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Abstract. The present study deals with hypersurface-homogeneous cosmological models with anisotropic dark
energy in Saez–Ballester theory of gravitation. Exact solutions of field equations are obtained by applying a spe-
cial law of variation of Hubble’s parameter that yields a constant negative value of the deceleration parameter.
Three physically viable cosmological models of the Universe are presented for the values of parameter K occur-
ring in the metric of the space–time. The model for K = 0 corresponds to an accelerating Universe with isotropic
dark energy. The other two models for K = 1 and −1 represent accelerating Universe with anisotropic dark
energy, which isotropize for large time. The physical and geometric behaviours of the models are also discussed.
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1. Introduction

It is held that the long-range forces in the Universe
are produced by scalar fields. Since long, scalar–tensor
theories of gravitation have been of focal interest in
many areas of gravitational physics and cosmology.
Einstein’s theory of general relativity does not seem
to resolve some of the important problems in cosmol-
ogy such as dark matter or the missing matter. The
scalar–tensor theories, being viable alternatives to gen-
eral relativity, provide convenient set of representations
for the observational limits on possible deviations from
general relativity. The most widely accepted and pos-
sibly the best motivated theory in which a scalar field
shares the stage of gravitation is that of Brans and
Dicke [1]. The scalar–tensor theories of gravitation
involving dimensionless scalar fields have also been
extensively studied by fairly a large number of eminent
workers. Saez–Ballester [2] developed a scalar–tensor
theory in which the matter is coupled with a dimension-
less scalar field φ in a simple manner. The φ-coupling
provided a satisfactory description of the weak fields in
which antigravity regime appears in spite of the dimen-
sionless behaviours of the scalar field. This theory

suggests a possible way to solve the missing mass prob-
lem in a non-flat FRW models. Saez [3] presented a
non-singular zero curvature FRW model and found that
there is an antigravity regime which can act either at
the beginning of the inflationary epoch or before. The
cosmological models based on scalar fields have a long
history for exploring possible inflationary scenario and
for describing dark energy. In recent years, cosmolog-
ical model with a scalar field is the most natural basis
for inflationary models. Scalar fields explains the exis-
tence of the effective cosmological constant at the early
stages of the cosmic evolution.

The discovery of expansion of the Universe stands
as a major breakthrough of the observational cosmol-
ogy. Survey of cosmological distant type-Ia supernove
[4–6] indicated the presence of a new unaccounted for
dark energy (DE) that opposes the self-attractions of
matter and accelerates the expansion of the Uni-
verse. Astrophysical observations indicate that expan-
sion of the Universe is driven by an exotic energy
with large negative pressure which is known as dark
energy. In spite of all the evidences, dark energy is
still a challenging problem in theoretical physics. High-
precision measurements of the expansion of Universe
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are required to understand how the expansion rate
changes over time. In general relativity, the evolution
of the Universe is parametrized by the cosmological
equation of state (the relationship between tempera-
ture, pressure, combined matter, energy and vacuum
energy density for any region of space). Measuring the
equation of state parameter for dark energy is one of
the biggest efforts in observational cosmology today.
The DE has conventionally been characterized by
equation of state (EoS) parameter ω = p/ρ, which is
not necessarily constant, where ρ is the energy den-
sity and p is the pressure of the Universe. The sim-
plest DE candidate is the vacuum energy (ω = −1),
which is mathematically equivalent to the cosmolog-
ical constant �. The other conventional alternatives,
which can be described by minimally coupled scalar
fields, are quintessence (ω ≥ −1), phantom (ω ≤ −1)
and quintom (that can cross from phantom region
to quintessence region as evolved), chaplygin gas,
tachyon etc. [7,8]. However, it is a function of time
or red-shift in general [9]. For instance, quintessence
models involving scalar fields give rise to the time-
dependent EoS parameter [10,11].

In recent years, several researchers [12–19] have
shown keen interest in studying the Universe with vari-
able EoS. In all these models, DE is handled as an
isotropic fluid. However, there is no a priori reason to
assume that the DE is isotropic in nature. In principle,
the EoS parameter of DE may be generalized by deter-
mining the EoS parameter separately on each spatial
axis in a consistent way with the considered metric,
because the energy density is a scalar quantity but the
pressure is a vectorial quantity. Such DE candidates
can also be studied in the context of vectorial fields and
such candidates have been proposed by several research-
ers [20–25]. The cosmological data from large-scale
structures [26] and type-Ia supernova [27] observations
do not rule out the possibility of an anisotropic DE [28].

For instance, quintessence models involving scalar
fields give to time-dependent EoS parameter ω [29,30].
Amirhashchi et al [31] and Pradhan et al [32] have
discussed a Bianchi type-VI DE model with a vari-
able EoS parameter. Ray et al [33], Kumar [34] and
Pradhan et al [35] are some of the researchers who have
investigated dark energy models with variable EoS
parameter in different physical contexts. Yadav and
Saha [36] have obtained an LRS Bianchi-I anisotropic
cosmological model where dark energy is dominated.
Shri Ram et al [37] have discussed the field equations
in Saez–Ballester theory of gravitation for Bianchi
type-V model filled with viscous fluid together with

heat flow. Rao et al [38] have obtained Bianchi type-
I dark energy in the scalar–tensor theory of Saze and
Ballester. Recently, Naidu et al [39,40] have discussed
dark energy models of a locally rotationally sym-
metric Bianchi type-II and Bianchi-III respectively in
Saez–Ballester scalar–tensor theory of gravitation with
variable EoS parameter. It deserves mention that Jamil
et al [41] have investigated the generalized Saez–
Ballester scalar–tensor theory of gravity via Noether
gauge symmetry in the background of Bianchi type-I
cosmological space–time.

Motivated by this study, we have investigated
hypersurface-homogeneous anisotropic dark energy
cosmological models with variable EoS parameter in
Saez–Ballester theory of gravitation.

2. Metric and field equations

Stewart and Ellis [42] have obtained some general
solutions to the Einstein’s field equations in the case
of a perfect fluid distribution satisfying a barotropic
equation of state for the hypersurface-homogeneous
space–time given by the metric

ds2 = dt2 −A2(t)dx2 −B2(t)
[
dy2 + �2(y, K)dz2

]
,

(1)

where
∑

(y, K) = sin y, y, sinh y, respectively, when
K = 1, 0, −1. These are spaces having a group of
motions G4 on V3, which are locally rotationally sym-
metric (LRS). For the metric (1), Hajj-Boutros [43]
procured a method of generating exact solution to the
field equations in the case of a perfect fluid not satis-
fying an equation of state. Verma and Shri Ram [44]
studied model (1) with a bulk-viscous term and found
some exact solutions.

The field equations in scalar–tensor theory, proposed
by Saez and Ballester [2] are

Rμν− 1

2
Rgμν−�φr

(
φ,μφ,ν − 1

2
gμνφ,αφ,α

)
= −Tμν,

(2)

where � is a dimensionless coupling constant and
Tμν is the energy–momentum tensor of a perfect fluid
defined by

Tμν = (ρ + p)uμuν − pgμν, (3)

where ρ is the energy density, p is the pressure and uμ

is the velocity four-vector of the fluid. In comoving
coordinate system uμ is given by

uμ = (0, 0, 0, 1). (4)
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The scalar field φ satisfies the equation

2φrφ
;α
;α + rφr−1φ, αφ,α = 0. (5)

Here r is an arbitrary constant, comma and semicolon
denote ordinary and covariant derivative respectively.

The simplest generalization of the EoS parameter of
the perfect fluid may be to determine the EoS param-
eter separately on each spatial axis by preserving the
diagonal form of the energy–momentum tensor in a
consistent way with the considered metric. Therefore,
the energy–momentum tensor of the fluid is given as

T μ
ν = diag[T 1

1 , T 2
2 , T 3

3 , T 4
4 ]. (6)

For an anisotropic fluid, the energy–momentum tensor
can be taken as

T μ
ν = diag[−px, −py, −pz, ρ]

= diag[−ωx, −ωy, −ωz, 1]ρ, (7)

where px , py and pz are the pressure and ωx , ωy , ωz

are the directional EoS parameters along the x-, y-
and z-axes respectively. We parametrized the deviation
from isotropy by setting ωx = ω and then introducing
skewness parameters γ and δ which are the deviation
from ω on y- and z-axes respectively. Here, ω, γ and
δ are not necessarily constants and can be functions of
time. Again, as T 2

2 = T 3
3 , we have γ = δ. Then eq. (7)

can be customized to the metric (1) by

T μ
ν = diag[−ω,−(ω + γ ),−(ω + γ ), 1]ρ. (8)

In a comoving coordinate system ui = (1, 0, 0, 0),
field equation (2) for the metric (1) and the energy–
momentum tensor eq. (8) read as

2Ȧ

A

Ḃ

B
+ Ḃ2

B2
+ K

B2
+ 1

2
�φrφ̇2 = ρ, (9)

2B̈

B
+ Ḃ2

B2
+ K

B2
− 1

2
�φrφ̇2 = −ωρ, (10)

B̈

B
+ Ä

A
+ Ȧ

A

Ḃ

B
− 1

2
�φrφ̇2 = −(ω + γ )ρ, (11)

φ̈ + φ̇

(
Ȧ

A
+ 2

Ḃ

B

)
+ r

2φ
φ̇2 = 0, (12)

where the dot denotes differentiation with respect to the
cosmic time t .

The anisotropy of the expansion can be parametrized
after defining the directional Hubble parameter and the
mean Hubble parameter of the expansion. The direc-
tional Hubble parameters in the direction of x, y and
z for the metric defined in eq. (1) may be defined as
follows:

H1 = Ȧ

A
, H2 = H3 = Ḃ

B
. (13)

The spatial volume for model (1) is given by

V = AB2. (14)

We define a = (AB2)1/3 as the average scale factor
so that the Hubble parameter is anisotropic and may be
defined as

H = ȧ

a
= 1

3

(
Ȧ

A
+ 2Ḃ

B

)
. (15)

The scalar expansion θ , shear scalar σ 2 and the average
anisotropy parameter Am are defined as

θ = Ȧ

A
+ 2Ḃ

B
, (16)

σ 2 = 1

2
σijσ

ij = 1

3

(
Ȧ

A
− Ḃ

B

)2

, (17)

Am = 1

3

∑ (
�Hi

H

)2

, (18)

where �Hi = Hi − H (i = 1, 2, 3). Hi(1, 2, 3) repre-
sents the directional Hubble parameter in the direction
of x, y and z, respectively. Am = 0 corresponds to
isotropic expansion. The space approaches isotropy, in
the case of diagonal energy–momentum tensor (T 0i =
0, where i = 1, 2, 3) if Am → 0, V → +∞ and
T 00 > 0 (ρ > 0) as t → +∞ [45].

Using eqs (13) and (15), the average anisotropy
parameter eq. (18) can be reduced to

Am = 2

9

(
Hx − Hy

H

)2

. (19)

From (10) and (11), we get

Ȧ

A
− Ḃ

B
= λ

V
+ 1

V

∫ (
K

B2
− γρ

)
V dt, (20)

where λ is the real constant of integration and the
term with γ is the term that arises due to the pos-
sible intrinsic anisotropy of the fluid. Finally, using
eq. (20) in (19) we obtain the anisotropy parameter of
the expansion,

Am = 2

9H 2

[
λ +

∫ (
K

B2
− γρ

)
V dt

]
V −2. (21)

Choosing γ = 0, the anisotropy parameter for hyper-
surface-homogeneous model in the presence of a per-
fect fluid is reduced to

Am = 2

9H 2

[
λ + K

∫
V

B2
dt

]
V −2. (22)

The integral term in (21) vanishes for

γ = K

ρB2
, (23)
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which further leads to the following energy–momen-
tum tensor:

T μ
ν = diag

[
−1, ω, ω + K

ρB2
, ω + K

ρB2

]
ρ, (24)

where the anisotropy parameter (21) reduces to

Am = 2λ

9H 2
V −2. (25)

Using the energy–momentum tensor (24), the field
equations (9)–(11) now read as

2Ȧ

A

Ḃ

B
+ Ḃ2

B2
+ 1

2
�φrφ̇2 = ρ − K

B2
= (1 − γ )ρ, (26)

2B̈

B
+ Ḃ2

B2
+ K

B2
− 1

2
�φrφ̇2 = −ωρ, (27)

B̈

B
+ Ä

A
+ Ȧ

A

Ḃ

B
+ K

B2
− 1

2
�φrφ̇2 = −ωρ. (28)

The quadrature expression for the dimensionless scalar
field function φ, from eq. (12), is found as

φ =
[
h(r + 2)

2

∫
dt

a3

]2/(r+2)

, (29)

where h is an arbitrary constant.

3. Solutions of field equations

We are at liberty to make some assumptions as we have
more unknown A, B, ρ, ω, γ , δ and φ with lesser
number of field eqs (26)–(28) and (12) to determine
them. For the complete determination of these field
equations, we use a special law of variation of Hub-
ble parameter proposed by Bermann [46] that gives
a constant negative deceleration parameter model of
the Universe. Now we consider the constant negative
deceleration parameter defined by

q = −aä

ȧ2
. (30)

Here the constant is taken as negative for an accelerat-
ing model of the Universe.

The solution of eq. (30) yields

a = (c1t + c2)
1/(1+q) , (31)

where c1 and c2 are constants of integration. This
equation implies that the condition of expansion is
1 + q > 0.

From eqs (27) and (28), we get

Ḃ

B
− Ȧ

A
= λ

V
= λ

a3
. (32)

Using eqs (15), (31) and (32), we obtain the solutions
for the scale factors as follows:
A = l1(c1t + c2)

1/(1+q)

× exp

{−2λ(1 + q)

3c1(q − 2)
(c1t + c2)

(q−2)/(1+q)

}
, (33)

B = l2(c1t + c2)
1/(1+q)

× exp

{
λ(1 + q)

3c1(q − 2)
(c1t + c2)

(q−2)/(1+q)

}
, (34)

where l1 and l2 are integration constants related by
l1l

2
2 = 1.
The metric of the solutions is therefore

ds2 = −dt2 + l2
1(c1t + c2)

2/(1+q)

× exp

{−4λ(1 + q)

3c1(q − 2)
(c1t + c2)

(q−2)/(1+q)

}
dx2

+ l2
2(c1t + c2)

2/(1+q)

× exp

{
2λ(1 + q)

3c1(q − 2)
(c1t + c2)

(q−2)/(1+q)

}

× (dy2 + �2(y, k)dz2). (35)

Using the transformation
T = c1t + c2, X = l1x, Y = l2y, Z = l2z (36)
the model (35) can be written in the form

ds2 = −dT 2 + T 2/(1+q)

× exp

{−4λ(1 + q)

q − 2
T (q−2)/(1+q)

}
dx2

+ T 2/(1+q) exp

{
2λ(1 + q)

q − 2
T (q−2)/(1+q)

}

× (dy2 + �2dz2). (37)

The solution for the scalar function φ, from eq. (29), is
obtained by

φ =
[
φ0(r + 2)(1 + q)

2(q − 2)
T (q−2)/(1+q)

]2/(r+2)

, (38)

where φ0 is an arbitrary constant.
For the derived line element (37), the energy density

has the following expression:

ρ = 3

(1 + q)2T 2
+ 3�h2 + 10λ2

6T 6/(1+q)
+ K

T 2/(1+q)

× exp

{−2λ(1 + q)

3(q − 2)
T (q−2)/(1+q)

}
. (39)

The deviation-free part of the EoS parameter is given
by

ω = − 1

ρ

[
1 − 2q

(1 + 2q)2T 2
+ 3�h2 − 2λ2

6T 6/(1+q)
+ K

T 2/(1+q)

× exp

{−2λ(1 + q)

3(q − 2)
T (q−2)/(1+q)

}]
(40)
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which is negative if � > (2λ2/3h2). The skewness
parameter (γ ) has the value

γ = K

ρT 2/(1+q)
exp {−2λ(1 + q)T (q−4)/(1+q)}. (41)

Thus the line element (37) represents a hypersurface-
homogeneous cosmological model with anisotropic
dark energy in Saez–Ballester theory of gravitation.
The deceleration parameter is always negative indicat-
ing the accelerating Universe.

4. Results and discussions

The directional Hubble parameters for model (37) are

H1 = 1

(1 + q)t
− 2λ

3t3/(1+q)
, (42)

H2 = H3 = 1

(1 + q)t
+ λ

3t3/(1+q)
. (43)

The mean Hubble parameter is given by

H = 1

(1 + q)t
. (44)

The dynamical scalars θ and σ 2 are obtained as

θ = 3

(1 + q)t
, (45)

σ 2 = λ2

3t6/(1+q)
. (46)

After a little manipulation of eq. (19) and using
eqs (42)–(44), we get

Am = 2λ(1 + q)2

9t (4−2q)/(1+q)
, (47)

where parameter Am, being infinite at T = 0, is a
decreasing function of time which tends to zero as
T → ∞. We also observe that σ/θ tends to zero as T →
∞. Therefore, the model approaches isotropy for large
values of T . The scalar field φ contributes significantly
to the energy density and EoS parameter.

We now present models for K = 0, 1 and −1.

Model I. When K = 0, the model (37) reduces to

ds2 = −dT 2 + T 2/(1+q)

× exp

{−4λ(1 + q)

q − 2
T (q−2)/(1+q)

}
dX2

+ T 2/(1+q) exp

{
2λ(1 + q)

q − 2
T (q−2)/(1+q)

}

× (dY 2 + Y 2dZ2). (48)

For this model, the energy density and EoS parameter
are given by

ρ = 3

(1 + q)2T 2
+ 3ω̄h2 + 10λ2

6T 6/(1+q)
, (49)

ω = − 1

ρ

[
1 − 2q

(1 + 2q)2T 2
+ 3ω̄h2 − 2λ2

6T 6/(1+q)

]
. (50)

From eq. (41), we see that γ = 0 which means that
the model (48) represents a model with isotropic dark
energy.

Model II. When K = 1, the model (37) becomes

ds2 = −dT 2 + T 2/(1+q)

× exp

{−4λ(1 + q)

q − 2
T (q−2)/(1+q)

}
dX2

+ T 2/(1+q) exp

{
2λ(1 + q)

q − 2
T (q−2)/(1+q)

}

× (dY 2 + sin2 YdZ2) (51)

corresponding to the cosmological model with aniso-
tropic dark energy. The expressions for the energy den-
sity and EoS parameter can be obtained from eqs (39)
and (40) by putting K = 1.

Model III. When K = −1, model (37) is

ds2 = −dT 2 + T 2/(1+q)

× exp

{−4λ(1 + q)

q − 2
T (q−2)/(1+q)

}
dX2

+ T 2/(1+q) exp

{
2λ(1 + q)

q − 2
T (q−2)/(1+q)

}

× (dY 2 + sinh2 y dZ2). (52)

The energy density and the EoS parameter for this
model are given as

ρ = 3

(1 + q)2T 2
+ 3ω̄h2 + 10λ2

6T 6/(1+q)
− 1

T 2/(1+q)

× exp

{−2λ(1 + q)

3(q − 2)
T (q−2)/(1+q)

}
. (53)

The deviation-free part of the EoS parameter is given
by

ω = − 1

ρ

[
1 − 2q

(1 + q)2T 2
+ 3ω̄h2 − 2λ2

6T 6/(1+q)
− 1

T 2/(1+q)

× exp

{−2λ(1 + q)

3(q − 2)
T (q−2)/(1+q)

}]
. (54)

In eqs (53) and (54), the first two terms dominate over
the third term and therefore ρ > 0 and ω < 0. Thus,
model (54) represents an anisotropic accelerating
Universe dominated by dark energy (figures 1 and 2).
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Figure 1. Plots of energy density (ρ) vs. cosmic time (t).

Figure 2. Plots of EoS (ω) vs. cosmic time.

5. Conclusions

In this paper we have obtained exact solutions of the
field equations for hypersurface-homogeneous space–
times in the presence of anisotropic dark energy in
Saez–Ballester theory of gravitation by applying the
variation law for generalized Hubble parameter that
yields a negative value of deceleration parameter. For
K = 0, the model represents an accelerating Universe
with isotropic dark energy, whereas for K = 1 and
−1 the models represent accelerating Universe with
anisotropic dark energy, which eventually isotropize
for large time. For these models, spatial scale factors
and the volume scalar vanish at the initial time T =
0. The energy density is infinite at this initial epoch.
At this epoch, the dynamical parameters θ , σ and Am

are all infinite. Therefore, these models have Big-Bang
singularity at T = 0. As T → ∞ the scale factor
diverges and ρ tends to zero. The dynamical parame-
ters θ , σ and Am decrease with cosmic time and vanish
as T → ∞. The scalar field φ contributes significantly
to the energy density and the EoS parameter ω.
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