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Complex dynamics of a particle in an oscillating potential field
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Abstract. In this paper, the classical problem of the motion of a particle in one dimension with an external time-
dependent field is studied from the point of view of the dynamical system. The dynamical equations of motion of the
particle are formulated. Equilibrium points of the non-oscillating systems are found and their local stability natures
are analysed. Effect of oscillating potential barrier is analysed through numerical simulations. Phase diagrams,
bifurcation diagrams and variations of largest Lyapunov exponents are presented to show the existence of a wide
range of nonlinear phenomena such as limit cycle, quasiperiodic and chaotic oscillations in the system. Effects of
nonlinear damping in the model are also reported. Analysis of the physically interesting cases where damping is
proportional to higher powers of velocity are presented for the sake of generalizing our findings and establishing
firm conclusion.
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1. Introduction

The investigation of problems described by potential
wells or barriers where the particles are subjected to the
effect of noise or the barriers are assumed to move in
time is a subject of great interest for many researchers
from the last decades [1–10]. After the pioneering work
of Buttiker and Landauer [11] on tunnelling through a
time-dependent potential barrier, interest in the dynam-
ics of a particle in a driven potential has markedly
increased. The dynamics of a particle inside an infi-
nite potential box that contains a periodically oscillating
barrier [12–14] and the dynamics of a classical par-
ticle in a time-dependent oscillating well [7,15] have
been received much attention in theoretical and exper-
imental physics [16,17]. It is also interesting to study
the problem of a classical particle interacting with
a static or time-dependent multiwell potential in the
presence of noise. The notion of a time-dependent poten-
tial may also be extended to encompass the class of
problems known as billiards [18–20]. In particular, the
time-dependent Hamiltonian systems lead to significant
advances towards a qualitative and quantitative under-
standing of their behaviour over a long time. In many

cases, the chaotic dynamics of a particle inside the driven
potential leads to very interesting phenomena, including
power-law distribution for the trapping [15,21], scatter-
ing [7] and critical exponents for the average properties
of the chaotic sea [22].

It may be recalled that in a few cases it is required
to study the classical analogue to characterize quan-
tum mechanical phenomenon well and so in different
context [23] significantly a large number of quantum-
classical analogies have been studied. However, there
are a few purely quantum phenomena such as tun-
nelling, wave-particle duality, or interference in which
classical analogies are quite incapable of giving clear
explanation. In particular, the quantum tunnelling can
be described in terms of classical physics via map-
ping that links a complex-valued wave function solution
of the time-independent Schrödinger’s equation (TISE)
with classical behaviour of a pair of uncoupled time-
dependent harmonic oscillators. The time-dependent
harmonic oscillator equation can be written as

ẍ + �2(t)x(t) = 0. (1)

The above equation can be interpreted as the Newton’s
law of motion for a massive particle in a time-dependent
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one-dimensional harmonic potential. Moreover, the
time-dependent Hamiltonian corresponding to (1) is

H = p2

2m
+ 1

2
m�2(t)x2, p = mẋ, (2)

where m denotes the mass and x denotes the coordinate
of the particle.

It may be noted that most of our knowledge about
molecular, atomic and elementary particle physics
comes from the analysis of scattering experiments. The
potential fields producing the scattering may be the
result of one or many particles and may be autonomous
or time-dependent. We may infer that the classical and
quantum mechanical study of time-dependent Hamilto-
nian systems are generic and important. The existence
of invariants (constants of motion) play an important
role in the study of any classical dynamical system.
When Hamiltonian is an explicit function of time, it
is no longer possible to be an invariant, and this is due
to the reflection of the non-conservation of energy. The
most widely studied time-dependent Hamiltonian sys-
tem is the time-dependent harmonic oscillator. In [24],
the classical kicked singular oscillator has been exten-
sively studied which is time-dependent. It was studied
also partly by Lewis and Leach [25] and Camiz et al
[26]. Another type of time-dependent potential of the
form Bx4 − Ax2 + �x cos(ωt) is widely used in both
classical and quantum systems. Classical dynamics of
a rotating particle under a time-dependent potential has
been studied in [27]. In this study, the non-relativistic
classical as well as the quantum behaviours of a particle
seen from a frame which rotates with a time-dependent
angular velocity and subject to time-dependent poten-
tials, has been analysed in detail.

We are motivated to understand the motion of particle
in one dimension with space–time-dependent potential
field. The Hamiltonian that describes the model is of the
type H(x, p, t) = p2/2m + V (x, t) where x , p and t
correspond to the position, momentum coordinates and
time respectively. It is important to note that in our case
the time-dependent potential V (x, t) is controlled by
different control parameters. Change of control param-
eters may cause a phase transition from integrability
(characterized by a constant energy of the particle) to
non-integrability (where the particle may be observed
either in a chaotic or regular dynamics). The aim of this
paper is to show the effects of time-dependent poten-
tial field on the dynamics of a particle. In may be noted
that parametric excitation is the explicit time-dependent
variation of a parameter in a dynamical system. Thus,
in the case of parametric excitation, no extra force will
appear as an additive term. On the other hand, in the case
of direct forcing, some direct additive term will appear
in the model. Periodic excitation of the parameters of

a system is also known as modulation of parameter.
Therefore, the problem investigated here is much more
different from the parametric excitation problem.

Forced Duffing oscillator is one of the most explored
nonlinear dynamical systems because it serves as a
prototype model for various physical and engineer-
ing problems such as particle in a plasma, particle in
a forced double well, dynamics of a buckled elastic
beam, defect in solids, etc. [28]. Van der Pol–Duffing
oscillator mathematical model is used to model cere-
brovascular hemodynamics in the presence of arterial
aneurysm [29]. Duffing–van der Pol oscillator model
can be used to model human brain EEG signal [30].
It is evident that the Van der Pol–Duffing oscillator
can be used to model, physical, engineering, biological,
neurological and many other systems. The theoretical
investigation of the dynamics of a particle moving in
an oscillating potential has been an active field of mod-
ern research due to its stabilizing effects on dynamical
systems [31] and applications in modelling of different
behavioural and perceptual states of the brain. Dif-
ferent behavioural and perceptual states of the brain
are associated with the oscillatory behaviours of neu-
rons [32] which may be modelled by using Van der
Pol–Duffing oscillator with oscillating potential. These
facts may motivate us to study oscillators with oscillat-
ing potential.

In this paper, we revisit the problem of a classical
particle containing a time-dependent potential barrier,
seeking to understand some phase-space properties of
this system. The orbits of the particle in phase space can
be periodic, quasiperiodic or even chaotic, depending on
the parameters and the initial conditions of the motion.
In §2, models are formulated. Equilibrium points of the
model are determined and their linear stability nature
are analysed. In §3, numerical simulation results are pre-
sented and analysed. Finally, conclusions are drawn in
§4.

2. Model

We consider the motion of a particle in one dimension
with space–time-dependent potential field. Equation of
motion of a particle subjected to the viscous force −μẋ
in the potential field V (x, t) can be written as [1]

ẍ = −μẋ − ∂V

∂x
. (3)

Here, we consider the space–time-dependent poten-
tial field as [33]

V (x, t) = αx2

2
+ βx4

4
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−ω2b

4

[
−b

2
+ cos(ωt) + b

2
cos(2ωt)

]
x2.

(4)

In [33], this kind of space-quadratic potential has been
considered underlying the case of time and space-
modulated potential with constant nonlinearities. In
particular, this potential is observed in the framework
of time-periodic optical superlattice, which is charac-
terized by two distinct frequencies ω and 2ω. In another
scenario, it is clear that the depth of the potential well
oscillates in time. As the Hamiltonian of the system is
time-dependent, the total energy of the particle is not
conserved. The Hamiltonian is given by

H(p, x, t) = p2

2m
+ αx2

2
+ βx4

4

−ω2b

4

[
−b

2
+ cos(ωt)+b

2
cos(2ωt)

]
x2.

The Hamiltonian is of the form

H(p, x, t) = p2

2m
+ V0(x) + V1(x) f (t),

where f (t+τ) = f (t) with τ as the period of oscillation
of the barrier. Notice that when V1 = 0 and μ = 0 the
motion is regular and the energy is conserved.

2.1 Linear damping

Now from eq. (3) we get the equation of motion of a
particle under linear damping as

ẍ = −μẋ − αx − βx3

+ω2b

2

[
−b

2
+ cos(ωt) + b

2
cos(2ωt)

]
x . (5)

Equation (5) can be written as the following coupled set
of equations:

ẋ = y

ẏ = −μy − αx − βx3

+
{

ω2b

2

(
b

2
cos 2z + cos z − b

2

)}
x

ż = ω. (6)

This is the dynamical system corresponding to the
motion of a particle in one dimension with space–time-
dependent potential. Without oscillation of the potential
barrier, the above system reduces to

ẍ + μẋ − Ax + Bx3 = 0, (7)

where μ > 0 is the damping factor and

A = −
(

α + ω2b2

4

)
, B = β.

This is the famous Duffing equation. We know that the
total energy of the system is E = 1

2mẋ2 + V (x). As

dE

dt
= ẋ(ẍ + Bx3 − Ax) = −μẋ2 (8)

the energy is decreasing along all trajectories of system
(7) due to damping. Equation (7) can be rewritten as

ẋ = y,

ẏ = Ax − Bx3 − μy. (9)

If A > 0 and B > 0, then the equilibrium points of the
system are (0, 0) and (±√

A/B, 0). Now, for double-
well potential, we take α < 0 and β > 0 and we
choose ω, b such that α > (ω2b2/4). The Jacobian of
system (9) is

J =
(

0 1
A − 3Bx2 −μ

)
.

The value of the Jacobian matrix at (0, 0) is

J =
(

0 1
A −μ

)
.

Eigenvalues of the Jacobian matrix are given by

λ = −μ ± √
μ2 + 4A

2
.

Clearly, this matrix has two real eigenvalues, one pos-
itive and one negative because A > 0. Hence, the
equilibrium point (0, 0) is a saddle point of system (9).
The value of the Jacobian at (±√

A/B, 0) is

J =
(

0 1
−2A −μ

)
.

Eigenvalue of the Jacobian matrix is given by

λ = −μ ± √
μ2 − 8A

2
.

The eigenvalues of this matrix are either complex con-
jugate with negative real part or both negative real
depending on μ. Therefore, (±√

A/B, 0) are either sta-
ble spirals or stable nodes of the system depending on μ.
If the time-dependent part of the potential field vanishes,
then the particle motion will stop after some time in
one of the two minima of the potential. The remarkable
behaviour of the dynamical system (5) can be under-
stood by examining the interplay between the space–
time-dependent field and the force due to double well
potential.
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2.2 Nonlinear damping

Case I
Now, we shall consider the motion of the particle

under nonlinear damping and obtain the equation of
motion

ẍ = μẋ(1 − x2) − αx − βx3

+ω2b

2

[
−b

2
+ cos(ωt) + b

2
cos(2ωt)

]
x . (10)

In the absence of oscillatory part we obtain

ẍ − μẋ(1 − x2) − Ax + Bx3 = 0, (11)

where

A = −
(

α + ω2b2

4

)
, B = β.

This is a Duffing–van der Pol-type equation. Equation
(11) can be rewritten as

ẋ = y

ẏ = Ax − Bx3 − μy(1 − x2). (12)

The equilibrium points of the system are (0, 0) and
(±√

A/B, 0). The Jacobian of system (12) is

J =
(

0 1
A − 3Bx2 − 2μxy μ(1 − x2)

)
.

The value of the Jacobian matrix at (0, 0) is

J =
(

0 1
A μ

)
.

Eigenvalue is given by

λ = μ ± √
μ2 + 4A

2
.

From our previous discussion we know A > 0. There-
fore, the matrix has two real eigenvalues, one positive
and one negative. Hence, the equilibrium point (0, 0) is
a saddle point of system (12). The value of the Jacobian
at (±√

A/B, 0) is

J =
(

0 1
−2A μ(1 − (A/B))

)
.

Eigenvalues of the above Jacobian matrix are given by

λ = 
1 ± √

2

2

where 
1 = μ(B− A) and 
2 = μ2(B− A)2 −4AB2.
Clearly, we can see that 
1 >

√

2. Now, if 
2 > 0

then equilibrium point (±√
A/B, 0) becomes an unsta-

ble node for B > A or a stable node for B < A. If

2 < 0, the equilibrium point becomes unstable spiral
for B > A or stable spiral for B < A. The behaviour of

the driven Duffing–van der Pol oscillator was reported
earlier by Venkatesan and Lakshmanan [34].

Case II

ẍ = −μẋ |ẋ |p−1 − αx − βx3

+ω2b

2

[
−b

2
+ cos(ωt) + b

2
cos(2ωt)

]
x . (13)

The nonlinear damping term is assumed to be propor-
tional to the power of the velocity, in the form μẋ |ẋ |p−1

where p ≥ 1 is the damping exponent and μ is the
corresponding damping coefficient. In the absence of
oscillatory part, we obtain

ẍ + μẋ |ẋ |p−1 − Ax + Bx3 = 0, (14)

where

A = −
(

α + ω2b2

4

)
, B = β.

Equation (14) can be rewritten as

ẋ = y

ẏ = Ax − Bx3 − μy|y|p−1. (15)

The equilibrium points of the system are (0, 0) and
(±√

A/B, 0). The Jacobian of system (15) is

J=
(

0 1
A−3Bx2 μ[|y|p−1+(p−1)y|y|p−2sgn(y)]

)
.

(16)

The value of the Jacobian matrix at (0, 0) is

J =
(

0 1
A 0

)
.

Eigenvalues are given by λ = ±√
A. As A > 0, the

matrix has two real eigenvalues, one positive and one
negative. Hence, the equilibrium point (0, 0) is a sad-
dle point of system (15). The value of the Jacobian at
(±√

A/B, 0) is

J =
(

0 1
−2A 0

)
.

Eigenvalues of the above Jacobian matrix are given
by λ = ±i

√
2A, A > 0. So equilibrium point

(±√
A/B, 0) becomes centre.

The effects of oscillating potential barrier is presented
in the following section through numerical simulation
results.

3. Numerical results

Nontrivial behaviours (limit cycle, quasiperiodic or
chaotic oscillations) may occur due to the statistical



Pramana – J. Phys. (2017) 89:32 Page 5 of 14 32

−3 −2 −1 0 1 2 3

−2

0

2

4
(a)

ẋ
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Figure 1. Phase portraits of the given system (6) in the x ẋ plane for different values of μ: (a) period-3 (μ = 0.13),
(b) quasiperiodic (μ = 0.44), (c) chaotic (μ = 1.0) and (d) limit cycle (μ = 1.5) when α = −1.6, ω = 1.5 and b = 1.0.
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Figure 2. Poincaré return map of the given system (6) for different values of μ: (a) period-3 (μ = 0.13), (b) quasiperiodic
(μ = 0.44), (c) chaotic (μ = 1.0) and (d) limit cycle (μ = 1.5) when α = −1.6, ω = 1.5 and b = 1.0 in the x ẋ plane.

balance between dissipation and energy exchanges pro-
duced by the time-dependent potential. Indeed, the cou-
pling of space–time-dependent potential with the back-
ground space-dependent potential yields an endogenous
forcing term which allows a self-sustained unceasing
motion, in the presence of friction. We solve system (6)
numerically using fourth-order Runge–Kutta method
starting with initial condition (0.04, 0.02, 0.1) and draw
the phase portrait, bifurcation diagram and the variation
of maximum Lyapunov exponent and Poincaré return
map of the system for different sets of parameters. We

choose β = −α for numerical simulations of systems
(6) and (13). We observe that there are no qualitative
changes on the system dynamics when |β| �= |α|. We
also do calculation for α < 0 and β > 0 because in this
case we get double-well potential.

Phase diagram of system (6) with α = −1.6, ω = 1.5
and b = 1.0 are shown in figure 1 for different val-
ues of μ in the x ẋ plane. Figure 2 represents Poincaré
return map while figure 3 represents bifurcation diagram
and the corresponding maximum Lyapunov exponent
of x with respect to parameter μ keeping the other
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Figure 3. (a) Bifurcation diagram of x with respect to parameter μ and (b) variation of maximum Lyapunov exponent of
system (6) with respect to parameter μ when α = −1.6, ω = 1.5 and b = 1.0.
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ẋ

x

0 0.4 0.8 1.2
−1

0

1
(c)

ẋ
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Figure 4. Phase portraits of the given system (6) in the x ẋ plane for different values of α: (a) chaotic (α = −1.9), (b) period-4
(α = −1.35), (c) period-2 (α = −1.3) and (d) limit cycle (α = −1.0) when μ = 1.0, ω = 1.5 and b = 1.0.

parameters α = −1.6, ω = 1.5 and b = 1.0 fixed. In
figure 1a, for μ = 0.13 we notice period-3 orbit whose
corresponding bifurcation diagram is presented in fig-
ure 3a. From figure 3b we observe that the maximum
Lyapunov exponent becomes negative for μ = 0.13.
In figure 2a, we get three points which tell us that sys-
tem (6) has periodic orbit for μ = 0.13. Figure 1b
shows quasiperiodic oscillation in the phase portrait for
μ = 0.44 while keeping the other parameters same as
above. A smooth curve present in the Poincaré return
map of x in figure 2b guarantees that system (6) shows
quasiperiodic behaviour for μ = 0.44. We notice that
the corresponding largest Lyapunov exponent curve in
figure 3b at μ = 0.44 touches the green line which
is at zero level. That means the maximum Lyapunov

exponent is equal to zero. Therefore, Poincaré return
map, bifurcation diagram as well as maximum Lya-
punov exponent curve altogether confirm that system
(6) exhibits quasiperiodic behaviour for μ = 0.44, α =
−1.6, ω = 1.5 and b = 1.0. System (6) behaves chaoti-
cally for μ = 1.0 in the x ẋ plane with other parameters
α = −1.6, ω = 1.5, b = 1.0 which is displayed in
figure 1c. Poincaré return map in figure 2c shows the
existence of lots of points at μ = 1.0. In figure 3b,
we observe that the corresponding maximum Lyapunov
exponent becomes positive which guarantees the exis-
tence of chaos for μ = 1.0. Phase portrait of system (6)
for μ = 1.5, α = −1.6, ω = 1.5 and b = 1.0 are shown
in figure 1d. For μ = 1.5, we observe from figure 3a
that bifurcation diagram shows two points whereas the
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Figure 6. (a) Bifurcation diagram of x with respect to the parameter α and (b) variation of maximum Lyapunov exponent of
system (6) with respect to parameter α for μ = 1.0, ω = 1.5 and b = 1.0.

maximum Lyapunov exponent becomes negative. Only
one point present in the Poincaré return map of x for
μ = 1.5 which are drawn in figure 2d conclude that

there are limit cycle in system (6) with the parameter
μ = 1.5, α = −1.6, ω = 1.5 and b = 1.0. There-
fore, we observe periodic, quasiperiodic and chaotic
behaviour of system (6) as we change the parameter
μ in the x ẋ plane keeping the other parameters fixed
(α = −1.6, ω = 1.5 and b = 1.0).

In a similar way, we draw the phase portrait of system
(6) in figure 4 by varying the parameter α keeping all
other parameters fixed (μ = 1.0, ω = 1.5 and b = 1.0)
in the x ẋ plane. Figure 4a shows chaotic phase portrait
while figures 4b, 4c and 4d display the periodic phase
portrait with periodicity 4, 2 and 1 respectively. Fig-
ure 6 represents bifurcation diagram and the variation
of the maximum Lyapunov exponent with respect to α.

Poincaré return maps are drawn in figure 5. We notice
irregular set of points in figure 5a for α = −1.9 which
gives the conformity of the chaotic behaviour of system
(6). We also observed 4, 2 and 1 points in the Poincaré
return map presented in figures 5b, 5c and 5d respec-
tively corresponding to α = −1.35, α = −1.3 and α =
−1.0. Poincaré return map guarantees that the phase por-
traits which are shown in figures 4b, 4c and 4d are period
four orbit, two orbit and limit cycle respectively. Bifur-
cation diagram of x with respect to α is drawn in figure
6a keeping the other parameters fixed (μ = 1.0, ω = 1.5
and b = 1.0) which exhibits reverse period-doubling
bifurcation. Maximum Lyapunov exponent curve pre-
sented in figure 6b satisfies all the above observations
which are displayed in figures 4 and 5.

We depicted the phase portrait of system (6) by chang-
ing the value of ω keeping the other parameters μ = 0.5,
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Figure 7. Phase portraits of the given system (6) in the x ẋ plane for different values of ω. (a) Period-2 (ω = 0.8),
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Figure 8. Poincaré return map plots of the given system (6) for different values of ω showing the existence of
(a) period-2 (ω = 0.8), (b) quasiperiodic (ω = 1.2), (c) chaotic (ω = 1.93) and (d) period-4 (ω = 1.96) for μ = 0.5,
α = −1.6 and b = 1.0.

α = −1.6, b = 1.0 fixed in figure 7. Phase portrait in
figure 7a is period 2 orbit for ω = 0.8. We confirm it
from its Poincaré return map presentation in figure 8a
where we get two points. So the system shows peri-
odic behaviour for ω = 0.8. In figure 7b we observe
quasiperiodic behaviour of system (6) for ω = 1.2,
while the Poincaré return map of the same is plotted in
figure 8b. We observe that the Poincaré return map data

lie on three smooth closed curves confirming the exis-
tence of the quasiperiodic behaviour of the system. We
have plotted the phase portrait for ω = 1.93 in figure
7c. Poincaré return map corresponding to ω = 1.93
which we display in figure 8c guarantees the existence of
chaos in system (6). Again, system (6) exhibits periodic
behaviour in phase plane x ẋ for ω = 1.96 and ω = 3.0
which are displayed in figures 7d and 7f respectively. For
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Figure 9. (a) Bifurcation diagram of x with respect to the parameter ω and (b) variation of the maximum Lyapunov exponent
of system (6) with respect to parameter ω when μ = 0.5, α = −1.6 and b = 1.0.
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Figure 10. Phase portraits of the given system (6) in the x ẋ plane for different values of b. (a) Chaotic (b = 1.0), (b) period-4
(b = 1.27), (c) limit cycle (b = 1.4) and (d) stable node (b = 1.5) when μ = 1.0, α = −1.6 and ω = 1.5.

Poincaré return map for ω = 1.96, we get finite number
of points which we display in figure 8d. When ω = 2.5,
μ = 0.5, α = −1.6, b = 1.0, the phase portrait in fig-
ure 7e are stable node, i.e., the whole system contracted
towards the origin. Bifurcation diagram and the corre-
sponding maximum Lyapunov exponent are drawn in
figure 9 and we get satisfactory result compared to the
above phase portrait.

Again we vary another parameter b and we cap-
tur phase portrait, bifurcation diagram and maximum
Lyapunov exponent of system (6) when μ = 1.0, α =
−1.6 and ω = 1.5 in figures 10, 11 and 12 respectively.
We observed that system (6) shows chaotic behaviour
for b = 1.0, periodic behaviour for b = 1.27 (period 4)
and limit cycle for b = 1.4. We found a drastic change

in system (6) for b = 1.5 where we notice that the
whole system contracted to a stable node. In a similar
way, Poincaré return map, bifurcation diagram as well
as maxmium Lyapunov exponent curve, all satisfy the
above claim. Here we also observed reverse period dou-
bling bifurcation in figure 12a in the region b = 1.0 to
b = 2.0.

Next, we summarized the phase portrait, Poincaré
return map and bifurcation diagram of system (10) in
figures 13, 14 and 15 respectively varying the param-
eter α while the other parameters remain constant at
μ = 0.5, β = 0.5, ω = 1.5 and b = 1.0. Figure
13a shows period 3 orbit for α = −1.0 and its corre-
sponding Poincaré return map is drawn in figure 14a
which shows three points. Therefore, we conclude that
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Figure 12. (a) Bifurcation diagram of x with respect to parameter b and (b) variation of the maximum Lyapunov exponent
of system (6) with respect to parameter b when μ = 1.0, α = −1.6 and ω = 1.5.
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Figure 15. (a) Bifurcation diagram of x with respect to parameter α and (b) variation of the maximum Lyapunov exponent
of system (10) with respect to parameter α when μ = 0.5, β = 0.5, ω = 1.5 and b = 1.0.

system (10) shows regular behaviour for α = −1.0. We
have plotted the phase portrait for α = −0.6 in figure
13b and the corresponding return map data are plotted
in figure 14b. The irregular set of points in the whole
plane guarantees the existence of chaos in the system
for α = −0.6. Phase portrait for α = 0.2 and the corre-
sponding Poincaré first return map are shown in figures
13c and 14c respectively. The existence of only one point
in figure 14c proves the existence of limit cycle. In fig-
ure 13d, the phase diagram of the system is plotted for
α = 1.5 and the corresponding Poincaré return map
is shown in figure 14d. The return map data lie on the
smooth closed curves and hence confirm the existence
of quasiperiodic behaviour of the system for α = 1.5.
Bifurcation diagram and the corresponding maximum
Lyapunov exponent curve also satisfiy the above result.

Again we consider eq. (13) and we can see for p = 1,
this system is equivalent to system (6). Here p is our
parameter and we want to see the effect of p in our
system. We describe the phase diagram of system (13)
taking the parameters μ = 1.0, α = −1.6, ω = 1.5,
b = 1.0 fixed in the x ẋ plane for p = 1.0 in figure
16a whereas for p = 2.5 in figure 16b. We get chaotic
picture for p = 1.0 where we get limit cycle for p = 2.5.
Poincaré return map for μ = 1.0, p = 1.0 keeping other
parameters the same as above is drawn in figure 17a. The
irregular scattering of points in the figure points to the
existence of chaos in the system. Only one point in the
Poincaré return map of x shown in figure 17b for μ =
1.0, p = 2.5 guarantees that the system has a limit cycle.
So, as parameter p changes from 1.0 to 2.5, the system
dynamics also changes from chaotic to periodic. Here,
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Figure 17. Phase portraits of the given system (13) for different values of p. (a) Chaotic (p = 1.0, μ = 1.0), (b) limit cycle
(p = 2.5, μ = 1.0), (c) limit cycle (p = 1.0, μ = 1.5) and (d) chaotic (p = 2.5, μ = 1.5) when α = −1.6, ω = 1.5 and
b = 1 in the x ẋ plane.

p plays the role of control parameter which can control
chaotic dynamics of the system. The phase diagram of
the system for μ = 1.5, α = −1.6, ω = 1.5, b =
1.0 with p = 1.0 and p = 2.5 are depicted in figure
16c and figure 16d respectively. From the corresponding
Poincaré return map (figure 17c) we conclude that there
are periodic orbit of system (13) for μ = 1.5, p = 1.0.
We find a set of randomly distributed points in figure

17d that tells us about the chaotic character inherent in
system (13) for μ = 1.5, p = 2.5. So, as the value
of p increases, the system dynamics also changes from
periodic to chaotic. Here, the parameter p plays the role
of the controller. Therefore, the parameter p plays a
significant role in the dynamics of system (13). In figures
18a and 18b, we represent bifurcation diagram of x with
respect to p for μ = 1.0 and μ = 1.5 respectively.
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Figure 19. Variation of maximum Lyapunav exponent of with respect to parameter p when α = −1.6, ω = 1.5 and b = 1.0
for (a) μ = 1.0 and (b) μ = 1.5 for system (13).

Variation of maximum Lyapunov exponent of system
(13) with respect to parameter p keeping α = −1.6,
ω = 1.5, b = 1.0 fixed for μ = 1.0 and μ = 1.5
are drawn in figure 19. Bifurcation diagram as well as
maximum Lyapunov exponent graph satisfy the above
result.

4. Conclusions

We have investigated the classical dynamics of a par-
ticle moving inside an oscillating potential well. We
found that the motion of such a particle depends sig-
nificantly on the initial state of the particle in some
region of the physical parameter space. It is shown
that stable limit cycle oscillation is possible in such an
oscillating potential field. The corresponding dynam-
ics can be interpreted as the one-dimensional motion
of a particle in a potential well with oscillating bar-
rier subjected to a viscous damping and time-dependent
forcing. Forcing is essential for chaos because it acts

as an endogenous forcing which is able to perma-
nently sustain the motion in the presence of viscous
damping. Typical nonlinear behaviours, including limit
cycle, quasiperiodic and chaotic oscillations, may take
place due to the statistical balance between dissipation
and energy exchanges produced by the time-dependent
potential. Indeed, the coupling of space–time-dependent
potential with the background space-dependent poten-
tial yields an endogenous forcing term which allows a
self-sustained unceasing motion, in the presence of vis-
cous damping. We can control the chaotic motion of
the system either by increasing the viscous damping or
controlling the frequency of oscillation of the potential
barrier.
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