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Abstract. In this paper, a novel synchronization scheme is investigated for a class of chaotic systems. The
multiswitching synchronization scheme is extended to the combination–combination synchronization scheme
such that the combination of state variables of two drive systems synchronize with different combination of
state variables of two response systems, simultaneously. The new scheme, multiswitching combination–
combination synchronization (MSCCS), is a notable extension of the earlier multiswitching schemes concerning
only the single drive–response system model. Various multiswitching modified projective synchronization
schemes are obtained as special cases of MSCCS, for a suitable choice of scaling factors. Suitable controllers have
been designed and using Lyapunov stability theory sufficient condition is obtained to achieve MSCCS between
four hyperchaotic systems and the corresponding theoretical proof is given. Numerical simulations are performed
to validate the theoretical results.
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1. Introduction

Chaos synchronization has developed into a very
important area of research since the concept was first
proposed by Pecora and Carroll in 1990 [1]. The topic
has been widely studied due to its potential interdis-
ciplinary applications across areas such as physics,
biological systems, electrical engineering, information
processing, communication theory etc. [2–5]. Over the
years many types of synchronization methods such as
complete synchronization [6], antisynchronization [7],
projective synchronization [8], lag synchronization [9],
phase synchronization [10], reduced order synchro-
nization [11], increased order synchronization [12],
etc. have been investigated. Various methods such as
active control method [13], function cascade [14], pre-
dictive control method [15], adaptive control method
[16], sliding mode control [17], active backstepping
method [18] etc. have been developed and studied to
achieve synchronization.

Majority of the synchronization studies have been
restricted to single drive–response system model. It
is therefore interesting to ask whether these studies
can be extended to multiple drive–response system
models involving three or more chaotic systems. In
recent years, new synchronization schemes wherein
three or more chaotic systems are involved, such as
combination synchronization [19–21], combination–
combination synchronization [22], compound synchro-
nization [23,24], and double compound synchroniza-
tion [25], have been presented. In addition to their
own intrinsic interest, these schemes are significant in
enhancing the security of information transmitted via
chaotic signals because of the complexity which they
bring in transmitted signal.

Combination–combination synchronization scheme
involving two drive and two response systems was
recently investigated by Sun et al [22] to over-
come the disadvantage of combination synchronization
which involves one response system. This scheme of
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combination–combination synchronization is an exten-
sion of the combination synchronization scheme. In
this scheme, a universal controller is designed to realize
synchronization between a combination of two drive
systems with combination of two response systems.
Further studies in this direction have been reported in
[26–28].

Multiswitching synchronization scheme proposed
by Ucar et al [29] is an important and interesting
extension of the existing synchronization schemes. In
the multiswitching synchronization scheme, a wide
range of possible synchronization directions exist as
the different states of the drive system are syn-
chronized with different states of the response sys-
tem. The potential application of such schemes to
chaos communication makes them an interesting area
of research [30–32]. Multiswitching synchronization
involving multiple drive and response systems is an
untouched area of research. Only a handful of results
exist for such studies in the chaos synchronization
literature [33].

In view of the above discussions, in this paper, we
present a new multiswitching combination–combina-
tion synchronization (MSCCS) scheme, wherein two
drive chaotic systems are combined in different ways to
form a resultant signal which is then synchronized with
some combination of two response chaotic systems.
To the best of our knowledge, study on multiswitch-
ing synchronization involving two response systems
has not been reported in any earlier work. Using Chen
hyperchaotic system [34] and Liu hyperchaotic system
[35] as drive systems and Lorenz hyperchaotic system
[36] and Qi hyperchaotic system [37] as response sys-
tems, we illustrate the scheme of MSCCS. Suitable
nonlinear controllers are designed and, with the help
of Lyapunov stability theory, we realize the desired
synchronization.

The paper is organized as follows. In §2, the scheme
of MSCCS is developed. In §3, synchronization is
achieved among four non-identical hyperchaotic sys-
tems and theoretical results are validated by performing
necessary numerical simulations. Finally, conclusions
are drawn in §4.

2. The scheme of multiswitching
combination–combination synchronization

In this section, we construct the scheme of MSCCS of
chaotic systems. We need two drive systems and two

response systems. Let the drive systems be described
by

ẋ = f1(x), (1)

ẏ = f2(y), (2)

and the response systems be given by

ż = g1(z) + u, (3)

ẇ = g2(w) + u∗, (4)

where x = (x1, x2, x3, ..., xn)T , y = (y1, y2, y3, ..., yn)T ,
z = (z1, z2, z3, ..., zn)T , and w = (w1, w2, w3, ..., wn)T

are state vectors of systems (1)–(4) respectively; f1, f2,
g1, g2: Rn → Rn are four continuous vector functions
and u, u∗: Rn×Rn×Rn×Rn → Rn are two controllers
to be designed for the response systems (3) and (4),
respectively. To solve the combination–combination
synchronization problem the error is defined as e =
Ax + By − Cz − Dw.

DEFINITION 1 (See [22])

If there exist four constant matrices A,B,C,D ∈ Rn

and C �= 0 or D �= 0 such that

lim
t→∞ ‖e‖ = lim

t→∞ ‖Ax + By − Cz − Dw‖ = 0, (5)

then the drive systems (1) and (2) realize combination–
combination synchronization with the response sys-
tems (3) and (4), where ‖ · ‖ represents the vector
norm.

Remark 1. The constant matrices A, B, C, D are called
the scaling matrices. These matrices can be extended
to functional matrices of state variables x, y, z and w.

Remark 2. For the convenience of our discussion, if
we assume A = diag(α1, α2, α3, ..., αn), B = diag(β1,
β2, β3, ..., βn), C = diag(γ1, γ2, γ3, ..., γn), and D =
diag(δ1, δ2, δ3, ..., δn), then the components of the error
vector e are obtained as

eijkl = αixi + βjyj − γkzk − δlwl. (6)

In relation to Definition 1, the indices of the error states
are strictly chosen to satisfy i = j = k = l (i, j, k, l =
1, 2, ..., n).

DEFINITION 2

If the error states in relation to Definition 1 are rede-
fined such that i = j = k �= l or i = j = l �= k or i =
k = l �= j or j = k = l �= i; or i = j �= k = l or
i = k �= j = l or i = l �= j = k; or i = j �= k �= l or
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i = k �= j �= l or i = l �= k �= j or i �= j = k �= l or
i �= j �= k = l or i �= k �= j = l; or i �= j �= k �= l

and

lim
t→∞ ‖e‖ = lim

t→∞ ‖Ax + By − Cz − Dw‖ = 0, (7)

then the drive systems (1) and (2) are said to be in mul-
tiswitching combination–combination synchronization
with systems (3) and (4), where ‖ · ‖ represents the
vector norm.

Using eqs (1)–(4) and eq. (7) the error dynamics is
obtained as

ė = Af1(x) + Bf2(y) − Cg1(z)

−Cu − Dg2(w) − Du∗. (8)

Our goal is to determine the suitable control input U =
Cu + Du∗, of the general form

U = Af1(x) + Bf2(y) − Cg1(z) − Dg2(w) + pe, (9)

such that systems (1)–(4) achieve MSCCS in accor-
dance with Definition 2. Here p is a constant that
influences the rate of convergence.

Remark 3. If C = 0 or D = 0, then the MSCCS prob-
lem reduces to multiswitching combination synchro-
nization (MSCS) problem.

Remark 4. If A = D = 0, C = I or A = C = 0,
D = I or B = D = 0, C = I or B = C = 0, D =
I , then the MSCCS problem reduces to multiswitching
modified projective synchronization, where I is an n×
n identity matrix.

Remark 5. If A = B = C = 0 or A = B = D =
0 then the synchronization problem turns into a chaos
control problem.

3. Multiswitching combination–combination
synchronization among four non-identical
hyperchaotic systems

In this section, we realize the MSCCS among four
non-identical hyperchaotic systems. The Chen hyper-
chaotic system and Liu hyperchaotic system are taken
as drive systems and are, respectively, described
as follows:
⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = a1(x2 − x1) + x4,

ẋ2 = d1x1 − x1x3 + c1x2,

ẋ3 = x1x2 − b1x3,

ẋ4 = x2x3 + rx4,

(10)

⎧
⎪⎪⎨

⎪⎪⎩

ẏ1 = a2(y2 − y1),

ẏ2 = b2y1 − ky1y3 + y4,

ẏ3 = −c2y3 + hy2
1 ,

ẏ4 = −d2y1.

(11)

The Lorenz hyperchaotic system and Qi hyperchaotic
system are taken as response systems and are, respec-
tively, given by
⎧
⎪⎪⎨

⎪⎪⎩

ż1 = a3(z2 − z1) + u1,

ż2 = c3z1 − z1z3 + z2 − z4 + u2,

ż3 = z1z2 − b3z3 + u3,

ż4 = d3z2z3 + u4,

(12)

⎧
⎪⎪⎨

⎪⎪⎩

ẇ1 = a4(w2 − w1) + w2w3 + u∗
1,

ẇ2 = b4(w1 + w2) − w1w3 + u∗
2,

ẇ3 = −c4w3 − f w4 + w1w2 + u∗
3,

ẇ4 = −d4w4 + gw3 + w1w2 + u∗
4,

(13)

where u = (u1, u2, u3, u4) and u∗ = (u∗
1, u

∗
2, u

∗
3, u

∗
4)

are the controllers to be designed.
By the conditions on indices i, j, k, l = 1, 2, 3, 4

stated in Definition 2, several multiswitching com-
binations exist for defining the error states for the
drive–response systems (10)–(13), some of which are
as follows:

For i = j = k �= l, we have:

e1112, e1113, e2221, e2224, e3332, e3334, e4441, e4442 etc.

For i = j �= k �= l, we have:

e1123, e1143, e2214, e2241, e3314, e3342, e4421, e4432 etc.

For i �= j �= k �= l, we have:

e1234, e1432, e2314, e2431, e3124, e3421, e4132, e4321 etc.

Here we discuss results for one randomly selected
error space vector combination formed out of 634 mul-
tiswitching possibilities. The results for the rest of
the possible combinations can be obtained in a sim-
ilar manner. If we assume A = diag(α1, α2, α3, α4),
B = diag(β1, β2, β3, β4), C = diag(γ1, γ2, γ3, γ4),
and D = diag(δ1, δ2, δ3, δ4), then the switched error
states are given by
⎧
⎪⎪⎨

⎪⎪⎩

e4321 = α4x4 + β3y3 − γ2z2 − δ1w1,

e3212 = α3x3 + β2y2 − γ1z1 − δ2w2, Switch 1
e2133 = α2x2 + β1y1 − γ3z3 − δ3w3,

e1444 = α1x1 + β4y4 − γ4z4 − δ4w4,

(14)

where we refer eq. (14) as Switch 1 for simplicity. The
notations αi, βj , γk, δl (i, j, k, l = 1, 2, 3, 4) repre-
senting the scaling factors are set for convenience and
may assume different or same values in applications.
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For Switch 1, the error dynamical system is obtained
as follows:
⎧
⎪⎨

⎪⎩

ė4321 = α4ẋ4 + β3ẏ3 − γ2ż2 − δ1ẇ1,

ė3212 = α3ẋ3 + β2ẏ2 − γ1ż1 − δ2ẇ2,

ė2133 = α2ẋ2 + β1ẏ1 − γ3ż3 − δ3ẇ3,

ė1444 = α1ẋ1 + β4ẏ4 − γ4ż4 − δ4ẇ4.

(15)

Using eqs (10)–(13) the error system (15) is trans-
formed into the following form:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ė4321 = α4(x2x3 + rx4) + β3(−c2y3 + hy2
1)

− γ2(c3z1 − z1z3 + z2 − z4 + u2)

− δ1(a4(w2 − w1) + w2w3 + u∗
1),

ė3212 = α3(x1x2 − b1x3) + β2(b2y1 − ky1y3 + y4)

− γ1(a3(z2 − z1) + u1) − δ2(b4(w1 + w2)

− w1w3 + u∗
2),

ė2133 = α2(d1x1 − x1x3 + c1x2) + β1a2(y2 − y1)

− γ3(z1z2 − b2z3 + u3)

− δ3(−c4w3 − f w4 + w1w2 + u∗
3),

ė1444 = α1(a1(x2 − x1) + x4) + β4(−d2y1)

− γ4(d3z2z3 + u4)

− δ4(−d4w4 + gw3 + w1w2 + u∗
4).

(16)

Denote
⎧
⎪⎨

⎪⎩

U1 = γ2u2 + δ1u
∗
1,

U2 = γ1u1 + δ2u
∗
2,

U3 = γ3u3 + δ3u
∗
3,

U4 = γ4u4 + δ4u
∗
4.

(17)

Theorem 1. The drive systems (10) and (11) will achieve
multiswitching combination–combination synchroni-
zation with response systems (12) and (13) if the con-
trol functions U1, U2, U3, and U4 are chosen such that
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 = α4(x2x3 + rx4) + β3(−c2y3 + hy2
1)

− γ2(c3z1 − z1z3 + z2 − z4)

− δ1(a4(w2 − w1) + w2w3)

+ (α4x4 + β3y3 − γ2z2 − δ1w1)

+ a1(α3x3 + β2y2 − γ1z1 − δ2w2)

− a2(α1x1 + β4y4 − γ4z4 − δ4w4),

U2 = α3(x1x2 − b1x3) + β2(b2y1 − ky1y3 + y4)

− γ1(a3(z2 − z1))−δ2(b4(w1 + w2)−w1w3)

+ (α3x3 + β2y2 − γ1z1 − δ2w2)

− a1(α4x4 + β3y3 − γ2z2 − δ1w1)

+ a3(α2x2 + β1y1 − γ3z3 − δ3w3),

U3 = α2(d1x1 − x1x3 + c1x2) + β1a2(y2 − y1)

− γ3(z1z2−b3z3)−δ3(−c4w3−f w4+w1w2)

+ (α2x2 + β1y1 − γ3z3 − δ3w3)

− a3(α3x3 + β2y2 − γ1z1 − δ2w2),

U4 = α1(a1(x2 − x1) + x4) + β4(−d2y1)

− γ4(d3z2z3) − δ4(−d4w4 + gw3 + w1w2)

+ (α1x1 + β4y4 − γ4z4 − δ4w4)

+ a2(α4x4 + β3y3 − γ2z2 − δ1w1).

(18)

Proof. Let E1 = e4321, E2 = e3212, E3 = e2133, and
E4 = e1444. From (16) and (17) we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ė1 = α4(x2x3 + rx4) + β3(−c2y3 + hy2
1)

− γ2(c3z1 − z1z3 + z2 − z4)

− δ1(a4(w2 − w1) + w2w3) − U1,

Ė2 = α3(x1x2 − b1x3) + β2(b2y1 − ky1y3 + y4)

− γ1a3(z2 − z1)

− δ2(b4(w1 + w2) − w1w3) − U2,

Ė3 = α2(d1x1 − x1x3 + c1x2) + β1a2(y2 − y1)

− γ3(z1z2 − b2z3)

− δ3(−c4w3 − f w4 + w1w2) − U3,

Ė4 = α1(a1(x2−x1)+x4)+β4(−d2y1)−γ4(d3z2z3)

− δ4(−d4w4 + gw3 + w1w2) − U4.

(19)

Consider the Lyapunov function in the form of

V(E(t)) = 1

2
(E2

1 + E2
2 + E2

3 + E2
4).

The derivative of V along the trajectories of (19) is
obtained as

V̇(E(t)) = E1Ė1 + E2Ė2 + E3Ė3 + E4Ė4

= E1(α4(x2x3 + rx4) + β3(−c2y3 + hy2
1)

− γ2(c3z1 − z1z3 + z2 − z4)

− δ1(a4(w2 − w1) + w2w3) − U1)

+ E2(α3(x1x2 − b1x3)

+ β2(b2y1 − ky1y3 + y4) − γ1a3(z2 −z1)

− δ2(b4(w1 + w2) − w1w3) − U2)

+ E3(α2(d1x1 − x1x3 + c1x2)

+ β1a2(y2 − y1) − γ3(z1z2 − b2z3)

− δ3(−c4w3 − f w4 + w1w2) − U3)

+ E4(α1(a1(x2 − x1) + x4)

+ β4(−d2y1) − γ4(d3z2z3)

− δ4(−d4w4 + gw3 + w1w2) − U4).

(20)

Substituting the values of U1, U2, U3, and U4 in (20)
we get

V̇(E(t)) = E1(−(α4x4 + β3y3 − γ2z2 − δ1w1)

− a1(α3x3 + β2y2 − γ1z1 − δ2w2)

+ a2(α1x1 + β4y4 − γ4z4 − δ4w4))

+ E2(−(α3x3 + β2y2 − γ1z1 − δ2w2)

+ a1(α4x4 + β3y3 − γ2z2 − δ1w1)

− a3(α2x2 + β1y1 − γ3z3 − δ3w3))

+ E3(−(α2x2 + β1y1 − γ3z3 − δ3w3)

+ a3(α3x3 + β2y2 − γ1z1 − δ2w2))

+ E4(−(α1x1 + β4y4 − γ4z4 − δ4w4)

− a2(α4x4 + β3y3 − γ2z2 − δ1w1)).
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This can be further written as

V̇(E(t)) = E1(−E1 − a1E2 + a2E4)

+ E2(−E2 + a1E1 − a3E3)

+ E3(−E3 + a3E2) + E4(−E4 − a2E1)

= − E2
1 − E2

2 − E2
3 − E2

4= − ET E,

where ET=(E1,E2,E3,E4)
T . Thus, we see that V̇(E(t))

is negative definite. According to Lyapunov stability
theory, we know Ei → 0 (i = 1, 2, 3, 4), that is,
limt→∞ ‖E‖ = 0, which means that the drive sys-
tems (10)–(12) will achieve MSCCS with the response
system (13). �

We perform numerical simulations to illustrate the
results. In simulation process we assume α1 = α2 = α3
= α4 = 1, β1 = β2 = β3 = β4 = 1, γ1 = γ2 = γ3 =
γ4 = 1, and δ1 = δ2 = δ3 = δ4 = 1. The system

parameters are taken as a1 = 35, b1 = 3, c1 = 12,

d1 = 7, r = 0.5, a2 = 10, b2 = 40, c2 = 2.5, d2 =
10.6, h = 4, k = 1, a3 = 10, b3 = 8/3, c3 = 28, d3 =
0.1, a4 = 50, b4 = 24, c4 = 13, d4 = 8, f = 33, and
g = 30. The initial states of the drive and the response
systems are arbitrarily chosen as (x1(0), x2(0), x3(0),

x4(0))= (−5, 1, −4, 6), (y1(0), y2(0), y3(0), y4(0)) =
(7, −2, 0, 0), (z1(0), z2(0), z3(0), z4(0)) = (5, 4, −2,

3), and (w1(0), w2(0), w3(0), w4(0)) = (−14, 3, −1.5,

4.5). Figure 1 displays the time response of synchro-
nization errors e4321, e3212, e2133, and e1444. Figures 2–
5 illustrate the time response of the synchronized states
x1 + y3 and z2 + w1, x3 + y2 and z1 + w2, x2 + y1 and
z3 +w3, x1 +y4 and z4 +w4 of the drive systems (10),
(11) and response systems (12), (13) respectively.

The following corollaries are easily obtained from
Theorem 1 and their proofs are omitted here.
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Figure 1. Synchronization errors e4321, e3212, e2133, and e1444 between drive systems (10), (11) and response systems
(12), (13).
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Figure 2. Response for states x4 + y3 and z2 + w1 between drive systems (10), (11) and response systems (12), (13).
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Figure 3. Response for states x3 + y2 and z1 + w2 between drive systems (10), (11) and response systems (12), (13).
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Figure 4. Response for states x2 + y1 and z3 + w3 between drive systems (10), (11) and response systems (12), (13).
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Figure 5. Response for states x1 + y4 and z4 + w4 between drive systems (10), (11) and response systems (12), (13).
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COROLLARY 1

(i) If δ1 = δ2 = δ3 = δ4 = 0, then the drive systems
(10) and (11) will achieve multiswitching combi-
nation synchronization with response system (12),
provided the control functions are chosen as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = 1

γ1
(α3(x1x2 − b1x3) + β2(b2y1 − ky1y3 + y4)

+ (α3x3 + β2y2 − γ1z1)

− a1(α4x4 + β3y3 − γ2z2)

+ a3(α2x2 + β1y1 − γ3z3)) − a3(z2 − z1),

u2 = 1

γ2
(α4(x2x3 + rx4) + β3(−c2y3 + hy2

1)

+ (α4x4 + β3y3 − γ2z2)

+ a1(α3x3 + β2y2 − γ1z1)

− a2(α1x1 + β4y4 − γ4z4))

− (c3z1 − z1z3 + z2 − z4),

u3 = 1

γ3
(α2(d1x1 − x1x3 + c1x2) + β1a2(y2 − y1)

+ (α2x2 + β1y1 − γ3z3)

− a3(α3x3 + β2y2 − γ1z1)) − (z1z2 − b3z3),

u4 = 1

γ4
(α1(a1(x2 − x1) + x4) + β4(−d2y1)

+ (α1x1 + β4y4 − γ4z4)

+ a2(α4x4 + β3y3 − γ2z2)) − d3z2z3.

(ii) If γ1 = γ2 = γ3 = γ4 = 0, then the drive systems
(10) and (11) will achieve multiswitching combi-
nation synchronization with response system (13),
provided the control functions are chosen as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗
1 = 1

δ1
(α4(x2x3 + rx4) + β3(−c2y3 + hy2

1)

+ (α4x4 + β3y3 − δ1w1)

+ a1(α3x3 + β2y2 − δ2w2)

− a2(α1x1 + β4y4 − δ4w4))

− (a4(w2 − w1) + w2w3),

u∗
2 = 1

δ2
(α3(x1x2 − b1x3) + β2(b2y1 − ky1y3 + y4)

+ (α3x3 + β2y2 − δ2w2)

− a1(α4x4 + β3y3 − δ1w1)

+ a3(α2x2 + β1y1 − δ3w3))

− (b4(w1 + w2) − w1w3),

u∗
3 = 1

δ3
(α2(d1x1 − x1x3 + c1x2) + β1a2(y2 − y1)

+ (α2x2 + β1y1 − δ3w3)

− a3(α3x3 + β2y2 − δ2w2))

− (−c4w3 − f w4 + w1w2),

u∗
4 = 1

δ4
(α1(a1(x2 − x1) + x4) + β4(−d2y1)

+ (α1x1 + β4y4 − δ4w4)

+ a2(α4x4 + β3y3 − δ1w1))

− (−d4w4 + gw3 + w1w2).

COROLLARY 2

(i) If β1 = β2 = β3 = β4 = 0, δ1 = δ2 = δ3 = δ4 =
0, and γ1 = γ2 = γ3 = γ4 = 1, then the drive
system (10) will achieve multiswitching modified
projective synchronization with response system
(12), provided the control functions are chosen as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = α3(x1x2 − b1x3) − a3(z2 − z1)

+ (α3x3 − z1) − a1(α4x4 − z2)

+ a3(α2x2 − z3),

u2 = α4(x2x3 + rx4) − (c3z1 − z1z3 + z2 − z4),

+ (α4x4 − z2) + a1(α3x3 − z1)

− a2(α1x1 − z4),

u3 = α2(d1x1 − x1x3 + c1x2) − (z1z2 − b3z3)

+ (α2x2 − z3) − a3(α3x3 − z1),

u4 = α1(a1(x2 − x1) + x4) − d3z2z3
+ (α1x1 − z4) + a2(α4x4 − z2).

(ii) If β1 = β2 = β3 = β4 = 0, γ1 = γ2 =
γ3 = γ4 = 0, and δ1 = δ2 = δ3 = δ4 =
1, then the drive system (10) will achieve mul-
tiswitching modified projective synchronization
with response system (13), provided the control
functions are chosen as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗
1 = α4(x2x3 + rx4) − (a4(w2 − w1) + w2w3)

+ (α4x4 − w1) + a1(α3x3 − w2)

− a2(α1x1 − w4),

u∗
2 = α3(x1x2 − b1x3) − (b4(w1 + w2) − w1w3)

+ (α3x3 − w2) − a1(α4x4 − w1)

+ a3(α2x2 − w3),

u∗
3 = α2(d1x1 − x1x3 + c1x2)

− (−c4w3 − f w4 + w1w2)

+ (α2x2 − w3) − a3(α3x3 − w2),

u∗
4 = α1(a1(x2−x1) + x4)−(−d4w4+gw3+w1w2)

+ (α1x1 − w4) + a2(α4x4 − w1).

(iii) If α1 = α2 = α3 = α4 = 0, δ1 = δ2 = δ3 = δ4 =
0, and γ1 = γ2 = γ3 = γ4 = 1, then the drive
system (11) will achieve multiswitching modified
projective synchronization with response system
(12), provided the control functions are chosen as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u1 = β2(b2y1 − ky1y3 + y4) − a3(z2 − z1)

+ (β2y2 − z1) − a1(β3y3 − z2)

+ a3(β1y1 − z3),

u2 = β3(−c2y3 + hy2
1) − (c3z1 − z1z3 + z2 − z4),

+ (β3y3 − z2) + a1(β2y2 − z1)

− a2(β4y4 − z4),

u3 = β1a2(y2 − y1) − (z1z2 − b3z3)

+ (β1y1 − z3) − a3(β2y2 − z1),

u4 = β4(−d2y1) − d3z2z3
+ (β4y4 − z4) + a2(β3y3 − z2).
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(iv) If α1 = α2 = α3 = α4 = 0, γ1 = γ2 =
γ3 = γ4 = 0, and δ1 = δ2 = δ3 = δ4 =
1, then the drive system (11) will achieve mul-
tiswitching modified projective synchronization
with response system (13), provided the control
functions are chosen as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u∗
1 = β3(−c2y3 + hy2

1) − (a4(w2 − w1) + w2w3)

+ (β3y3 − w1) + a1(β2y2 − w2)

− a2(β4y4 − w4),

u∗
2 = β2(b2y1−ky1y3+y4)−(b4(w1+w2)−w1w3)

+ (β2y2 − w2) − a1(β3y3 − w1)

+ a3(β1y1 − w3),

u∗
3 = β1a2(y2 − y1) − (−c4w3 − f w4 + w1w2)

+ (β1y1 − w3) − a3(β2y2 − w2),

u∗
4 = β4(−d2y1) − (−d4w4 + gw3 + w1w2)

+ (β4y4 − w4) + a2(β3y3 − w1).

COROLLARY 3

(i) If α1 = α2 = α3 = α4 = 0, β1 = β2 =
β3 = β4 = 0, δ1 = δ2 = δ3 = δ4 = 0,

and γ1 = γ2 = γ3 = γ4 = 1, then the equi-
librium point (0, 0, 0, 0) of the response system
(12) is asymptotically stable, provided the control
functions are chosen as

⎧
⎪⎪⎨

⎪⎪⎩

u1 = −a3(z2 − z1) − z1 + a1z2 − a3z3,

u2 = −(c3z1 − z1z3 + z2 − z4)−z2 − a1z1 + a2z4,

u3 = −(z1z2 − b3z3) − z3 + a3z1,

u4 = −d3z2z3 − z4 − a2z2.

(ii) If α1 = α2 = α3 = α4 = 0, β1 = β2 =
β3 = β4 = 0, γ1 = γ2 = γ3 = γ4 = 0,

and δ1 = δ2 = δ3 = δ4 = 1, then the equi-
librium point (0, 0, 0, 0) of the response system
(13) is asymptotically stable, provided the control
functions are chosen as

⎧
⎪⎪⎨

⎪⎪⎩

u∗
1 = −(a4(w2−w1)+w2w3)−w1−a1w2 + a2w4,

u∗
2 = −(b4(w1 + w2)−w1w3)−w2+a1w1− a3w3,

u∗
3 = −(−c4w3 − f w4 + w1w2) − w3 + a3w2,

u∗
4 = −(−d4w4 + gw3 + w1w2) − w4 − a2w1.

4. Conclusions

In this paper, we propose MSCCS among four non-
identical hyperchaotic systems. The presented scheme
extends the concept of multiswitching combination
synchronization to the combination of two drive
and two response systems. Suitable controllers are

designed to realize combination–combination synchro-
nization in multiswitching manner. The simulation
results verify that the proposed controllers work effec-
tively for synchronizing the combination of drive sys-
tems and combination of two response systems. Apart
from strengthening the security of transmitted signal in
chaos communication, the proposed scheme may have
potential advantage in completing intelligent synchro-
nization. Further work may be carried out to find more
applications for the presented scheme.
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