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Design of multistable systems via partial synchronization
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Abstract. Many researchers introduce schemes for designing multistable systems by coupling two identical
systems. In this paper, we introduce a generalized scheme for designing multistable systems by coupling two
different dynamical systems. The basic idea of the scheme is to design partial synchronization of states between
the coupled systems and finding some completely initial condition-dependent constants of motion. In our scheme,
we synchronize i number (1 ≤ i ≤ m − 1) of state variables completely and keep constant difference between j
(1 ≤ j ≤ m − 1, i + j = m) number of state variables of two coupled m-dimensional different dynamical systems
to obtain multistable behaviour. We illustrate our scheme for coupled Lorenz and Lu systems. Numerical simulation
results consisting of phase diagram, bifurcation diagram and maximum Lyapunov exponents are presented to show
the effectiveness of our scheme.
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1. Introduction

Nonlinear dynamical systems are known to exhibit a
rich variety of long-term behaviours such as limit cycles,
quasiperiodic and chaotic motion. In a complex dynam-
ical system, several equilibrium states or other attractors
may coexist for a given set of system parameters which
is known as multistability. Multistable systems are seen
in laser physics [1], condensed-matter physics [2], elec-
tronic oscillators [3] etc. and biological systems namely
population dynamics [4], neuroscience [5] and climate
dynamics [6]. Multistability is naturally found in weakly
dissipative systems [7], delay systems [8] and cou-
pled systems [9]. The dynamics of multistable systems
are extremely sensitive to the initial state due to the
coexistence of different attractors and as a result very
small perturbations of the initial state might cause a
large change in the final state. The mechanisms behind
multistable behaviour of many natural systems are not
completely known. Understanding the rules behind mul-
tistability behaviour of a dynamical system remains one
of the fundamental problems of dynamical systems the-
ory. In extreme multistability, the number of coexisting
attractors is infinite. Techniques for designing extreme
multistable systems had been reported by Sun et al [10].

In their technique, the choice of coupling plays the vital
role. In this work, our motivation is to identify some
universal mechanisms that lead to multistability and
to prove rigorously under what circumstances the phe-
nomenon may occur.

Synchronization of two or more coupled nonlinear
systems is a fundamental concept of nonlinear dynam-
ics. Many synchronization techniques [12–16] were
proposed since the pioneering work of Pecora and Car-
roll [11] in 1990. Recently, Hens et al [17] have shown
that the coexistence of infinitely many attractors in
two-coupled m-dimensional system will be possible if
(m − 1) variables of the two systems are completely
synchronized and one of them keeps a constant dif-
ference between them. In other words, Hens et al [17]
proposed the partial synchronization technique for con-
structing multistable systems. Pal et al [18] reported the
multistable behaviour of coupled Lorenz–Stenflo sys-
tems. But all previous researchers used coupled identical
dynamical systems for designing multistable systems.
Most of the researchers have not considered the spa-
tial variation of dynamical behaviours for designing
multistability systems. In real-world physical, electri-
cal, chemical, social and biological systems, multistable
behaviour may arise due to the interaction of two or more
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different dynamical systems and at the same time there
may be variation of the dynamical systems in different
spatial points. We can incorporate the spatial variation of
dynamical systems in the most simple way by assuming
two different dynamical systems for two different spa-
tial points and then observe how multistability can be
designed by coupling them. Therefore, it is worth inves-
tigating multistability generation procedure by coupling
two different dynamical systems.

In this work, we propose schemes for designing mul-
tistable systems by coupling two different dynamical
systems and using active control. The section-wise split
of the paper is as follows. In §2 a scheme for designing
multistable systems coupling two different dynamical
systems of the same order via active control is discussed.
In §3, the proposed scheme is illustrated by coupling a
Lorenz and a Lu system. In §4, the numerical simula-
tion results are presented to show the effectiveness of the
proposed scheme. Finally, conclusion is drawn in §5.

2. Design of multistable systems by coupling two
different dynamical systems

Consider two different n-dimensional dynamical sys-
tems of the following type:

ẋ1 = f1(x1, x2, x3, . . . , xn),

ẋ2 = f2(x1, x2, x3, . . . , xn),

ẋ3 = f3(x1, x2, x3, . . . , xn),

.... .. .............................,

ẋn = fn(x1, x2, x3, . . . , xn) (1)

and

ẏ1 = g1(y1, y2, y3, . . . , yn),

ẏ2 = g2(y1, y2, y3, . . . , yn),

ẏ3 = g3(y1, y2, y3, . . . , yn),

.... .. .............................,

ẏn = gn(y1, y2, y3, . . . , yn). (2)

Now, we couple two different dynamical systems of the
above type in the following way:

ẋ1 = f1(x1, x2, x3, . . . , xn)

+ u1(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn),

ẋ2 = f2(x1, x2, x3, . . . , xn)

+ u2(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn),

ẋ3 = f3(x1, x2, x3, . . . , xn)

+ u3(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn),

.... .. .............................,

ẋn = fn(x1, x2, x3, . . . , xn)

+ un(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn) (3)

and

ẏ1 = g1(y1, y2, y3, . . . , yn)

+ v1(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn),

ẏ2 = g2(y1, y2, y3, . . . , yn)

+ v2(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn),

ẏ3 = g3(y1, y2, y3, . . . , yn)

+ v3(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn),

.... .. .............................,

ẏn = gn(y1, y2, y3, . . . , yn)

+ vn(x1, x2, x3, . . . , xn; y1, y2, y3, . . . , yn), (4)

where u1, u2, u3, . . . , un and v1, v2, v3, . . . , vn are the
controllers. We define synchronization error between
systems (3) and (4) as ei = yi − xi , i = 1, 2, . . . , n.
Now, we obtain the error dynamical system as follows:

ė1 = g1(y1, y2, y3, . . . , yn)

− f1(x1, x2, x3, . . . , xn) + v1 − u1,

ė2 = g2(y1, y2, y3, . . . , yn)

− f2(x1, x2, x3, . . . , xn) + v2 − u2,

ė3 = g3(y1, y2, y3, . . . , yn)

− f3(x1, x2, x3, . . . , xn) + v3 − u3,

.... .. .............................,

ėn = gn(y1, y2, y3, . . . , yn)

− fn(x1, x2, x3, . . . , xn) + vn − un. (5)

We choose the controllers u1, u2, u3, . . . , un and v1, v2,

v3, . . . , vn in such a way that the coupled system
becomes multistable.

Now, according to our scheme, a multistable sys-
tem can be designed by choosing u1, u2, u3, . . . , un and
v1, v2, v3, . . . , vn in such way that i (1 ≤ i ≤ n − 1)

number of state variables keep constant difference and
(n−i) number of state variables synchronize. Therefore,
we choose u1, u2, u3, . . . , un and v1, v2, v3, . . . , vn in
such a way that
ė1 = 0,

ė2 = 0,

ė3 = 0,

... .. ...,

ėi = 0,

ėi+1 = −ei+1,

ėi+2 = −ei+2,

...... .. .......,

ėn = −en, (6)

where 1 ≤ i ≤ n − 1. Then, for such a choice,
the coupled systems (3) and (4) as a whole may show
multistability. Now we choose the function
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L = (e2
i+1 + e2

i+2 + e2
i+3 + · · · + e2

n)/2 as a Lyapunov
function and observe that

L̇ = ei+1ėi+1 + ei+2ėi+2 + ei+3ėi+3 + · · · + enėn
= −e2

i+1 − e2
i+2 − e2

i+3 − · · · − e2
n. (7)

Hence, the errors ei+1, ei+2, ei+3, . . . , en must tend to
zero, i.e., yi+1 = xi+1, yi+2 = xi+2,…,yn = xn as t →
∞ and e1, e2, e3, . . . , ei become constants of motion.

Therefore, y1 = x1 + c1, y2 = x2 + c2, y3 = x3 +
c3, . . . , yi = xi + ci and yi+1 = xi+1, yi+2 = xi+2,

. . . , yn = xn . Here, c1, c2, . . . , ci are differences
between the initial conditions of the two coupled sys-
tems. Now, the dynamics of the coupled systems (3) and
(4) are equivalent to the following modified system:

ẋ1 = f1(x1, x2, . . . , xn) + u1(x1, x2, . . . , xn;
x1 + c1, . . . , xi + ci , xi+1, . . . , xn),

ẋ2 = f2(x1, x2, . . . , xn) + u2(x1, x2, . . . , xn;
x1 + c1, . . . , xi + ci , xi+1, . . . , xn),

ẋ3 = f3(x1, x2, . . . , xn) + u3(x1, x2, . . . , xn;
x1 + c1, . . . , xi + ci , xi+1, . . . , xn),

.... .. .............................,

ẋn = fn(x1, x2, . . . , xn) + un(x1, x2, . . . , xn;
x1 + c1, . . . , xi + ci , xi+1, . . . , xn), (8)

where c1, c2, c3, . . . , ci are initial condition-dependent
constants. The coupled systems (3) and (4) show mul-
tistable behaviour if dynamics of system (8) changes
qualitatively with the variation of c1, c2, c3, . . . , ci .
Notice that we have chosen ė1 = ė2 = · · · = ėi = 0,
and in general ė1, ė2, . . . , ėi may be chosen as any poly-
nomial functions of ei+1, ei+2, ei+3, . . . , en .

3. Illustration of our technique of coupling Lorenz
and Lu systems

In this section, we shall discuss the proposed technique
for designing multistable systems by coupling Lorenz
and Lu systems. The famous Lorenz system is the fol-
lowing

ẋ = a(y − x),

ẏ = cx − xz − y,

ż = xy − bz, (9)

where a, b, c > 0 are the parameters. The Lu system is
described by

ẋ = ρ(y − x),

ẏ = −xz + γ y,

ż = xy − μz, (10)

where ρ, γ and μ are the positive parameters.

In this section, we shall discuss two different schemes
for generating multistable systems by coupling Lorenz
and Lu systems.

Scheme I:

In this scheme, we make two corresponding variables
of the two systems to synchronize and one variable to
keep constant difference. We couple a Lorenz and a Lu
system in the following way:

ẋ1 = a(y1 − x1) + w1(t),

ẏ1 = cx1 − x1z1 − y1 + w2(t),

ż1 = x1y1 − bz1 + w3(t),

ẋ2 = ρ(y2 − x2) + u1(t),

ẏ2 = −x2z2 + γ y2 + u2(t),

ż2 = x2y2 − μz2 + u3(t). (11)

We choose controllers wi (t) and ui (t), i = 1, 2, 3 such
that the above system becomes multistable. We con-
struct the governing equations for the synchronization
errors e1 = x2 − x1, e2 = y2 − y1, e3 = z2 − z1 as

ė1 = ρ(y2 − x2) − a(y1 − x1) + u1(t) − w1(t),
ė2 = −x2z2 + γ y2 − cx1 + x1z1 + y1 + u2(t) − w2(t),
ė3 = x2y2 − μz2 − x1y1 + bz1 + u3(t) − w3(t). (12)

Now the controllers ui (t) and wi (t); i = 1, 2, 3 are
selected as⎛
⎝
u1(t)
u2(t)
u3(t)

⎞
⎠

=

⎛
⎜⎜⎝

(1 − a)x1 + (ρ − 1)x2 + ay1 − ρy2

cx1 − (γ + 1)y2 − x1z1

[x1(y1 − γ ) − x2(y2 − γ )

−(ρy1 + bz1) + (ρy2 + μz2)]

⎞
⎟⎟⎠ ,

⎛
⎝

w1(t)
w2(t)
w3(t)

⎞
⎠ =

⎛
⎝

0
−x2z2

0

⎞
⎠ .

Hence the error system becomes

ė = Ae, (13)

where

e =
⎛
⎝
e1
e2
e3

⎞
⎠ and A =

⎛
⎝

−1 0 0
0 −1 0
γ ρ 0

⎞
⎠ .

From (13) it is clear that e1, e2 → 0 as t → ∞ and ė3 =
γ e1 +ρe2, i.e., e3 = constant = k. Hence z20 − z10 =
k, i.e., z20 = z10 + k, where k is a constant, depends on
the initial conditions of the full system. Therefore, the
dynamics of system (11) is equivalent to the following
three-dimensional systems:
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ẋ1 = a(y1 − x1),

ẏ1 = (c − z20)x1 − 2x1z1 − y1,

ż1 = x1y1 − bz1. (14)

System (11) is a multistable system if the dynamical
behaviour of system (14) changes qualitatively with the
variation of the value of z20.

Scheme II:
In this scheme, we design multistable system syn-
chronizing one variable and keeping two variables at
constant difference. Here, we consider the coupled
Lorenz and Lu systems in the following manner:

ẋ1 = a(y1 − x1) + u11,

ẏ1 = cx1 − x1z1 − y1 + u12,

ż1 = x1y1 − bz1 + u13,

ẋ2 = ρ(y2 − x2) + u21,

ẏ2 = −x2z2 + γ y2 + u22,

ż2 = x2y2 − μz2 + u23. (15)

We choose u11, u12, u13 and u21, u22, u23 as u11 =
ρ(y2 − x2), u12 = γ y2 − x2z2 + y2, u13 = x2y2 − μz2
and u21 = a(y2 − x1), u22 = cx1 − x1z1 + y2, u23 =
y1(x1 − a − ρ) + (a + ρ)y2 + bz1. We construct the
governing equations for the synchronization errors as

ė1 = ae2,

ė2 = −e2,

ė3 = (a + ρ)e2. (16)

Therefore, from (16) it is clear that e2 → 0 as t → ∞
i.e., y2 = y1 and ė1 = 0, ė3 = 0 implies that x20 =
x10 + k1 and z20 = z10 + k2, where k1 and k2 are
constants that depend on the initial conditions of the
full system. Therefore, the dynamics of the system of

eq. (15) is equivalent to the following three-dimensional
system:

ẋ1 = (a + ρ)(y1 − x1) − ρx20,

ẏ1 = (c − z20)x1 − 2x1z1 + γ y1 − x20z1 − x20z20,

ż1 = 2x1y1 − (b + μ)z1 + x20y1 − μz20. (17)

System (15) is a multistable system if the dynamical
behaviour of system (17) changes qualitatively with the
variation of x20 and z20.

4. Numerical simulation results

In this section, we present numerical simulation results
to show the effectiveness of our theoretical results using
MATLAB R2009b. In figure 1, phase diagram of sys-
tem (14) is plotted in the xy plane for different values of
z20, e.g., z20 = 10 and z20 = −5 when a = 10, c = 25
and b = 8/3. Bifurcation diagram of system (14) with
respect to z20 for the above set of parameters is shown
in figure 2. Since z20 is completely an initial condition-
dependent parameter, system (14) has qualitatively
different dynamical behaviour with the variation of z20
which is clear from figures 1 and 2. Variation of max-
imum Lyapunov exponent of system (14) with respect
to z20 is depicted in figure 3 which again establishes the
existence of qualitatively different dynamical behaviour
with the variation of initial conditions. We draw the
phase diagram of the six-dimensional coupled system
(inducing all the controllers) for ρ = 30, a = 10, c =
30, b = 8/3, γ = 10, μ = 3 with respect to xy plane
for the initial conditions x10 = 1.0, y10 = 1.0, z10 =
1.0, x20 = 2.5, y20 = 1.0, z20 = −5 in figures 4a and
4b for the initial conditions x10 = 1.0, y10 = 1.0, z10 =
1.0, x20 = 2.5, y20 = 1.0, z20 = 3. In figure 5, the
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Figure 1. Phase diagram of system (14) when a = 10, c = 25, b = 8/3 for (a) z20 = 10 and (b) z20 = −5.
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Figure 2. Bifurcation diagram of sytem (14) with respect to z20 for a = 10, c = 25 and b = 8/3.
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Figure 3. Variation of maximum Lyapunov exponent of system (14) with respect to z20 for a = 10, c = 25 and b = 8/3.
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Figure 4. Phase diagram of the six-dimensional coupled system (inducing all the controllers) of system (15) for
ρ = 30, a = 10, c = 30, b = 8/3, γ = 10, μ = 3 with respect to xy plane, (a) for the initial condi-
tions x10 = 1.0, y10 = 1.0, z10 = 1.0, x20 = 2.5, y20 = 1.0, z20 = −5 and (b) for the initial conditions
x10 = 1.0, y10 = 1.0, z10 = 1.0, x20 = 2.5, y20 = 1.0, z20 = 3.
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Figure 5. Phase diagram of system (17) for ρ = 30, a = 10, c = 30, b = 8/3, γ = 10, μ = 3, x20 = 3 and z20 = −5.
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Figure 6. Bifurcation diagram of system (17) with respect to x20 for ρ = 30, a = 10, c = 30, b = 8/3, γ = 10, μ = 3 and
z20 = −5.
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Figure 7. Variation of maximum Lyapunov exponent with respect to x20 forρ = 30, a = 10, c = 30, b = 8/3, γ = 10, μ = 3
and z20 = −5.

phase diagram is plotted for the same set of parame-
ters and for the initial conditions x20 = 3, y20 = 1 and
z20 = 5. We present the bifurcation diagram of system
(17) with respect to x20 in figure 6 for ρ = 30, a =
10, c = 30, b = 8/3, γ = 10, μ = 3 and z20 = −5.
Variation of maximum Lyapunov exponent with respect

to x20 for system (17) is plotted in figure 7. Figure 5
matches with the result of figures 6 and 7. In figure 8,
we draw the phase diagram of system (17) for x20 = 1,
y20 = 1 and z20 = −5 and lastly in figure 9 we draw the
bifurcation diagram of system (17) with respect to z20
for ρ = 30, a = 10, c = 30, b = 8/3, γ = 10, μ = 3
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Figure 8. Phase diagram of system (17) for ρ = 30, a = 10, c = 30, b = 8/3, γ = 10, μ = 3, x20 = 1 and z20 = −5.
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Figure 9. Bifurcation diagram of system (17) with respect to z20 for ρ = 30, a = 10, c = 30, b = 8/3, γ = 10, μ = 3 and
x20 = 5.

and by taking the initial condition x20 = 5. Here the
result of figure 8 is consistent with result of figure 9.
Therefore, the above numerical simulation results show
that the newly proposed scheme can successfully design
multistable systems.

5. Conclusion

We have proposed a generalized scheme for designing
multistable systems coupling two different dynami-
cal systems of the same dimension via active control.
Designing partial synchronization of states between the
coupled systems and finding some completely initial
condition-dependent constants of motion are the key
concepts for designing multistability here. Basically,
in the proposed scheme, complete synchronization of
i number (1 ≤ i ≤ m − 1) of state variables occur
and at the same time constant difference between j
(1 ≤ j ≤ m − 1, i + j = m) number of state vari-
ables of the coupled systems exist. We illustrate our
scheme by coupling Lorenz and Lu systems. Existence

of multistable behaviour is established with the help
of phase diagrams, bifurcation diagrams and maximum
Lyapunov exponents variation with respect to the com-
pletely initial condition-dependent constants of motion.
We have also presented the variation of maximum Lya-
punov exponents with the variation of initial conditions.
If we couple two dynamical systems of same dimension
in such a way that the corresponding state variables of
the coupled systems keep constant differences, then this
kind of coupling can produce multistability. This pro-
posed scheme may be very useful to design real-world
physical, electrical, chemical, social and biological sys-
tems with multistable behaviour and it may also be
helpful to understand the basic mechanisms of many
natural multistable systems.
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