is the time, ã is
the mean radius of the channel, c̃ is the wave velocity, λ
is the wavelength. The vertical and horizontal velocities
for cilia motion can be written as [22]

Ũ f,p = −2π
λ
ãεαc̃ cos 2π

λ
(X̃ − c̃t̃)

1 − 2π
λ
ãεαc̃ cos 2π

λ
(X̃ − c̃t̃)

, (3)

Ṽ f,p = −2π
λ
ãεαc̃ sin 2π

λ
(X̃ − c̃t̃)

1 − 2π
λ
ãεαc̃ sin 2π

λ
(X̃ − c̃t̃)

, (4)

where the subscripts f and p stand for the fluid phase
and the particulate phase.

The governing equation of continuity, momentum,
and thermal energy equation for the fluid and particulate
phases can be stated as [25,26]

Fluid phase:

∂Ũ f

∂ X̃
+ ∂ Ṽ f

∂Ỹ
= 0, (5)

(1 − C)ρ f

(
∂Ũ f

∂ t̃
+ Ũ f

∂Ũ f

∂ X̃
+ Ṽ f

∂Ũ f

∂Ỹ

)

= −(1 − C)
∂ P̃

∂ X̃
+ (1 − C)

(
∂

∂ X̃
rX̃ X̃ + ∂

∂Ỹ
rX̃ Ỹ

)

+CS

�v

(Ũp − Ũ f ) − σ B2
0Ũ f , (6)

(1 − C)ρ f

(
∂ Ṽ f

∂ t̃
+ Ũ f

∂ Ṽ f

∂ X̃
+ Ṽ f

∂ Ṽ f

∂Ỹ

)
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= −(1 − C)
∂ P̃

∂Ỹ
+ (1 − C)

(
∂

∂ X̃
rỸ X̃ + ∂

∂Ỹ
rỸ Ỹ

)

+CS

�v

(Ṽp − Ṽ f ). (7)

(1 − C)ρ f c

(
∂ T̄ f

∂ t̃
+ Ũ f

∂ T̄ f

∂ X̃
+ Ṽ f

∂ T̄ f

∂Ỹ

)

= k(1 − C)
∂2T̄ f

∂Ỹ 2
+ ρpcpC

�T
(T̄p − T̄ f )

+CS

�v

(Ũ f − Ũp)
2

+μs(1 − C)rX̃ Ỹ

(
∂Ũ f

∂Ỹ

)
− ∂QR

∂Ỹ
, (8)

whereC is the volume fraction density, ρ is the fluid den-
sity, k is the thermal conductivity, S is the drag force, μs
is the viscosity of the fluid, σ is the electrical conduc-
tivity, B0 is the applied magnetic field, c is the specific
heat.

Particulate phase:

∂Ũp

∂ X̃
+ ∂ Ṽp

∂Ỹ
= 0, (9)

Cρp

(
∂Ũp

∂ t̃
+ Ũp

∂Ũp

∂ X̃
+ Ṽp

∂Ũp

∂Ỹ

)

= −C
∂ P̃

∂ X̃
+ CS

�v

(Ũ f − Ũp), (10)

Cρp

(
∂ Ṽp

∂ t̃
+ Ũp

∂ Ṽp

∂ X̃
+ Ṽp

∂ Ṽp

∂Ỹ

)

= −C
∂ P̃

∂Ỹ
+ CS

�v

(Ṽ f − Ṽp), (11)

ρpCcp

(
∂ T̄p

∂ t̃
+ Ũp

∂ T̄p

∂ X̃
+ Ṽp

∂ T̄p

∂Ỹ

)

= ρpCcp
�T

(T̄ f − T̄p), (12)

where �T is the temperature relaxation time and �v is
a velocity relaxation time.

The mathematical expression for the drag coefficient
and the empirical relation for the viscosity of the sus-
pension can be defined as

S = 9μ0

2ǎ2 λ̃(C),

λ̃(C) = 4 + 3
√

8C − 3C2 + 3C

(2 − 3C)2 ,

μs = μ0

1 − χC
, χ = 0.07e[2.49C+ 1107

T e−1.69C ]. (13)

The nonlinear radiative heat flux with the help of Rose-
land’s approximation can be written as

Qr = −16σ̄ T̄ 3

3k̄

∂ T̄

∂Ỹ
. (14)

The rheological equation of state for an isotropic and
incompressible Casson fluid is

ri j =

⎧⎪⎨
⎪⎩

2εi j

(
μb + py√

2�

)
, �c < �,

2εi j

(
μb + py√

2�c

)
, �c > �,

(15)

where εi j is the component of the deformation rate, �

is the product of the deformation rate, �c is the critical
value of the product based and μb is the plastic viscos-
ity. Let us define the transformation variable from fixed
frame to wave frame. We have

x̃ = X̃ − c̃t̃, ỹ = Ỹ , ũ f,p = Ũ f,p − c̃,

ṽ f,p = Ṽ f,p, p̃ = P̃. (16)

Introduce the following non-dimensional quantities

x̃ = x

λ
, ỹ = y

ã
, ũ f,p = u f,p

c̃
, Pr = μsc

k
,

ṽ f,p = v f,p

c̃δ
, φ = b̃

ã
, p = ã2

λc̃μs
p̃, Re = ρãc̃

μs
,

N1 = Sã2

�vμs
, M =

√
B2

0 ã
2σ

μs
, θ f,p = T̄ f,p − T̄0

T̄1 − T̄0
,

Ec = c̃2

c(T̄1 − T̄0)
, Rd = 4σ̄ T̄ 3

μsck̄
, (17)

where M is the Hartmann number, Pr is the Prandl
number, φ is the amplitude ratio, Re is the Reynolds
number, θ is the dimensionless temperature, Ec is the
Eckert number and σ̄ is the Stefan–Boltzmann constant.
Using eqs (16) and (17) in eqs (1)–(15), and consid-
ering the approximation of long wavelength and zero
Reynolds number approximation, the resulting equa-
tions after some simplification for the fluid phase can
be written as(

1 + 1

�

)
∂2u f

∂y2 − M2(u f + 1) − 1

1 − C

dp

dx
= 0,

(18)(
1

Pr
+ 4

3
Rd

)
∂2θ f

∂y2 + Ec

(
1 + 1

�

) (
∂u f

∂y

)2

+ Ec

N1(1 − C)

(
dp

dx

)2

= 0, (19)

where � is the dimensionless fluid parameter and Rd is
the radiation parameter.
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For the particulate phase, it can be written as

1

N1

dp

dx
= (u f − u p), (20)

θ f = θp. (21)

Their corresponding boundary conditions are

u′
f (0) = 0, θ f (0) = 0

and

u f (h) = −1 − 2πφαβ cos 2π(x)

1 − 2πφαβ cos 2π(x)
,

θ f (h) = 1. (22)

α is the eccentricity of the elliptic path and ε is the ratio
of the cilia length.

3. Solution of the problem: Exact solutions

After integrating eqs (18) and (19) twice, the solu-
tion of velocity profile (u f , u p) and temperature profile
(θ f , θp) can be written in simplified form as

u f (y) =
M2(1 − C) + dp

dx −
(
(−1 + C)M2

N + dp
dx

)
cosh My

√
�

1+�

(−1 + c) M2 cosh Mh
√

�
1+�

, (23)

u p(y) = − 1

N1

dp

dx
+

M2(1 − C) + dp
dx −

(
(−1 + C)M2

N + dp
dx

)
cosh My

√
�

1+�

(−1 + c)M2 cosh Mh
√

�
1+�

, (24)

θ f,p(y) =
4M2y

(
2(−1 + C)N1(3 + 4Pr Rd) + 3Ech

(
dp
dx

)2
Pr (−h + y)

)
8(−1 + C)hM2N1(3 + 4Pr Rd)

−3(−1 + C)C2EcN1Pr (h − y)(1 + �)(−1 + (−1 + 2hM2y)�)

8(−1 + C)hM2N1(3 + 4Pr Rd)�2

+
3(−1 + c)C2EcN1Pr (1 + �)2

(
y cosh 2Mh

√
�

1+�
− h cosh 2My

√
�

1+�

)
8(−1 + C)hM2N1(3 + 4Pr Rd)�2 . (25)

The volume flow rate for the fluid phase and the partic-
ulate phase is given by

Q = Q f + Qp, (26)

where

Q f = (1 − C)

∫ h

0
u f dy, (27)

Qp = C
∫ h

0
u pdy. (28)

The pressure gradient dp/dx is obtained after solving
eqs (27) and (28). The non-dimensional pressure rise

(�p) is evaluated numerically by using the following
expression:

�p =
∫ 1

0

dp

dx
dx . (29)

The expression for stream function is defined as

Ũ f,p = ∂�

∂y
, Ṽ f,p = −∂�

∂x
, (30)

where
h = 1 + φ sin 2πx,

C =
(
(−1 + C)M2

N + dp
dx

)√
�

1+�

(1 − C)M2 cosh Mh
√

�
1+�

,

N = 2πφαβ cos 2π(x)

1 − 2πφαβ cos 2π(x)
. (31)

4. Results and discussion

This section describes the graphical results for all the
parameters that arise in the governing flow problem.

To analyse the novelties of all the pertinent parameters,
computational software Mathematica has been used to
bring out the inclusion of wavenumber β, measure of
the eccentricity α, particle volume fractionC , Hartmann
number M , Casson fluid parameter �, Eckert number
Ec, Prandtl number Pr and radiation parameter Rd on
velocity profile u f , temperature profile θ f,p, pressure
rise �p and trapping phenomena. The expression for
pressure rise �p in eq. (29) is evaluated numerically
with the help of computer-generated codes. For this
purpose, figures 2–13 are sketched, whereas figure 1
represents the geometry of the governing flow problem.
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Figure 1. Geometry of the problem.

Figures 2–4 represent the velocity profile against Cas-
son fluid parameter �, wavenumber β, a measure of the
eccentricityα, Hartmann number M and particle volume
fraction C . Figure 2a shows that when the eccentricity
parameter α increases, then the velocity profile increases
when y < 0.6. However, when y > 0.6 the velocity pro-
file shows opposite behaviour and decreases with the
increment in α. From figure 2b we can see that the Cas-
son fluid parameter � enhances the velocity profile. In
eq. (16) the results for Newtonian fluid can be obtained
by taking � → ∞. It can be observed from figure 3a
that when the wavenumber β increases then it causes a
reduction in the velocity profile when y > 0.6 but for
y < 0.6 it enhances the velocity profile. It can be noticed
from figure 3b that large values of particle volume frac-
tion C causes a reduction in the velocity profile. When
the magnetic field is applied to any electrically conduct-
ing fluid, then it produces a Lorentz force which tends

Figure 4. Velocity profile for various values of M when
α = 0.5,� = 1, Rd = 3, Pr = 6, Ec = 0.5, β = 0.2,
C = 0.2.

to oppose the flow. It can be seen from figure 4 that
magnetic field opposes the flow due to the influence of
Lorentz force.

Figures 5 shows the behaviour of temperature pro-
file against Prandtl number Pr and radiation parameter
Rd , and figure 6 shows the behaviour of temperature
profile against fluid parameter � and Eckert number.
Figure 5a shows that Prandtl number Pr enhances the
temperature profile. In fact, here we can also see that
when the Prandtl number Pr > 1 then the momen-
tum diffusivity becomes more significant as compared
to thermal diffusivity. From figure 5b, we can see
that radiation parameter Rd causes a reduction in the
temperature profile. Hence, similar behaviour on tem-
perature profile has been observed for Casson fluid

Figure 2. Velocity profile for various values of α and � when Rd = 3, Pr = 6, Ec = 0.5, β = 0.2,C = 0.2, M = 1.

Figure 3. Velocity profile for various values of β and C when α = 0.5,� = 1, Rd = 3, Pr = 6, Ec = 0.5, M = 1.
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parameter � as shown in figure 6a. Figure 6b shows that
Eckert number Ec enhances the temperature profile.

To analyse the pumping characteristics, figures 7
and 8 are sketched for pressure rise against Casson
fluid parameter �, Hartmann number M , wavenum-
ber β and particle volume fraction C . Furthermore,
these figures are divided into four regions, i.e. ret-
rograde pumping region (�p > 0, Q < 0), peristaltic
pumping region (�p > 0, Q > 0), free pumping region
(�p < 0, Q < 0) and co-pumping region (�p < 0,

Q > 0). Figure 7a shows that when the Casson fluid
parameter � increases, then the pumping rate increases
in the free pumping region and co-pumping region.
However, it shows opposite behaviour in retrograde
pumping region. From figure 7b, we can see that the
influence of wavenumber β shows similar behaviour
in all the regions and diminish with the increment in

wavenumber β. Figure 8a is plotted against particle vol-
ume fraction C . It can be observed from this figure
that particle volume fraction C has a very significant
effect on pressure rise and decreases in retrograde pump-
ing region. It can be seen from figure 8b that due to
the influence of Hartmann number M the pressure rise
shows dual behaviour in retrograde pumping region.
When Q < −1, then the pressure rise increases with
the increment in Hartmann number M but its behaviour
is opposite when Q > −1.

The next most interesting and engrossing part of this
section is the trapping phenomena which can be anal-
ysed with the help of streamlines. It is originated due to
the formation of internally circulating bolus in the fluid
that is enclosed by streamlines known as trapping. The
physical mechanism is also applicable to the formulation
of thrombus in blood and the transport of food bolus

Figure 5. Temperature profile for various values of Pr and Rd when α = 0.5,� = 1, Ec = 0.5, β = 0.2,C = 0.2, M = 1.

Figure 6. Temperature profile for various values of � and Ec when α = 0.5,� = 1, Rd = 3, Pr = 6,C = 0.2, M = 1.

Figure 7. Pressure rise vs. volume flow rate for various values of � and β when α = 0.5, Rd = 3, Pr = 6, Ec = 0.5,
C = 0.2, M = 1.
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Figure 8. Pressure rise vs. volume flow rate for various values of C and M when α = 0.5,� = 1, Rd = 3, Pr = 6,
Ec = 0.5, β = 0.2.

Figure 9. Streamlines for various values of α, (a) 0.1, (b) 0.5, (c) 0.8 when � = 1, β = 0.2,C = 0.2, M = 1.

Figure 10. Streamlines for various values of �, (a) 0.5, (b) 2, (c)∞ when α = 0.5, β = 0.2,C = 0.2, M = 1.

Figure 11. Streamlines for various values of β, (a) 0.1, (b) 0.3, (c) 0.4 when α = 0.5,� = 1,C = 0.2, M = 1.
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Figure 12. Streamlines for various values of C , (a) 0.1, (b) 0.3, (c) 0.6 when α = 0.5,� = 1, β = 0.2, M = 1.

Figure 13. Streamlines for various values of M , (a) 1, (b) 2, (c) 3 when α = 0.5,� = 1, β = 0.2,C = 0.2.

(gastrointestinal tract). Figures 9–13 are prepared for
particle volume fraction C , Hartmann number M , mea-
sure of eccentricity α, wavenumber β, and Casson fluid
parameter � respectively. It can be observed from fig-
ure 9 that when the eccentricity parameter α increases
then it does not cause any greater impact on the mag-
nitude of the bolus. We can see that the magnitude of
the bolus is reduced very slowly. However, the number
of bolus remains constant. It can be seen from figure 10
that when the Casson fluid parameter � increases then
the magnitude of the bolus decreases very gradually.
From figure 11, we can see that when the wavenumber
β increases then the number of boluses reduces and the
size of the bolus also decreases. Figure 12 shows that
with the increment in particle volume fraction C , the
magnitude of bolus decreases very moderately. In fig-
ure 13, we can see that when the Hartmann number M
increases then the size and the number of bolus decrease
very rapidly.

5. Conclusion

In this article, effects of heat transfer and MHD on
particle–fluid induced by metachronal wave has been
studied. The governing equations for the flow problem

are modelled with the help of long wavelength and zero
Reynolds number approximation. The resulting coupled
partial differential equations are solved analytically and
exact solutions are presented. Major outcomes of the
present study are summarized below:

• Velocity profile shows similar behaviour due to the
increment in eccentricity parameter α and wavenum-
ber β.

• Velocity profile decreases due to the increment in
particle volume fraction C and Hartmann number
M .

• Prandtl number Pr and Eckert number Ec enhance
the temperature profile.

• An increment in thermal radiation Rd and Casson
fluid parameter � causes a reduction in the temper-
ature profile.

• Pressure rise behaves in the same way in all the
regions for wavenumber β.

• The behaviour of particle volume fractionC and Cas-
son fluid parameter � on pressure rise is the same.

• The present results for Newtonian fluid can also be
obtained by taking � → ∞.

• The present results reveal various interesting behav-
iours that warrant further study on a particle–fluid
and metachronal wave.
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