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Abstract. In this paper, we obtained the exact breather-type kink soliton and breather-type periodic soliton
solutions for the (3+1)-dimensional B-type Kadomtsev–Petviashvili (BKP) equation using the extended homo-
clinic test technique. Some new nonlinear phenomena, such as kink and periodic degeneracies, are investigated.
Using the homoclinic breather limit method, some new rational breather solutions are found as well. Meanwhile,
we also obtained the rational potential solution which is found to be just a rogue wave. These results enrich the
variety of the dynamics of higher-dimensional nonlinear wave field.
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1. Introduction

In recent years, solitary wave solutions of nonlinear
evolution equations have begun playing important roles
in nonlinear science fields, especially in nonlinear
physical science. The solitary wave solution can pro-
vide physical information and more insight into the
physical aspects of the problem thus leading to further
applications [1]. It is well known that there are many
methods for finding special solutions of nonlinear par-
tial differential equations, such as the inverse scattering
method [1], the homogeneous balance method [2],
the Darboux transformation method [3,4], the Hirota’s
bilinear method [5,6], the improved tanh-method [7],
the Lie group method [8], the extended homoclinic test
approach [9–11], and so on.

In this work, we consider the (3+1)-dimensional B-
type Kadomtsev–Petviashvili (BKP) equation

uzt − 3(uxuy)x − uxxxy + 3uxx = 0, (1)

where u: Rx ×Ry ×Rz ×Rt → R. The BKP equation
was given this name because it is a B-type KP equa-
tion [12–14]. The well-known BKP equation possesses
many integrable structures such as Lax formulation and
the multiple soliton solutions. Exact solutions of the
BKP equation have been studied by means of some
effective approaches, such as the complex travelling
wave solution [15], periodic solutions, multiple soli-
ton solutions [16], Wronskian solution [17] and the
Pfaffian solution [18]. However, to our best knowledge,
the berather-type kink and rational breather solutions
to the (3+1)-dimensional BKP equation (1) have not
yet been studied. Therefore, in this paper, an approach
of seeking rational breather-wave solution, called the
homoclinic breather limit method [19,20], is proposed
and applied. Exact breather kink wave and periodic
breather solitary solutions are obtained, kink and peri-
odic degeneracy are investigated, new rational breather
solutions and rogue potential solution are constructed
by homoclinic breather limit process or by Taylor
expansion [21,22].
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2. Homoclinic breather limit method

Consider a high-dimensional nonlinear evolution equa-
tion of the general form

P(u, ut , ux, uy, uz, uxx, uyy, uzz, ...) = 0, (2)

where u = u(x, y, z, t) and P is a polynomial of u

and its derivatives. The basic idea of the homoclinic
breather limit method can be expressed in the following
five steps:

Step 1

By Painlevé analysis [10], a transformation

u = T (f ), (3)

is made for some new unknown function f .

Step 2

By using the transformation in Step 1, the original
equation can be converted into Hirota’s bilinear form

G(Dt, Dx, Dy, Dz; f, f ) = 0, (4)

where the D-operator [23] is defined by

Q(Dx, Dy, Dz, Dt , ...)F(x, y, z, t, ...) · G(x, y, z, t, ...)
= Q(∂x − ∂x′, ∂y − ∂y′, ∂z − ∂z′, ∂t − ∂t ′, ...)
×F(x, y, z, t, ...)G(x, y, z, t, ...)|x′=x,y′=y,z′=z,t ′=t,..., (5)

where Q is a polynomial of Dx, Dy, Dt , ....

Step 3

As we know, the breather of integrable PDE is usu-
ally in the form of a rational function as the numerator
and denominator are the combination of functions of
cos, sin, cosh, sinh, and so f can be conjectured
as a combination of cos and cosh (or sin and sinh).
Then, substitute this trial form to the bilinear equa-
tion, eq. (5), to get a set of algebraic equation for some
parameters, solve the above set of equation to obtain
homoclinic breather wave solution, which was called
the extended homoclinic test approach (EHTA)in [24].

Step 4

Let the period of periodic wave go to infinite in homo-
clinic breather wave solution. We can then obtain a
rational breather wave solution.

Step 5

Solving the potential of breather wave solution in Step 3
and letting p tends to zero, we can obtain a rational
homoclinic (heteroclinic) wave and this wave is just a
rogue wave [25–47].

3. Applications

3.1 Kink degeneracy and new rational breather
solution

By using Painlevé test, we can assume that

u(x, y, z, t) = 2(ln f )x, (6)

where f (x, y, z, t) is an unknown real function. Sub-
stituting eq. (6) into eq. (1), we obtain the following
bilinear form:

(DzDt − D3
xDy + 3D2

x)f · f = 0, (7)

where
DzDtf · f = 2(ffzt − fzft ),

D3
xDyf ·f = 2(fxxxyf −fxxxfy+3fxxfxy−3fxfxxy).

With regard to eq. (7), we can seek the solution in the
form

f = e−p1ξ + δ1 cos(pη) + δ2ep1ξ , (8)

where ξ = x + a1y + b1z + c1t, η = x + a2y +
b2z + c2t, a1, b1, c1, a2, b2, c2, p1, p, δ1, δ2 are real
constants to be determined. Substituting eq. (8) into
eq. (7) and equating all the coefficients of different
powers of eξ , e−ξ , sin(η), cos(η) and the constant term
to zero, we can obtain a set of algebraic equations for
p, p1, ai, bi, ci, δi(i = 1, 2) as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−3a1p
2
1 − a2p

2
1 + 3a2p

2 + c2b1 + a1p
2

+c1b2 + 6 = 0

−3a2p
2p2

1 −3a1p
2p2

1 +a1p
4
1 −3p2

1 +3p2

+b2c2p
2 −c1b1p

2 +a2p
4 = 0

12δ2p
2
1 − 4a2δ

2
1p4 − b2c2δ

2
1p2 − 3δ2

1p2

−16a1δ2p
4
1 + 4b1c1δ2p

2
1 = 0.

(9)

Solving eq. (9) with the aid of Maple, we get the
following results:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = −
p2

(
a2δ

2
1p2

(
p2 + 2p2

1

)

+p2
1

(
a2δ

2
1p2

1 + 4δ2
1 − 16δ2

))

4δ2p
2
1

(
p2 + p2

1

)2
,

c2 = −p2
(
a2p

2 + 3 − 2a2p
2
1

) − 3p2
1

(
3 + a2p

2
1

)

b2
(
p2 + p2

1

) ,

b1 = −
b2

(
a2δ1p

4
(
p2 +2p2

1

) +4p2p2
1

(
δ2

1 − δ2
2

)

+p4
1

(
a2δ

2
1p2 +12δ2

))

4δ2p
2
1

(
p2 +p2

1

) (
a2p2 +a2p

2
1 +3

) ,

c1 = −
(
3p2 − p2

1

) (
a2p

2 + a2p
2
1 + 3

)

b2
(
p2 + p2

1

) ,

(10)
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where a2, b2, δ1, δ2, p, p1 are some free real constants.
There are different choices for δ1, δ2 and p in (10).
Here, we specially take δi, i = 1, 2 and p such as
δ1 = −2

√
p2 + 1, δ2 = 2p2+1, p1 = p in eq. (10), so

that it is more easy to get the form of 0/0 as p → 0, in
order to obtain rational breather solution. In this case,
eq. (10) can be rewritten as

a1 = −a2p
2 + a2 − 1

2p2 + 1
,

b1 = −a2p
2(b2p

2 + 3p2 + b2 + 3) + 8p2 + 6

2(2a2p2 + 3)(2p2 + 1)
,

c1 = −2a2p
2 + 3

b2
,

c2 = 2a2p
2 + 3

b2
. (11)

Substituting eq. (10) into eq. (8), we have

f(x,y,z,t)= 2
√

2p2+1cosh(p(x + H1y + K1z + L1t)

+1

2
ln(2p2 + 1)) − 2

√

p2 + 1

× cos(p(x + a2y + b2z − L1t)), (12)

where

H1 = −a2p
2 + a2 − 1

2p2 + 1
,

K1 = −b2(2a2p
4 + 2a2p

2 + 4p2 + 3)

(2a2p2 + 3)(2p2 + 1)
,

L1 = −2a2p
2 + 3

b2
.

Substituting eq. (11) into eq. (6) yields the solution of
the (3+1)-D BKP equation as follows:

u(x, y, z, t) =
(2p

√
2p2 + 1 sinh(p(x + H1y + K1z + L1t) + 1

2 ln(2p2 + 1))

+ 2
√

p2 + 1 sin(p(x + a2y + b2z − L1t)))
√

2p2 + 1 cosh(p(x + H1y + K1z + L1t) + 1
2 ln(2p2 + 1))

− 2
√

p2 + 1 cos(p(x + a2y + b2z − L1t))

. (13)

The solution u(x, y, z, t) represented by eq. (13) is
a breather-type kink soliton. It is generated by the
interaction between the soliton with variable X =
p(x + H1y + K1z + L1t)+ 1

2 ln(2p2 + 1) and the

periodic wave with variable Y = p(x + a2y + b2z −
L1t).

If p → 0 in eq. (13), we can get the rational breather
solution as follows:

u(x, y, z, t) = 4b2
2(2x + y − z + b2z)

(b2(x + a2y + b2z) + 3t)2 + (b2(x + y − z) − (a2b2y + 3t))2 + 2b2
2

. (14)

The solution u(x, y, z, t) represented by eq. (14) is
a new rational breather solution. Note that u tends to
zero in eq. (15), when t → ±∞, and so it is no longer
kinky. Such a surprising feature of weakly dispersive
long wave is first obtained. Meanwhile, this shows that
kink is degenerated when the period of breather wave
tends to infinity in the breather kink wave. Figures 1,
2, 3 and 4 exhibit the evolution breather kink wave and
rational breather wave in the (x, t) and (x, y) planes,
respectively. This is a new nonlinear phenomenon till
now.

3.2 Kinky periodic degradation and new rational
breather solution

In this section, we apply the homoclinic breather
limit method to the (3+1)-dimensional BKP equation.

By choosing the special test function, we obtained
a kinky periodic-wave solution and a new rational
breather solution.
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Figure 1. The breather-type kink soliton solution when
a2 = 1, b2 = 5, p = 1, y = z = 0.
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Figure 2. The rational breather solution when a2 = 1,
b2 = 5, y = z = 0.

Suppose that the solution of eq. (7) is

f (x, y, z, t) = e−p(x+b1z+d1)

+ δ1 cos(p1(y + b2z + ct + d2))

+ δ2ep(x+b1z+d1), (15)

where b1, b2, c, d1, d2, δ1, δ2, p, p1 are free real con-
stants. Substituting eq. (15) into eqs (7), and equating
all the coefficients of different powers of ep(x+b1z+d1),

e−p(x+b1z+d1), sin(p1(y+b2z+c2t +d2)), cos(p1(y+
b2z+c2t+d2)) and constant term to zero, we can obtain
a set of algebraic equations for c, bi, δi(i = 1, 2).
Solving the system with the aid of Maple, we get the
following results:

b1 = p2

c
, p1 =

√
3

b2c
p, δ2 = 1

4
δ2

1 . (16)

Substituting eq. (16) into eq. (15) and taking b2c > 0,
we have

f (x, y, z, t) = |δ1| cosh

(

p

(

x + p2

c
z + d1

)

+ ln

(
1

2
|δ1|

))

+δ1 cos

(√
3

b2c
p(y + b2z + ct + d2)

)

.

(17)

Substituting eq. (17) into eq. (6) yields the kinky peri-
odic soliton solution of the (3+1)-D BKP equation as
follows:

u(x, y, z, t) = 2p|δ1| sinh
(
p
(
x + p2

c
z + d1

) + ln
(1

2 |δ1|
))

|δ1| cosh
(
p
(
x + p2

c
z + d1

) + ln
(1

2 |δ1|
)) + δ1 cos

(√ 3
b2c

p(y + b2z + ct + d2)
) . (18)

The solution u(x, y, z, t) represented by eq. (18) can be
considered as a kink soliton of the variable

X = p

(

x + p2

c
z + d1

)

+ ln

(
1

2
|δ1|

)

spread along the direction of variable

Y =
√

3

b2c
p(y + b2z + ct + d2)
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Figure 3. The breather-type kink soliton solution when
a2 = 1, b2 = 5, p = 1, t = z = 0.

(see figure 5).
Especially, for the same reason as dealing with eq. (10),

we choose δ1 = −2 in eq. (18), while p → 0, we can
get the rational breather solution as follows:

u(x,y,z, t)= 4b2c(x + d1)

b2c(x + d1)2 + 3(y + b2z + ct + d2)2
.

(19)
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Figure 4. The rational breather solution when a2 = 1,
b2 = 5, t = z = 0.
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Figure 5. The kinky periodic soliton solution when b2 =
1/4, c = 2, δ1 = 1, p = 1, d1 = d2 = y = z = 0.

The solution u(x, y, z, t) represented by eq. (19) is a
breather wave which no longer has periodic kink fea-
ture. Here, periodic kink degeneracy occurs when the
period of the periodic wave tends to infinity. It was
observed that the periodic kink feature of the solution
disappeared when p tends to zero. More importantly,
we obtained a new rational breather wave solution (see
figure 6).

3.3 Periodic degeneracy and new rational breather
solution

In this section, we obtained a breather-type periodic
soliton solution and a rational breather solution by
choosing another special test function. Suppose that
the solution of eq. (7) is

f (x, y, z, t) = e−p(y+b1z+ct+d1)

+δ1 cos(p1(x + b2z + d2))

+δ2ep(y+b1z+ct+d1), (20)

where b1, b2, c, δ1, δ2, p, p1 are free real constants.
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Figure 6. The rational breather solution when b2 = 1/4,
c = 2, d1 = d2 = y = z = 0.

Substituting eq. (20) into eqs (7), and equating all the
coefficients of different powers of ep(y+b1z+ct+d1),
e−p(y+b1z+ct+d1), sin(p1(x + b2z + d2)), cos(p1(x +
b2z+d2)) and constant term to zero, we can obtain a set
of algebraic equations for c, bi, δi(i = 1, 2). Solving
the system with the aid of Maple, we get the following
results:

b2 = −1

3
b1p

2, p1 =
√

b1c

3
p, δ2 = 1

4
δ2

1 . (21)

Substituting eq. (21) into eq. (20) and taking b1c > 0,
we have

f (x, y, z, t) = |δ1| cosh

(

p(y + b1z + ct + d1)

+ ln

(
1

2
|δ1|

))

+δ1 cos

(√
b1c

3
p

(

x − 1

3
b1p

2z+d2

))

,

(22)

Substituting eq. (22) into eq. (6), we obtain a breather-
type periodic soliton solution of BKP equation as follows:

u(x, y, z, t) = − 2√
3

√
b1cpδ1 sin

(√
b1c
3 p

(
x − 1

3b1p
2z + d2

))

|δ1| cosh
(
p(y +b1z+ct +d1)+ ln

(1
2 |δ1|

))+ δ1 cos

(√
b1c
3 p

(
x − 1

3b1p2z+d2

)) . (23)

The solution u(x, y, z, t) represented by eq. (23) can
be considered as a soliton of variable

X = p(y + b1z + ct + d1) + ln

(
1

2
|δ1|

)

spread along the direction of variable

Y =
√

b1c

3
p

(

x − 1

3
b1p

2z + d2

)

(see figure 7).
Similar to the way we deal with eq. (10), here we

choose δ1 = −2 in eq. (23), when p → 0, and we can
get the rational breather solution as follows (figure 8):

u(x,y,z, t) = 4b1c(x + d1)

3(y + b1z + ct + d2)2 + b1c(x + d1)2
.

(24)
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Solution u(x, y, z, t) represented by eq. (24) is a
breather wave which no longer has periodic feature.
Here, periodic degeneracy occurs when the period
of the periodic wave tends infinity. This is a strange
and interesting physical phenomenon which causes
the evolution of shallow water waves having small
amplitudes. It is observed that the periodic feature of
the solution disappeared when p tends to zero. More

importantly, we obtained a new rational breather wave
solution(see figure 10).

3.4 Rogue potential solution

In this section, we solve the potential of eq. (13) and let
p tend to zero. We then obtain a rational homoclinic
(heteroclinic) wave and this wave is just a rogue wave.

Solving the potential of eq. (13), we have

φ = −(u(x, y, z, t))x

= 2p2(−p2 + 2
√

2p2 + 1
√

p2 + 1 sinh(p(x + H1y + K1z + L1t) + 1
2 ln(2p2 + 1)) sin(p(x + a2y + b2z − L1t)))

(2
√

2p2 + 1 cosh(p(x + H1y + K1z + L1t) + 1
2 ln(2p2 + 1)) − √

p2 + 1 cos(p(x + a2y + b2z − L1t)))2
(25)

where

H1 = −a2p
2 + a2 − 1

2p2 + 1
,

K1 = −b2(2a2p
4 + 2a2p

2 + 4p2 + 3)

(2a2p2 + 3)(2p2 + 1)
,

L1 = −2a2p
2 + 3

b2

and φ is a breather-type periodic soliton (see figure 9).
Let p → 0 and a2 = 1 in eq. (25). By computing,

we obtain the rational breather wave, and it is just a
rogue wave as follows (see figure 10):

Urogue wave = −8b2
2(6t (b2z + 3t − b2x) + 2b2(x + y + b2z)(3t − b2x + b2z) + b2

2)

((b2(x + y + b2z) + 3t)2 + (b2(z − x) + 3t)2 + b2
2)

2
. (26)

U contains two waves with different velocities and
directions. It is easy to verify that Urogue wave is
a rational breather-type wave. In fact, Urogue wave
contains two waves with different velocities and
directions. From figure 10, we can see that Urogue wave
has one upper dominant peak and two small holes. The
spatial structure of the function Urogue wave is similar
to the structure of the rogue waves which has been a
point of hot discussion in recent years. In fact, U → 0
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Figure 7. The breather-type periodic soliton solution when
b1 = 1, p = 2, c = 4, δ2 = 2, d1 = d2 = y = z = 0.

for fixed x as y, z and t → ±∞. So, Urogue wave is
not only a rational breather wave but also a rogue wave
solution, the amplitude of which is three times higher
than its surrounding waves and Urogue wave generally
forms in a short time.

Remark. By using the same methodology as for eq. (13),
we can solve the potential of solutions of eqs (18) and
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Figure 8. The rational breather solution when b1 = 1, c =
4, d1 = d2 = y = z = 0.
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Figure 9. The breather-type periodic soliton φ when a2 =
1, b2 = 4, p = 1

2 , y = z = 0.
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Figure 10. Urogue wave when b2 = 4, y = z = 0.

(23) in §3.2 and 3.3 respectively when p → 0, to get
rogue potential solutions.

4. Conclusion

In summary, by successfully applying the extended
homoclinic test technique to the (3+1)-dimensional
B-type Kadomtsev–Petviashvili equation, we obtained
exact kink breather, kinky periodic and periodically
breather solitary solutions. By using the homoclinic
breather limit method proposed in this work, we ob-
tained some new rational breather solutions. Further-
more, we investigated two new physical phenomena,
kink and periodic degeneracy. Our results show dif-
ferent dynamics of high-dimensional systems. Mean-
while, we also obtained the rational potential solution
which is just a rogue wave. This method is simple
and straightforward. In the future, we shall investi-
gate other types of nonlinear evolution equations and
non-integrable systems.
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