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Abstract. The general class of anisotropic Bianchi cosmological models in f (R, T) modified theories of gravity
with�(T ) has been considered. This paper deals with f (R, T) modified theories of gravity, where the gravitational
Lagrangian is given by an arbitrary function of Ricci scalar R and the trace of the stress-energy tensor T has been
investigated for a specific choice of f (R, T ) = f1(R) + f2(T ). The exact solutions to the corresponding field
equations are obtained in quadrature form. We have discussed three types of solutions of the average scale factor
for the general class of Bianchi cosmological models by using a special law for deceleration parameter which is
linear in time with a negative slope. The solutions to the Einstein field equations are obtained for three different
physical viable cosmologies. All physical parameters are calculated and discussed in each model.
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1. Introduction

Despite the fact that Einstein’s general relativity is a
tremendously successful theory and the basis for the
description of most of the gravitational phenomena
known till date, it fails to explain the recent discovery
of the accelerating expansion of the Universe. Recent
evidences coming from the observational data [1–6]
on the late-time acceleration of the Universe and the
existence of dark matter have posed a fundamental
theoretical challenge to gravitational theories.The
cosmic microwave background radiation (CMBR) and
supernovae surveys indicate that the distribution of
ordinary baryonic matter, dark matter and dark energy
of our Universe is 4, 20 and 76% respectively [7–10].
One way of explaining the observations is by assuming
that at large scales the Einstein gravity model of general
relativity breaks down, and amore general action describes
the gravitational field.
In recent years, modifications of general relativity

are being used more and more to explain late accel-
eration and dark energy. The presence of a late-time
cosmic acceleration of the Universe can indeed be
explained by f (R) gravity [11,12]. A generalization
of f (R) modified theories of gravity was proposed in

[13]. Among the various modifications, f (R) theory of
gravity is considered as the most suitable due to the
cosmologically important f (R) models. It has been sug-
gested that cosmic acceleration can be achieved by
replacing the Einstein–Hilbert action of general rela-
tivity with a general function Ricci scalar, f (R). Nojiri
et al [14] have studied f (R), f (G) or f (R,G) gravity
in various contexts. Many researchers [15–23] have
investigated f (R) gravity in different contexts. Shamir
[24] has proposed a physically viable f (R) gravity
model, which shows the unification of early-time infla-
tion and late-time acceleration.
Recently, several researchers [25–27] suggested

that the anisotropic Bianchi Universes have played
important roles in observational cosmology. Some
researchers [28–33] also suggested that the interest in
such Bianchi Universes have received more attention
than FRW Universe. The WMAP data [34–36] seem to
require an addition to the standard cosmological model
with positive cosmological constant that bears a like-
ness to the Bianchi morphology [37–39]. According to
this, the Universe should reach a slightly anisotropic
special geometry in spite of the inflation, contrary to
generic inflationary models [40–44] suggesting a non-
trivial isotropization history of the Universe due to the
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presence of an anisotropic energy source. In order to
explain the homogeneity and flatness of the presently
observed Universe, it is usually assumed that this has
undergone a period of exponential expansion.
In a recent paper, Harko et al [45] have proposed

a new generalized theory known as f (R, T) grav-
ity. According to this theory, gravitational Lagrangian
involves an arbitrary function of the scalar curvature
(R) and trace of the energy–momentum tensor (T). Sev-
eral researchers [46–49] have investigated f (R, T) grav-
ity in different contexts. Recently, Reddy et al [50]
have obtained a Bianchi type-III cosmological model
in f (R, T) theory of gravity, Shamir et al [51] have
obtained exact solutions of Bianchi types-I and V cos-
mological models in f (R, T) gravity and Chaubey and
Shukla [52] have studied a new class of cosmological
models in f (R, T) gravity. A theory whose Lagrangian
density is described by an arbitrary function of R and
the Lagrangian density of matter as F(R, Lm) has
been explored by Harko and Lobo [53]. Moreover,
in Poplawski [54] a theory in which the cosmologi-
cal constant is written by a function of the trace of
the stress-energy tensor as �(T ) has been investi-
gated. Very recently, Ahmed et al [55] have studied
Bianchi type-V cosmological model in f (R, T) gravity
with �(T ).
The present paper is organized as follows. In §1, a

brief introduction is given. The field equations in met-
ric version of f (R, T) gravity is given in §2. In this
section, explicit field equations in f (R, T ) = f1(R) +
f2(T ) are obtained by using the particular form of the
functions f1(R) = λ1R and f2(T ) = λ2T , which are
used by Ahmed and Pradhan [55], with the general
class of Bianchi model. Section 3 deals with cosmolog-
ical solutions of the field equations using the linearly
varying deceleration parameter q proposed by Akarsu
and Dereli [56] and also discuss some physical prop-
erties, energy conditions and statefinder diagnostic of
the constructed model in three different physical viable
cosmologies. Conclusions are given in §4.

2. Model and basic equations

The f (R, T) theory of gravity is the modification of gen-
eral relativity (GR). The action for the modified f (R, T)
gravity is

S = 1

16π

∫
f (R, T )

√−g d4x+
∫

Lm

√−g d4x, (1)

where f (R, T) is an arbitrary function of Ricci scalar
(R), T is the trace of stress-energy tensor (Tμν) of
matter and Lm is the matter Lagrangian density.

The f (R, T) gravity field equations are obtained by
varying the action S with respect to metric tensor (gμν).

f (R, T )Rμν −1

2
f (R, T )gμν

+ (gμν� − ∇μ∇ν)fR(R, T )

= 8πTμν − fT (R, T )Tμν − fT (R, T )θμν, (2)

where

θμν = −2Tμν + gμνLm − 2gαβ ∂2Lm

∂gμν∂gαβ
. (3)

Here,

� ≡ ∇μ∇μ, fR(R, T ) = ∂f (R, T )

∂R
,

fT (R, T ) = ∂f (R, T )

∂T

and ∇μ denotes the covariant derivative.
Taking into account the covariant divergence of

eq. (2), by using the following mathematical identity
[45,57]:

∇μ

[
fR(R, T )Rμν − 1

2
f (R, T )gμν

+ (gμν� − ∇μ∇ν)fR(R, T )

]
= 0, (4)

where f (R, T) is an arbitrary function of the Ricci scalar
R and of the trace of the stress-energy tensor T , we
obtain the divergence of the stress-energy tensor Tμν

as

∇μTμν= fT (R, T )

8π−fT (R, T )

× [(Tμν+θμν)∇μ ln fT (R, T )+∇μθμν]. (5)

We know that the perfect fluid is described by
energy density (ρ), pressure (p) and four-velocity
(uμ), because there is no unique definition of the matter
Lagrangian. However, in the present paper we assume
that the stress-energy tensor of the matter is given by

Tμν = (ρ + p)uμuν − pgμν, (6)

where uμ=(0,0,0,1) is the four-velocity in co-moving
coordinates which satisfies the conditions uμuμ = 1 and
uμ∇νuμ =0 and the matter Lagrangian Lm =−p.
Then, using eq. (3), we obtain the variation of the

stress-energy of a perfect fluid as follows:

θμν = −2Tμν − pgμν. (7)

From eqs (5) and (7), we can obtain the divergence
of the stress-energy tensor Tμν for a perfect fluid as

∇μTμν = fT (R, T )

8π − fT (R, T )

× [−(Tμν + pgμν)∇μ ln fT (R, T )

− ∇μ(2Tμν + pgμν)]. (8)
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In this paper we take f (R, T) is as follows:

f (R, T ) = λR + λT . (9)

Here, we can see from eqs (8) and (9) that the
divergence of Tμν is zero, i.e. ∇μTμν = 0.
From eqs (2), (6) and (9), we get

Gμν −
(

p + 1

2
T

)
gμν =

(
8π + λ

λ

)
Tμν. (10)

The well-known Einstein equations with cosmo-
logical constant is

Gμν − �gμν = −8πTμν. (11)

The term
(
p + 1

2
T

)
can now be regarded as a

cosmological constant, and so we can write

� ≡ �(T ) = p + 1

2
T . (12)

Recently, Poplawski has proposed the dependence of
cosmological constant � on the trace of the energy–
momentum tensor (T). Several researchers like Magnano
[58] and Poplawski [54] have suggested that the �(T )

gravity is more general than the Palatini f (R) and could
be reduced to it if the pressure of matter is neglected.
Considering the perfect fluid case, the trace T = ρ −
3p, for our model

� = 1

2
(ρ − p). (13)

The diagonal form of the metric of the general class of
Bianchi cosmological model is given by

ds2=dt2−a1
2dx2−a2

2e−2xdy2−a3
2e−2mxdz2. (14)

We have the additional classes of Bianchi models as
follows: type-III corresponds to m = 0, type-V corre-
sponds to m = 1, type-VI0 corresponds to m = −1
and all other m give VIh, where m = h − 1.
We first define the expressions for the average scale

factor and volume scale factor. Define the general-
ized Hubble’s parameter H in analogy with a flat FRW
model.
The average scale factor (a) and spatial volume (V )

are defined as

V = a3 = a1a2a3. (15)

We define the generalized Hubble’s parameter H as

H = 1

3

V̇

V
= ȧ

a
= 1

3

(
ȧ1

a1
+ ȧ2

a2
+ ȧ3

a3

)
, (16)

where H1 = ȧ1/a1, H2 = ȧ2/a2 and H3 = ȧ3/a3
are the directional Hubble’s parameters. Overhead dot
denotes differentiation with respect to cosmic time t .

In view of eq. (6) for the general class of Bianchi
space–time eq. (14), the field eq. (10) lead to

ȧ1ȧ2

a1a2
+ ȧ2ȧ3

a2a3
+ ȧ3ȧ1

a3a1
−m2 + m + 1

a12
= −(8π + λ)

λ
ρ−�

(17)

ä2

a2
+ ä3

a3
+ ȧ2ȧ3

a2a3
− m

a12
= (8π + λ)

λ
p − � (18)

ä1

a1
+ ä3

a3
+ ȧ1ȧ3

a1a3
− m2

a12
= (8π + λ)

λ
p − � (19)

ä1

a1
+ ä2

a2
+ ȧ1ȧ2

a1a2
− 1

a12
= (8π + λ)

λ
p − � (20)

(m + 1)
ȧ1

a1
− ȧ2

a2
− m

ȧ3

a3
= 0. (21)

We have assumed G = c = 1 in proper unit.
Let us introduce the dynamical scalars such as

expansion parameter (θ), shear scalar (σ 2) and the
mean anisotropy parameter (A) as usual.

θ = uμ;μ = 3H =
(

ȧ1

a1
+ ȧ2

a2
+ ȧ3

a3

)
(22)

σ 2 = 1

2
σμνσ

μν

= 1

2

[(
ȧ1

a1

)2

+
(

ȧ2

a2

)2

+
(

ȧ3

a3

)2
]

− θ2

6
(23)

A = 1

3

3∑
i=1

(
�Hi

H

)2

, (24)

where �Hi = Hi − H, i = 1, 2, 3.
Recently, a special law was proposed for the deceler-

ation parameter which is linear in time with a negative
slope. This law covers the law of Berman (where the
deceleration parameter is constant) used for obtain-
ing exact cosmological models, in the context of
dark energy, to account for the current acceleration
of the Universe. According to this law, only the spa-
tially closed and flat Universes with cosmological fluid
exhibiting quintom-like behaviour are allowed and the
Universe ends with a big-rip. This new law gives the
opportunity to generalize many of these dark energy
models having better consistency with the cosmolog-
ical observations. The linearly varying deceleration
parameter (q) is defined as

q = −aä

ȧ2
= d

dt

(
1

H

)
− 1 = − Ḣ

H 2
− 1

= −kt + n − 1, (25)
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where k and n are positive constants. We see that, the
deceleration parameter (q) is linear in time with nega-
tive slope. The sign of q indicates whether the model
inflates or not. The positive sign of q corresponds to
standard decelerating model whereas the negative sign
indicates accelerated expansion.
Solving eq. (25) for the scale factor, we obtain the

law of variation for average scale factor a as

a = (nlt + c1)
1/n, k = 0, n > 0, (26)

a = c2e
lt , k = 0, n = 0, (27)

a = c3e
2
n
tanh−1( kt

n
−1), k > 0, n > 1, (28)

where c1, c2 and c3 are constants of integration.
Equation (26) implies that the condition for the expand-
ing Universe is n(= q + 1 + kt) > 0.

3. Cosmological solutions

Here we discuss three different physically viable cosmo-
logies k=0, n>0; k=0, n=0 and k>0, n>1 respec-
tively, which have physical interests to describe the
decelerating and accelerating phases of the Universe.

Case 1. When k = 0, n > 0 and a3 = V b, where b is
any constant, then from eqs (15), (21) and (26), we get

ai(t) = (nlt + c1)
Xi/n, i = 1, 2, 3, (29)

where

X1 = 3 + 3mb − 3b

m + 2
, X2 = 3 + 3m − 3b − 6mb

m + 2

and

X3 = 3b.

The directional Hubble’s parameters Hi have values
given by

Hi = Xil

nlt + c1
. (30)

From eq. (16), the average generalized Hubble’s
parameter (H ) and expansion parameter (θ ) have the
value given by

θ = 3H = 3l

nlt + c1
. (31)

From eqs (23) and (24), the shear and anisotropy
parameters are given by

σ 2 = [X1
2 + X2

2 + X3
2

−2(X1X2 + X2X3 + X3X1) + 3]
× l2

2(nlt + c1)2
(32)

A = 1

3
[X1

2 + X2
2 + X3

2

−2(X1X2 + X2X3 + X3X1) + 3]. (33)

The scalar curvature (R) for a general class of
Bianchi cosmological model is defined as

R = 2

[
ä1

a1
+ ä2

a2
+ ä3

a3
+ ȧ1ȧ2

a1a2
+ ȧ2ȧ3

a2a3
+ ȧ3ȧ1

a3a1

−(m2 + m + 1)

a12

]
. (34)

From eqs (29) and (34), we get

R = 2l2

(nlt+c1)2
{X1

2+X2
2+X3

2−n(X1+X2+X3)

+ (X1X2+X2X3+X3X1)}
− 2(m2+m+1)(nlt+c1)

−(2X1/n). (35)

Using eq. (29) in eqs (17)–(20) and solving eq. (13),
we obtain the expressions for pressure (p), energy den-
sity (ρ) and cosmological constant (�) for the model
(14) as

ρ = − 9λA1l
2

2(4π + λ)(m + 2)2(nlt + c1)2

− λ2

6(4π+λ)2

{
3l2(3−n)

(nlt+c1)2
− 2(m2+m+1)

(nlt+c1)
2(3+3mb−3b)

n(m+2)

}

+ λ(m2 + m + 1)

2(4π + λ)(nlt + c1)
2(3+3mb−3b)

n(m+2)

, (36)

p = − 9λA1l
2

2(4π + λ)(m + 2)2(nlt + c1)2

+ λ(16π + 3λ)

6(4π + λ)2

{
3l2(3 − n)

(nlt + c1)2

− 2(m2 + m + 1)

(nlt + c1)
2(3+3mb−3b)

n(m+2)

}

+ λ(m2 + m + 1)

2(4π + λ)(nlt + c1)
2(3+3mb−3b)

n(m+2)

, (37)

� = − λ

6(4π + λ)

×
{
3l2(3 − n)

(nlt + c1)2
− 2(m2 + m + 1)

(nlt + c1)
2(3+3mb−3b)

n(m+2)

}
, (38)

where

A1 = 1+m+2b+2mb+2m2b−3mb2−3m2b2−3b2.

Here we observe that, the spatial volume (V ) is zero
at t = t0=−(c1/nl). The scalar curvature (R) is infinite
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at t = t0, the energy density (ρ) and pressure (p) tend
to infinity at t→ t0. Cosmological parameters θ and A

tend to infinity as t tends to t0. Hence we can observe
that the Universe starts evolving with zero volume at
t = t0 and expands with cosmic time (t). From eqs (31)
and (32), we observe that limt→∞ (σ 2/θ) = 0, and so
the model approaches isotropy for large cosmic time
(t). The conditions of homogeneity and isotropization,
formulated by Collins and Hawking [59], are satisfied
in the present model.
Figure 1 shows the variation of cosmological term �

with cosmic time (t). From the figure we observe that
the cosmological term (�) is a decreasing function of
time (t). It starts from a positive value and approaches a
small positive value for large t . Here, λ = −0.1, l = 5,
m = −0.01, c = 1, n = 0.5, b = 0.1 in all the graphs.
Figure 2 depicts the variation of pressure with time.

From the figure we observe that the pressure is an

increasing function of time. It starts from a negative
value and approaches a small negative value near zero.
From the discovery of the accelerated expansion of
the Universe, it is generally assumed that this cosmic
acceleration is due to some kind of energy-matter with
negative pressure known as dark energy.
Figure 3 is the plot of energy density (ρ) vs. time.

From this figure, we observe that energy density (ρ) is
a decreasing function of time (t) and it approaches zero
at late time (i.e. at the present epoch).
Figure 4 is the plot of Ricci scalar (R) vs. time.

From this figure, we observe that the curvature is pos-
itive through the whole evolution of the Universe and
R → 0 as t → ∞ and R → ∞ as t → 0 indicating
the initial singularity.
The weak energy condition (WEC) and dominant

energy conditions (DEC) are: (i) ρ ≥ 0, (ii) ρ − p ≥ 0

Figure 1. The plot of cosmological constant (�) with cosmic time (t).

Figure 2. The plot of pressure (p) with cosmic time (t).

Figure 3. The plot of energy density (ρ) with cosmic time (t).
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and (iii) ρ+p ≥ 0. The strong energy condition (SEC)
is given by ρ + 3p ≥ 0.
Figures 3–7 are the plots of energy conditions (ρ) vs.

time. From these figures, we observe that the WEC and
DEC for our constructed model are satisfied. It is also
observed that the SEC for our constructed model is not
satisfied for Bianchi type-III, VI0 and VIh (i.e. m 
= 1).

Sahni et al [60] proposed a cosmological diagnos-
ticpair {r, s} called statefinder, which is defined for
isotropic cosmological model as

r = ˙̈a
aH 3

and s = r−1

3
(
q− 1

2

) , (39)

Figure 4. The plot of Ricci scalar (R) with cosmic time (t).

Figure 5. The plot of energy condition (ρ − p) with cosmic time (t).

Figure 6. The plot of energy condition (ρ + p) with cosmic time (t).

Figure 7. The plot of energy condition (ρ + 3p) with cosmic time (t).
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where H is the Hubble’s parameter and q is the decel-
eration parameter. By using eqs (25), (26), (31) and
(39), the cosmological diagnostic pair {r, s} is given by

r = 1

nH 2

(
nH 2 − 3n2l2

(nlt + c1)2
+ 2n3l2

(nlt + c1)2

)
(40)

s = 2

3nH 2(2q − 1)

(
2n3l2

(nlt + c1)2
− 3n2l2

(nlt + c1)2

)
.

(41)

The cosmological diagnostic pair {r, s} tends to be
constant for large cosmic time (t). For n = 3/2, our
model approaches to �CDM model (r = 1, s = 0).
It has been observed that such models are compatible
with present observations.
Therefore, on the basis of the above discussion and

analysis, our constructed model and their correspond-
ing solutions are physically acceptable.

Case 2. When k = 0, n = 0 and a3 = V b, where b is
any constant, then

ai(t) = c2
XieXilt ; i = 1, 2, 3. (42)

The directional Hubble’s parameters H1, H2 and H2
have values given by

Hi = Xil. (43)

From eq. (16), the average generalized Hubble’s
parameter (H ) and expansion parameter (θ ) have the
value given by

θ = 3H = 3l. (44)

From eqs (23) and (24), the shear and anisotropy
parameters are given by

σ 2 = [X1
2 + X2

2 + X3
2

− 2(X1X2 + X2X3 + X3X1) + 3] l
2

2
(45)

A = 1

3
[X1

2 + X2
2 + X3

2

− 2(X1X2 + X2X3 + X3X1) + 3]. (46)

From eqs (34) and (42), the scalar curvature (R) for
the general class of Bianchi cosmological model is
given by

R = 2l2{X1
2 + X2

2 + X3
2 − n(X1 + X2 + X3)

+ (X1X2 + X2X3 + X3X1)}
− 2(m2 + m + 1)c2

−2X1e−2X1lt . (47)

Using eq. (42) in eqs (17)–(20) and solving eq. (13),
we obtain the expressions for pressure (p), energy den-
sity (ρ) and cosmological constant (�) for the model
(14) as

ρ = − 9λA1l
2

(8π + λ)(m + 2)2

− λ2

3(8π + λ)2

{
9l2 − 2(m2 + m + 1)

c2
2(3+3mb−3b)

m+2 e
2(3+3mb−3b)lt

m+2

}

+ λ(m2 + m + 1)

(8π + λ)c2
2(3+3mb−3b)

m+2 e
2(3+3mb−3b)lt

m+2

(48)

p = − 9λA1l
2

(8π + λ)(m + 2)2

+λ(16π + λ)

3(8π + λ)2

{
9l2 − 2(m2 + m + 1)

c2
2(3+3mb−3b)

m+2 e
2(3+3mb−3b)lt

m+2

}

+ λ(m2 + m + 1)

(8π + λ)c2
2(3+3mb−3b)

m+2 e
2(3+3mb−3b)lt

m+2

(49)

�=− λ

3(8π+λ)

{
9l2− 2(m2+m+1)

c2
2(3+3mb−3b)

m+2 e
2(3+3mb−3b)lt

m+2

}
.

(50)

Figure 8 shows the variation of cosmological term
� with cosmic time (t). From the figure we observe
that the cosmological term (�) is a decreasing func-
tion of time (t). It starts from a large positive value and
approaches a small positive value for large t .
Figure 9 depicts the variation of pressure with time.

From the figure we observe that the pressure is an
increasing function of time. It starts from a large neg-
ative value and approaches a small negative value near
zero. From the discovery of the accelerated expansion
of the Universe, it is generally assumed that this cos-
mic acceleration is due to some kind of energy-matter
with negative pressure known as dark energy.
Figure 10 is the plot of energy density (ρ) vs. time.

From this figure, we observe that energy density (ρ) is
a decreasing function of time (t) and it approaches zero
at late time (i.e. at present epoch).
Figure 11 is the plot of Ricci scalar (R) vs. time.

From this figure, we observe that the curvature is pos-
itive through the whole evolution of the Universe and
R → 0 as t → ∞ and R → ∞ as t → 0 indicating
the initial singularity.
Figures 10, 12, 13 and 14 are the plots of energy con-

ditions (ρ) vs. time. From these figures, we observe
that the WEC and DEC for our constructed model are
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Figure 8. The plot of cosmological constant (�) with cosmic time (t).

Figure 9. The plot of pressure (p) with cosmic time (t).

Figure 10. The plot of energy density (ρ) with cosmic time (t).

Figure 11. The plot of Ricci scalar (R) with cosmic time (t).

satisfied. It is also observed that the SEC for our con-
structed model is not satisfied for Bianchi type-III, VI0
and VIh (i.e. m 
= 1).
By using eqs (25), (27), (39) and (44), the cosmolo-

gical diagnostic pair {r, s} is given by r = 1 and s = 0.

It is observed that this model approaches the �CDM
model.
Therefore, on the basis of the above discussion and

analysis, our constructed model and their correspond-
ing solutions are physically acceptable.
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Figure 12. The plot of energy condition (ρ − p) with cosmic time (t).

Figure 13. The plot of energy condition (ρ + p) with cosmic time (t).

Figure 14. The plot of energy condition (ρ + 3p) with cosmic time (t).

Figure 15. The plot of cosmological constant (�) with cosmic time (t).

Case 3. When k > 0, n > 1 and a3 = V b, where b is
any constant, then

ai(t) = c3
Xie(2Xi/n) tanh−1((kt/n)−1); i = 1, 2, 3.

(51)

The directional Hubble’s parameters H1, H2 and H3

have values given by

Hi = 2Xi

t (2n − kt)
. (52)
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From eq. (16), the average generalized Hubble’s
parameter (H ) and expansion parameter (θ ) have the
value given by

θ = 3H = 6

t (2n − kt)
. (53)

From eqs (23) and (24), the shear and anisotropy
parameters are given by

σ 2 = [X1
2 + X2

2 + X3
2

− 2(X1X2 + X2X3 + X3X1) + 3]
× 4

t2(2n − kt)2
(54)

A = 1

3
[X1

2 + X2
2 + X3

2

− 2(X1X2 + X2X3 + X3X1) + 3]. (55)

From eqs (34) and (51), the scalar curvature (R) for
the general class of Bianchi cosmological model is
given by

R = 4

t2(2n−kt)2
(X1

2+X2
2+X3

2

− n(X1+X2+X3)+(X1X2+X2X3+X3X1))

− 2(m2 + m + 1)

c32X1e(4X1/n) tanh−1((kt/n)−1)
. (56)

Using eq. (51) in eqs (17)–(20) and solving eq. (13),
we obtain the expressions for pressure (p), energy den-
sity (ρ) and cosmological constant (�) for the model
(14) as

ρ = − 36λA1

(8π + λ)(m + 2)2t2(2n − kt)2

− λ2

3(8π + λ)2

{
12(3 − n + kt)

t2(2n − kt)2

− 2(m2 + m + 1)

c3
2(3+3mb−3b)

m+2 e
4(3+3mb−3b)

n(m+2) tanh−1
(

kt
n

−1
)
}

+ λ(m2 + m + 1)

(8π + λ)c3
2(3+3mb−3b)

m+2 e
4(3+3mb−3b)

n(m+2) tanh−1
(

kt
n

−1
)

(57)

p = − 36λA1

(8π + λ)(m + 2)2t2(2n − kt)2

+λ(16π + λ)

3(8π + λ)2

⎧⎨
⎩
12(3 − n + kt)

t2(2n − kt)2

− 2(m2 + m + 1)

c3
2(3+3mb−3b)

m+2 e
4(3+3mb−3b)

n(m+2) tanh−1
(

kt
n

−1
)
⎫⎬
⎭

+ λ(m2 + m + 1)

(8π + λ)c3
2(3+3mb−3b)

m+2 e
4(3+3mb−3b)

n(m+2) tanh−1( kt
n

−1)

(58)

� = −λ

3(8π + λ)

{
12(3 − n + kt)

t2(2n − kt)2

− 2(m2 + m + 1)

c3
2(3+3mb−3b)

m+2 e
4(3+3mb−3b)

n(m+2) tanh−1( kt
n

−1)

}
. (59)

In all the above cases, we observe that, for large cos-
mic time (t), the spatial volume, expansion parameter,
shear scalar and mean anisotropic parameter tend to
zero. The energy density and pressure also tend to zero
for large cosmic time (t).
Here, from eqs (53) and (54), we observe that

limt→∞ (σ 2/θ) = 0, and so the model approaches
isotropy for large cosmic time (t). The conditions of
homogeneity and isotropization, formulated by Collins
and Hawking [59], are satisfied in the present model.
Figure 15 is the plot of cosmological term � vs.

time. From this figure, we observe that � is a decreas-
ing function of time (t) and it approaches a small
positive value at late time (i.e at the present epoch).
Figure 16 depicts the variation of pressure with time.

From the figure we observe that the pressure is an
increasing function of time. It starts from a large neg-
ative value and approaches a small negative value near
zero. From the discovery of the accelerated expansion
of the Universe, it is generally assumed that this cosmic
acceleration is due to some kind of energy-matter with
negative pressure known as dark energy.

Figure 16. The plot of pressure (p) with cosmic time (t).



Pramana – J. Phys. (2017) 88: 65 Page 11 of 13 65

Figure 17. The plot of energy density (ρ) with cosmic time (t).

Figure 18. The plot of Ricci scalar (R) with cosmic time (t).

Figure 19. The plot of energy condition (ρ − p) with cosmic time (t).

Figure 20. The plot of energy condition (ρ + p) with cosmic time (t).

Figure 17 is the plot of energy density (ρ) vs. time.
From this figure, we observe that energy density (ρ) is
a decreasing function of time (t) and it approaches zero
at late time (i.e. at the present epoch).
Figure 18 is the plot of Ricci scalar (R) vs. time.

From this figure, we observe that the curvature is

positive through the whole evolution of the Universe
and R → 0 as t → ∞ and R → ∞ as t → 0
indicating the initial singularity.
Figures 17, 19, 20 and 21 are the plots of energy con-

ditions (ρ) vs. time. From these figures, we observe
that the WEC and DEC for our constructed model are
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Figure 21. The plot of energy condition (ρ + 3p) with cosmic time (t).

satisfied. It is also observed that the SEC for our con-
structed model is not satisfied for Bianchi type-III, VI0
and VIh (i.e. m 
= 1).
Therefore, on the basis of the above discussion and

analysis, our constructed model and their correspond-
ing solutions are physically acceptable.

4. Conclusions

In this paper, we have considered a general class of
cosmological model in the presence of perfect fluid
and variable cosmological constant in f (R, T) theory
of gravity [45], where the gravitational Lagrangian is
given by an arbitrary function of Ricci scalar (R) and of
the trace of the stress-energy tensor (T). In this paper,
the gravitational field equation has been established by
taking f (R, T ) = f1(R) + f2(T ) [55].
We have obtained cosmological solutions of the gen-

eral class of Bianchi model for different values of
m. The general class of Bianchi cosmological model
reduces to Bianchi type-III, V, VI0 and VIh cosmo-
logical model for different values of m = 0, 1, −1
and all other values of m respectively. The exact solu-
tions to the corresponding field equations are obtained
in quadrature form. The cosmological parameters have
been discussed in each cases.
We have also discussed the well-known physical

properties of our constructed model in three different
viable cosmologies. It is shown that our constructed
model represents an expanding, shearing, non-rotating
and accelerated Universe. For suitable choice of con-
stants, the anisotropic parameter tends to zero for
sufficiently large time. It has been found that � is a
decreasing function of time t and it converges to a
small positive value at late time. It is also observed
that limt→∞(σ 2/θ)= 0, and so our constructed model
approaches isotropy for large cosmic time t . We have
also observed that our constructed model and our
derived solutions for three different cases are physi-
cally acceptable in concordance with the fulfilment of
WEC, DEC and SEC for Bianchi type-V (i.e. m = 1),

whereas the WEC and DEC are satisfied but SEC is
not satisfied for Bianchi type-III, VI0 and VIh (i.e.
m 
= 1). For suitable values of n, this model approaches
�CDMmodel. Hence, our constructed model and their
solutions are physically acceptable.
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