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Abstract. In this paper, a new design of fractional-order sliding mode control scheme is proposed for the
synchronization of a class of nonlinear fractional-order systems with chaotic behaviour. The considered design
approach provides a set of fractional-order laws that guarantee asymptotic stability of fractional-order chaotic
systems in the sense of the Lyapunov stability theorem. Two illustrative simulation examples on the fractional-order
Genesio–Tesi chaotic systems and the fractional-order modified Jerk systems are provided. These examples show
the effectiveness and robustness of this control solution.
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1. Introduction

Since more than three centuries, a great number of
researchers focussed their attention on the mathemati-
cal topics of fractional calculus, dealing with derivatives
and integrations of non-integer order. Compared to the
classical theory, fractional differential equations can
more accurately describe many systems in interdis-
ciplinary fields, such as viscoelastic systems, dielec-
tric polarization, electrode–electrolyte polarization, the
nonlinear oscillation of earthquakes, mechanics and
electromagnetic wave systems [1].

Fractional-order systems have shown very attractive
performances and properties, and therefore many appli-
cations of such systems have been performed in different
domains such as automatic control [2,3], robotics [4],
signal processing [5], image processing [6] and renew-
able energy [7].

In the last decade, considerable research efforts have
been dedicated to fractional systems that display chaotic
behaviour like: Duffing model [8], Chua system [9],
Chen dynamic circuit [10], Jerk model [11], Rössler
model [12], characterization [13] and Newton–Leipnik
formulation [14]. The synchronization or control of

these systems is a difficult task because the main char-
acteristic of chaotic systems is their high sensitivity to
initial conditions [15]. However, it is gathering more and
more research effort due to several potential applications
especially in cryptography [16–18].

For the particular case of fractional-order systems
with chaotic dynamics, many methods have been intro-
duced to realize chaos synchronization, such as PC
control [19], fractional-order PIλDμ control [20,21],
nonlinear state observer method [22], fuzzy adaptive
control [23], adaptive back-stepping control [24], slid-
ing mode control [25,26] etc.

In the present work, we are interested by the problem
of fractional-order chaotic system synchronization by
means of sliding mode control [27,28]. Sliding mode
control is a very suitable method for handling such
nonlinear systems because of its robustness against dis-
turbances and plant parameter uncertainties and its order
reduction property [29,30].

The main objective is to design an appropriate con-
trol law such that the sliding mode is reached in a
finite time. The system trajectory moves toward the
sliding surface and stays on it. The conventional SMC
uses a control law with large control gains yielding
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undesired chattering while the control system is in
the sliding mode [31]. Based on the Lyapunov sta-
bility theorem, an efficient control algorithm is pro-
posed that guarantees feedback control system stability
via the sliding mode robust tracking design tech-
nique.

The manuscript is organized as follows. Section 2
presents an introduction to fractional calculus with
some numerical approximation methods. The problem
of fractional-order chaotic system synchronization is
given in §3. Section 4 presents the proposed sliding
mode synchronization technique and the control law
design. The stability analysis is performed in §5. In
§6, applications of the proposed control scheme on
Genesio–Tesi fractional-order systems and the modi-
fied Jerk systems are investigated. Finally, conclusion
remarks with future works are pointed out in §7.

2. Basics of fractional-order systems

Fractional calculus is an old mathematical research
topic, but it is retrieving popularity nowadays. Fractional
calculus theory appeared and grows up mainly since
three centuries. A recent reference presented by Miller
and Boss [32] provides a good source of documentation
on fractional systems and operators. However, topics
about the application of fractional-order operator the-
ory to dynamic system control are just a recent focus of
interest [6,33].

2.1 Basic definitions

There are many mathematical definitions of fractional
integration and derivation. We shall here, present two
currently used definitions.

2.1.1 Riemann–Liouville (R–L) definition. It is one
of the most popular definitions of the fractional-order
integrals and derivative [32]. The R–L integral of
fractional-order λ > 0 is given as

I λ
RLg(t) = D−λ

RLg(t)

= 1

�(λ)

∫ t

0
(t − ζ )λ−1g(ζ )dζ (1)

and the R–L derivative of fractional-order μ is

Dμ
RLg(t) = 1

�(n − μ)

dn

dtn

∫ t

0
(t − ζ )n−μ−1g(ζ )dζ,

(2)

where the integer n verifies: (n − 1) < μ < n. The
fractional-order derivative (2) may also be expressed

from eq. (1) as

Dμ
RLg(t) = dn

dtn
{I (n−μ)

RL g(t)}. (3)

2.1.2 Grünwald–Leitnikov (G–L) definition. The G–L
fractional-order integral with order λ > 0 is

I λ
GLg(t) = D−λ

GLg(t)

= lim
h→0

hλ

k∑
j=0

(−1) j
(−λ

j

)
g(kh − jh). (4)

Here, h is the sampling period with the coefficients
ω

(−λ)
j verifying

ω
(−λ)
0 =

(−λ

0

)
= 1

which belong to the following polynomial:

(1 − z)−λ =
∞∑
j=0

(−1) j
(−λ

j

)
z j =

∞∑
j=0

ω
(−λ)
j z j . (5)

The G–L definition for fractional-order derivative
with order μ > 0 is

Dμ
GLg(t) = dμ

dtμ
g(t)

= lim
h→0

h−μ
k∑
j=0

(−1) j
(

μ

j

)
g(kh − jh), (6)

where the coefficients

ω
(μ)
j =

(
μ

j

)
= �(μ + 1)

�( j + 1)�(μ − j + 1)

with ω0
(μ) = (

μ

0 ) = 1, are those of the polynomial:

(1 − z)μ =
∞∑
j=0

(−1) j
(

μ

j

)
z j =

∞∑
j=0

ω
(μ)
j z j . (7)

2.2 Implementation of fractional operator

Generally, industrial control processes are sampled, and
so a numerical approximation of the fractional oper-
ator is necessary. There exist several approximation
approach classes depending on temporal or frequency
domain. In the literature, the currently used approaches
in frequency domain are those of Charef [33,34] and
Oustaloup [6]. In temporal domain, there is a lot of
work about the numerical solution of the fractional dif-
ferential equations. Diethelm has proposed an efficient
method based on the predictor–corrector Adams algo-
rithm [35]. The definitions cited above have numerical
approximations also (see refs [32] and [33]).
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2.3 Fractional-order system stability

Let us recall the stability definition in the sense of
Mittag–Leffler functions [36].

DEFINITION 1

The Mittag–Leffler function is frequently used in the
solutions of fractional-order systems. It is defined as

Eα(z) =
∞∑
k=0

zk

�(kα + 1)
, (8)

where α > 0. The Mittag–Leffler function with two
parameters has the following form:

Eα,β(z) =
∞∑
k=0

zk

�(kα + β)
, (9)

where α > 0 and β > 0. For β = 1, we have Eα(z) =
Eα,1(z).

DEFINITION 2

Consider the Riemann–Liouville fractional non-auton-
omous system

Dα
RLx(t) = f (x, t), (10)

where f (x, t) is Lipschitz with a Lipschitz constant
l > 0 and α ∈ (0, 1).

The solution of (10) is said to be Mittag–Leffler stable
if

‖x(t)‖ ≤ [m(x(t0))Eα(−λ(t − t0)α)]b , (11)

where t0 is the initial time, α ∈ (0, 1), λ > 0, b > 0,
m(0) = 0, m(x) ≥ 0 and m(x) is locally Lipschitz on
x ∈ B ⊂ Rn with Lipschitz constant m0.

An important stability result is given below [36].

Lemma 1. Let x = 0 be a point of equilibrium for the
fractional-order system (10). Suppose there exist a Lya-
punov function V (t, x(t)) such that

ε1‖x‖η ≤ V (t, x) ≤ ε2‖x‖, (12)

V̇(t, x) ≤ −ε3‖x‖, (13)

where ε1, ε2, ε3 and η are positive constants. Then
the equilibrium point of system (10) is Mittag–Leffler
(asymptotically) stable.

3. Definition of synchronization problem

The following class of n-dimensional non-autonomous
fractional-order chaotic system is considered [37]:
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dqx1 = x2,

...

Dqxn−1 = xn,
Dqxn = f (x, t),

(14)

where x = [x1, x2, ..., xn]T = [x, x (q), x (2q), ...,

x ((n−1)q)]T ∈ 
n , f (x, t) is a nonlinear function of x
and 0 < q < 1.

Taking (14) as the drive system, the response system
with a control input u(t) ∈ 
 becomes
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dq y1 = y2,

...

Dq yn−1 = yn,
Dq yn = g(y, t) + u,

(15)

(a) (b)

time (s)

Figure 1. Chaos in the fractional-order Genesio–Tesi system: (a) States behaviour and (b) phase portrait in the (x, y) plane.
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(a)

(b)

Figure 2. SMC synchronization of the fractional-order Genesio–Tesi systems: (a) Trajectories of the master and the slave
state variables and (b) the corresponding errors ex , ey and ez .

where y = [y1, y2, ..., yn]T ∈ 
n , g(y, t) is the nonlin-
ear function of y.

Defining the error vector e(t) = y(t)− x(t), and from
eqs (14) and (15), the error equation is as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Dqe1 = e2,

...

Dqen−1 = en,
Dqen = g(y, t) − f (x, t) + u.

(16)

Thus, the problem of synchronizing two fractional-order
nonlinear systems is equivalent to the problem of finding

a control u(t) ensuring that the error e in (16) converges
to zero. A sliding mode controller is designed to achieve
this objective in the next section.

4. Design of the sliding mode controller

The main reason for the growing popularity of sliding
mode control (SMC) is its robustness against distur-
bances under certain conditions [29,38].

In our contribution, the proposed fractional-order
sliding surface is
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(a) (b)

Figure 3. SMC synchronization fractional-order Genesio–Tesi systems: (a) Sliding-surface function and (b) the control
signal.

s(t) = k1D
q−1en + k2

∫ t

0

n∑
i=1

ci ei (ξ)dξ, (17)

where k1, k2 are positive coefficients and ci , i =
1, 2, ..., n are sliding surface parameters to be deter-
mined.

The equivalent sliding mode control is obtained by
taking the derivative of eq. (17) as follows:

ṡ(t) = k1D
qen + k2

n∑
i=1

ci ei = 0

⇒ Dqen = −k2

k1

n∑
i=1

ci ei . (18)

Hence, using eqs (16) and (17) we obtain the equiva-
lent sliding mode control

ueq(t) = −g(y, t) + f (x, t) − k
n∑

i=1

ci ei , (19)

where k = k2/k1 is a positive real number. Choosing
the following switch control law

usw(t) = −k sign(s) (20)

the sliding mode control can be obtained as

u(t) = ueq(t) + usw(t)

= − g(y, t) + f (x, t) − k
n∑

i=1

ci ei − k sign(s).

(21)

The objective is that the state trajectories of the sys-
tem described by eq. (15) converge towards the sliding
surface. Thus, by defining

c�
i = −k2

k1
ci (22)

the sliding mode dynamics are given by the following
equations:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Dqe1 = e2,

...

Dqen−1 = en,

Dqen = ∑n
i=1 c

�
i ei ,

(23)

or in a matrix equation form as

Dqe = Ae, (24)

where

e = [e1, e2, ..., en]T
and

A =

⎡
⎢⎢⎣

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1
c�

1 c�
2 · · · c�

n

⎤
⎥⎥⎦ .

The selection of the fractional-order sliding surface
parameters c�

i (i = 1, 2, ..., n) obeys the stability the-
orem of Matignon [39] which imposes for the sliding
surface of eq. (17) to be asymptotically stable that the
stability condition |arg(eig(A))| > qπ/2 is verified.

5. Stability analysis

The principal result of this work is expressed by the
following theorem:

Theorem 1. Synchronization of systems (14) and (15)
is perfectly achieved by the sliding mode control law
(21) with k = k2/k1.
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(a)

(b)

Figure 4. SMC synchronization of the fractional-order Genesio–Tesi systems in the presence of disturbances: (a) Trajectories
of the master and slave state variables and (b) the corresponding errors ex , ey and ez .

Proof. We shall prove that the systems given by eqs (14)
and (15) are completely synchronized which means that
the error dynamical system (16) is asymptotically stable.
Let us choose a positive definite Lyapunov candidate
function such that

V = |s| . (25)

(It is obvious that the Lyapunov function V (t, e(t))
satisfies the conditions in Lemma 1 for η = 1 and some
positive constants ε1 and ε2.)

We get by simple derivative,

V̇ = sign(s)ṡ

= sign(s)

(
k1D

qen + k2

n∑
i=1

ci ei

)

= sign(s)

(
k1(g(y, t) − f (x, t) + u) + k2

n∑
i=1

ci ei

)

= sign(s)

(
k1

(
−k

n∑
i=1

ci ei − k sign(s)

)

+ k2

n∑
i=1

ci ei

)
.
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(a) (b)

Figure 5. SMC synchronization of the ‘disturbed’ fractional-order Genesio–Tesi systems: (a) Sliding-surface function and
(b) the control signal.

We set

k = k2

k1
. (26)

Then we have

V̇ = sign(s)

(
k1

(
−k2

k1

n∑
i=1

ci ei − k2

k1
sign(s)

)

+ k2

n∑
i=1

ci ei

)

= sign(s)

(
−k2

n∑
i=1

ci ei − k2 sign(s)+k2

n∑
i=1

ci ei

)

= sign(s) (−k2 sign(s))

= −k2. (27)

Then, it is always possible to find the positive constant
ε3 such that

V̇ = −k2 ≤ −ε3 ‖e‖
and following Lemma 1, system (16) is Mittag–Leffler
stable and the error asymptotically converges to zero,
which completes the proof.

6. Simulation results

In order to illustrate the effectiveness of the pro-
posed synchronization scheme, two numerical simu-
lation examples of application to the fractional-order
Genesio–Tesi chaotic systems and the fractional-order
modified Jerk systems are proposed, in ideal and dis-
turbed conditions.

Table 1. Response time and quadratic error criteria vs. con-
trol parameter k.

k τr Jk

0.36 ∞ ∞
0.33 37.58 223.92
0.30 37.37 116.51
0.27 37.31 147.04
0.24 37.29 139.47
0.21 37.46 136.53
0.18 37.47 135.37
0.15 37.49 134.69
0.12 37.49 134.41
0.09 37.53 134.66
0.06 37.55 136.08
0.03 ∞ ∞

6.1 Synchronization of fractional-order Genesio–Tesi
systems

The fractional-order Genesio–Tesi system is defined
as [20]

⎧⎨
⎩

Dqx = y,
Dq y = z,
Dqz = −cx − by − az + x2.

(28)

For the system parameters’ values (a, b, c) = (1.2,

2.992, 6) and taking q = 0.99, the Genesio–Tesi system
presents a chaotic behaviour as shown in figure 1.

Initial conditions are [40]: x(0) = −1.0032, y(0) =
2.3445 and z(0) = −0.087.

Figure 1a shows the chaotic behaviour of the fracti-
onal-order Genesio–Tesi system, whereas figure 1b
presents the numerical simulation of its attractor.
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6.1.1 Synchronization in the ideal case (without distur-
bances). Taking the sliding surface parameters as [37]:
(c1, c2, c3) = (6, 1, 5), we apply the sliding mode con-
trol law (21) when the parameters k1 = 1 and k2 =
0.13.

The obtained simulation results when applying the
synchronizing control action at t = 40 s with the
initial condition values (−1.0032, 2.3545, −0.87) and
(−2, 1, −0.5) for the master and the slave systems
respectively are presented in figures 2 and 3.

As shown in figure 2, there are three stages of the
controlled system [41]. In the first 40 s, without the con-
troller, the system is chaotic as we can see in figure 1.
In the second phase (known as reaching phase), after
t = 40 s, the fractional-order chaotic system is forced
towards the sliding manifold by the sliding mode con-
troller. When the trajectory touches the sliding surface,
the system enters the third phase, which is called slid-
ing mode operation. The results presented here show the
good performance exhibited by the proposed synchro-
nization schemes.

6.1.2 Synchronization of disturbed fractionalGenesio–
Tesi systems. It is well known that uncertain distur-
bance and random factors exist everywhere in real-world
[42,43]. Sliding mode control has proved to be an
efficient solution for control and synchronization of dis-
turbed chaotic systems [38].

Let us apply a random disturbance signal ζ(t) on the
fractional Genesio–Tesi slave system to investigate the
performance of the proposed SMC control law in bad
operating conditions. The corresponding mathematical
model is given by eq. (29).⎧⎨
⎩

Dqx = y,
Dq y = z,
Dqz = −cx − by − az + x2 + ζ,

(29)

where ζ(t) is a random signal of amplitude A = 0.1.
Figures 4 and 5 present the synchronization results

using the proposed SMC law (21) with k = k2/k1 = 0.1.
As shown by the simulation results, although the slave

system contains an additive disturbance, the tracking
is achieved. When the proposed SMC is applied, the

(a)
(b)

(c)
(d)

Figure 6. Chaotic behaviours of modified fractional-order Jerk system: (a) (x, y) plane, (b) (x, z) plane, (c) (y, z) plane,
(d) (x, y, z) space.
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(a)

(b)

Figure 7. SMC synchronization of the modified fractional-order Jerk systems: (a) Trajectories of the master and the slave
state variables and (b) the corresponding errors ex , ey and ez .

control input is much smooth, and the switching control
part is small once the sliding layer is entered as shown
in figure 5b.

In order to point out the performance of the control
system vs. the control parameter k, let us define the
quadratic error criterion Jk as

Jk =
√∫ t f

tc
(e2

x + e2
y + e2

z )dt, (30)

where tc is the time of control application and t f is the
simulation time duration.

Table 1 illustrates the effect of the control parameter
k on the performance of control system (response time
τr and quadratic error criterion Jk).

The simulation results demonstrate the efficiency of
the proposed SMC control method to achieve the syn-
chronization of the two Genesio–Tesi systems with
disturbance rejection.

6.2 Synchronization of fractional-order Jerk systems

The modified fractional-order Jerk system is given as
follows [44]:
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(a) (b)

Figure 8. SMC synchronization of the modified fractional-order Jerk system: (a) Sliding-surface function and (b) the control
signal.

⎧⎨
⎩

Dqx = y,
Dq y = z,
Dqz = −ε1x − y − ε2z − f (x(t)),

(31)

where the parameters are given by ε1 = 1.5, ε2 = 0.35
and f (x(t)) is a piecewise-linear function defined by

f (x(t)) = 1

2
(θ0 −θ1) (|x(t) + 1|−|x(t)−1|)+θ1x(t),

(32)

where θ0 < −1 < θ1 < 0 and θ0 = −2.5, θ1 = −0.5.
When the initial values are chosen as (1, 1, 1)T

and the fractional-order q = 0.98 [44], the modified
fractional-order Jerk system shows chaotic behaviours
as illustrated in figure 6.

6.2.1 Synchronization in the ideal case (without distur-
bances). Taking the sliding surface parameters as [37]:
(c1, c2, c3) = (6, 1, 5), we apply the sliding mode con-
trol law (21) with the parameters k1 = 1 and k2 = 0.13.

The simulation results obtained when applying the
synchronizing control action at t = 20 s with a simula-
tion sampling period h = 0.01 s and the initial condition
values (−1.0032, 2.3545, −0.87) and (−2, 1, −0.5) for
the master and the slave systems respectively are pre-
sented in figures 7 and 8.

As shown in figure 7, there are three stages of the
controlled system [41]. In the first 20 s, without con-
troller, the system is chaotic as we can see in figure 6. In
the second phase (known as the reaching phase), after
t = 20 s, the fractional-order chaotic system is forced
towards the sliding manifold by the sliding mode con-
troller. When the trajectory touches the sliding surface,
the system enters the third phase, which is called slid-
ing mode operation. The results presented here show the

Table 2. Dynamical performance of the modified Jerk sys-
tems vs. control parameter k.

k τr Jk

0.15 ∞ ∞
0.10 36.90 63.99
0.05 30.08 49.98
0.01 29.81 47.74
0.005 29.59 47.35
0.001 29.88 47.03
0.0005 29.88 46.99
0.0001 28.89 46.96
0.00005 29.89 46.96
0.00001 29.89 46.96

Figure 9. Quadratic error criterion Jk vs. the controller
parameters k1 and k2.

good performance exhibited by the proposed synchro-
nization schemes.

6.2.2 Synchronizationof delayed fractional-ordermod-
ified Jerk system. Here, we try to synchronize two
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(a)

(b)

Figure 10. SMC synchronization of the modified fractional-order Jerk system with delay disturbance: (a) Trajectories of the
master and the slave state variables and (b) the corresponding errors ex , ey and ez .

fractional-order modified Jerk systems (31) with dif-
ferent initial conditions and a delay disturbance on the
slave system as represented in (33)

⎧⎪⎨
⎪⎩

Dqx(t) = y(t − τ),

Dq y(t) = z(t − τ),

Dqz(t) = −ε1x(t − τ) − y(t − τ) − ε2z(t − τ)

− f (x(t − τ)).

(33)

The proposed control law (21) is applied with the
parameters k1 = 1 and k2 = 0.001, where the delay
on the slave system is τ = 5 h. The results obtained for
different values of the control parameter k are presented

in table 2, where τr is the response time and Jk is the
quadratic error criterion defined by (30).

The variation of quadratic error criterion Jk vs. the
controller parameters k1 and k2 is illustrated in figure 9.

Choosing k = 0.0001, we obtain the simulation
results presented in figures 10 and 11.

Simulation results in figure 10 show that, even though
the value of delay is not used in the proposed controller
(21), the time responses of the closed-loop system with
the proposed controller are as effective as in the ideal
case (without delay disturbances) [45]. This confirms
the acceptable performance of the proposed controller.
In fact, the control gain ratio k allows adapting the SMC
control to counteract disturbances and delays introduced
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(a) (b)

Figure 11. SMC synchronization of the modified fractional-order Jerk system with delay disturbance: (a) Sliding-surface
function and (b) the control signal.

in the response system, which renders the control system
more robust in practical operating conditions [46].

7. Conclusion

A new efficient fractional sliding mode control scheme
design has been studied to enable the synchroniza-
tion of a class of fractional-order chaotic systems. The
considered design approach provides a set of fractional-
order laws that guarantee asymptotic stability of the
fractional-order chaotic systems in the sense of the Lya-
punov stability theorem.

The illustrative simulation results are given for the
synchronization of two fractional-order Genesio–Tesi
chaotic systems and two fractional-order modified Jerk
systems. The systems show good performance and
excellent effectiveness even in the presence of distur-
bances and delays affecting the slave system.

Future work will concern the problem of control and
synchronization of fractional-order uncertain chaotic
systems using adaptive sliding mode control laws.
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