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Abstract. The nonlinear Rayleigh–Taylor stability of the cylindrical interface between the vapour and liquid
phases of a fluid is studied. The phases enclosed between two cylindrical surfaces coaxial with mass and heat
transfer is derived from nonlinear Ginzburg–Landau equation. The F-expansion method is used to get exact
solutions for a nonlinear Ginzburg–Landau equation. The region of solutions is displayed graphically.
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1. Introduction

The problem of stability of liquids when there is mass
and heat transfer across the interface has been investi-
gated by several researchers. The heat and mass trans-
fer phenomenon in multiphase flows has applications
in many situations such as boiling heat transfer in
chemical engineering and in geophysical problems
[1–3]. Hsieh observed that the heat and mass trans-
fer phenomenon enhances the stability of the system if
the vapour layer is hotter than the liquid layer. Linear
stability analysis of the physical system consisting of
a vapour layer underlying a liquid layer of an invis-
cid fluid was carried out by Hsieh [4]. Hsieh [3] es-
tablished a general formulation of interfacial flow prob-
lem with mass and heat transfer and applied it to the
Rayleigh–Taylor and Kelvin–Helmholtz instability
problems in plane geometry. The linear stability analy-
sis of a liquid–vapour interface (liquid as viscous and
motionless and vapour as inviscid) moving with a hori-
zontal velocity is studied in [5]. Nonlinear Kelvin–
Helmholtz instability analysis of liquid vapour inter-
face of an inviscid fluid was performed by Lee [6]. He
concluded that when the fluids are inviscid, the linear
stability was not affected by heat transfer coefficient.

The heat and mass transfer effects on the Rayleigh–
Taylor instability of two viscous fluids and how the

mass transfer effect stabilizes the interface are investi-
gated in [7]. Asthana and Agrawal [8] investigated the
effect of heat transfer on the Kelvin–Helmholtz insta-
bility of miscible fluids using viscous potential flow
theory. They observed that the heat and mass trans-
fer has a strong stabilizing effect, when the lower fluid
is highly viscous and a weak destabilizing effect, when
the viscosity of the fluid is low. Kim et al [9] studied
the capillary instability including the effect of interfa-
cial heat and mass transfer and noted that the inter-
facial heat and mass transfer phenomenon resists the
growth of disturbance waves [10–13]. The nonlinear
Rayleigh–Taylor instability of the interface between
two viscous, incompressible and thermally conducting
fluids in a fully saturated porous medium, when the
phases are enclosed between two horizontal cylindri-
cal surfaces coaxial with the interface is discussed in
[14]. The perturbation analysis, in the light of the mul-
tiple expansions in both space and time, leads to the
well-known Ginzburg–Landau equation. The various
stability conditions are discussed both analytically and
numerically in [15].

The effect of an electric field on the linear Kelvin–
Helmholtz instability was studied by Asthana and
Agrawal [16]. The considered fluids were dielectric,
and the electric field was applied in the streaming
direction. They concluded that the tangential electric
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field stabilizes the interface in the presence of heat
and mass transfer, while the ratio of dielectric con-
stant plays a dual role in the stability analysis. The
study of the interaction between magnetic fields and
electrically conducting fluids is known as magneto-
hydrodynamics. The effect of magnetic field on the
stability of various types of fluid flows is an important
domain of study. The effect of a horizontal magnetic
field on the stability of a steady flow was studied by
Chandrasekhar [17]. Roberts [18] considered the effect
of an unsteady magnetic field on the Rayleigh–Taylor
instability. Malik and Singh [19] carried out nonlin-
ear analysis of the Kelvin–Helmholtz instability in the
presence of a uniform magnetic field, acting along the
surface of separation of two moving superposed fluids
[20]. Zakaria [21] studied the nonlinear dynamics of
magnetic fluids with a relative motion in the presence
of an oblique magnetic field.

This paper is organized as follows: In §2, the for-
mulation of the nonlinear Rayleigh–Taylor stability of
the cylindrical interface between the vapour and liquid
phases of a fluid, when there is a mass and heat transfer
across the interface is shown. The exact solutions for
the complex Ginzburg–Landau equation are obtained
in §3 [22–26]. The conclusion is given in §4.

2. Formulation of the problem and basic equations

We shall use a cylindrical system of coordinates
(r, θ, z) so that in the equilibrium state, z-axis is the
axis of symmetry of the system. The central solid core
has a radius a. In the equilibrium state, the fluid phase
1, of density ρ1, occupies the region a < r < R, and,
the fluid phase 2, of density ρ2 occupies the region
R < r < b. The temperature at r = a, r = R and
r = b are taken as T1, T0 and T2 respectively. The
bounding surfaces r = a and r = b are taken as rigid.

The interface, after a disturbance, is given by the
equation

F(r, z, t) = r − R − η = 0, (1)

where η is the perturbation in the radius of interface
from its equilibrium value R, for which the outward
normal vector is written as

n = ∇F

|∇F | =
{

1 +
(

∂η

∂z

)2
}−1/2 (

er − ∂η

∂z
ez

)
. (2)

We assume that fluid velocity is irrotational in the
region so that velocity potentials are φ1 and φ2 for fluid
phases 1 and 2. In each fluid phase

∇2φj = 0, j = 1, 2. (3)

The solutions for φj = 0, j = 1, 2 have to satisfy
the boundary conditions. The relevant boundary con-
ditions for our configuration are:

(i) On the rigid boundaries r = a and r = b:
The normal field velocities vanish on both the central

solid core and the outer bounding surface.

∂φ1

∂r
= 0 on r = a, (4)

∂φ2

∂r
= 0 on r = b. (5)

(ii) On the interface r = R + η(z, t):
(1) The conservation of mass across the interface is:[

ρ

(
∂F

∂t
+ ∇φ · ∇F

)]
= 0

or[
ρ

(
∂φ

∂r
− ∂η

∂t
− ∂η

∂z

∂φ

∂z

)]
= 0, (6)

where [h] represents the difference in a quantity as we
cross the interface, i.e., [h] = h2 − h1, where super-
scripts refer to upper and lower fluids, respectively.

(2) The interfacial condition for energy is

Lρ1
(

∂F

∂t
+ ∇φ · ∇F

)
= S(η), (7)

where L is the latent heat released when the fluid is
transformed from phase 1 to phase 2. Physically, the
left-hand side of (7) represents the latent heat released
during the phase transformation, while S(η) on the
right-hand side of (7) represents the net heat flux, so
that the energy will be conserved.

(3) The conservation of momentum balance, by tak-
ing into account the mass transfer across the interface,
is

ρ(1)(∇φ(1) · ∇F)

(
∂F

∂t
+ ∇φ(1) · ∇F

)

= ρ(2)(∇φ(2) · ∇F)

(
∂F

∂t
+ ∇φ(2) · ∇F

)
+(p2 − p1 + σ∇ · n)|∇F |2, (8)

where p is the pressure and σ is the surface tension
coefficient, respectively.



Pramana – J. Phys. (2016) 87: 20 Page 3 of 9 20

By eliminating the pressure by Bernoulli’s equation,
we can rewrite the above condition (8) as⎡
⎣ρ

⎧⎨
⎩∂φ

∂t
+ 1

2

(
∂φ

∂r

)2

+ 1

2

(
∂φ

∂z

)2

−
{

1+
(

∂η

∂z

)2
}−1

×
(

∂φ

∂z

∂η

∂z
− ∂φ

∂r

)(
∂η

∂t
+ ∂φ

∂z

∂η

∂z
− ∂φ

∂r

)⎫⎬
⎭
⎤
⎦

= −σ
∂2φ

∂z2

{
1 +

(
∂η

∂z

)2
}−3/2

+σ(R + η)−1

{
1 +

(
∂η

∂z

)2
}−1/2

. (9)

To investigate the nonlinear effects on the stability of
the system, we employ the method of multiple scales
[14–16]. Introducing ε as a small parameter, we assume
the following expansion of the variables:

η =
3∑

n=1

εnηn(z0, z1, z2, t0, t1, t2) + O(ε4), (10)

φ(j) =
3∑

n=1

εnφ
(j)
n (r; z0, z1, z2, t0, t1, t2) + O(ε4),

j = 1, 2, (11)

where zn = εnz and tn = εnt, n = 0, 1, 2.
The linear wave solutions of (3), subject to boundary

conditions, yield

η1 = A(z1, z2, t1, t2)e
iθ + Ā(z1, z2, t1, t2)e

−iθ , (12)

φ(1) = 1

k

(
α

ρ(1)
− iω

)
A(z1, z2, t1, t2)E

(1)(k, r)eiθ

+ c.c., (13)

φ(2) = 1

k

(
α

ρ(2)
− iω

)
A(z1, z2, t1, t2)E

(2)(k, r)eiθ

+ c.c., (14)

where

E(1)(k, r) = I0(kr)K1(ka) + I1(ka)K0(kr)

I1(kR)K1(ka) − I1(ka)K0(kR)
, (15)

E(2)(k, r) = I0(kr)K1(kb) + I1(kb)K0(kr)

I1(kR)K1(kb) − I1(kb)K0(kR)
, (16)

θ = kz0 − ωt0,

with Im and Km, m = 0, 1 are the modified Bessel
functions of the first and second kinds, respectively.

Substituting (12)–(14) into (9), we obtain the follow-
ing dispersion relation:

D(ω, k) = −a0ω
2 − ia1ω + a2 = 0, (17)

where

a0 = ρ(1)E(1)(k, R) − ρ(2)E(2)(k, R),

a1 = α{E(1)(k, R) − E(2)(k, R)},
a2 = σk

R2
(R2k2 − 1).

From the properties of Bessel functions (is always posi-
tive), we notice that the coefficients a0 and a1 are
greater than zero. Applying the Routh–Hurwitz crite-
ria to (17), the condition for stability is a2 > 0, from
which we obtain k > 1/R. Thus, the system is stable
if k > kc, where

kc = 1

R
. (18)

With the use of the first-order solutions, we obtained
the equations for the second-order problem

∇2
0φ

(j)

2 = −2i

(
α

ρ(j)
− iω

)
E(j)(k, r)

∂A

∂z1
, j = 1, 2,

(19)

where the linear operator ∇2
0 is defined as

∇2
0 = ∂2

∂r2
+ 1

r

∂

∂r
+ ∂2

∂z2
0

.

The non-secularity conditions for the existence of the
uniformly valid solution are
∂A

∂t1
+ Vg

∂A

∂z1
= 0, (20)

and its complex conjugate relation and Vg is the group
velocity of the wave

Vg = dω

dk
.

We examine now the third-order problem:

∇2
0φ

(i)
3 = −∂2φ

(i)
1

∂z2
1

− 2
∂2φ

(i)
1

∂z0z2
− 2

∂2φ
(i)
2

∂z0z2
, i = 1, 2.

(21)

On substituting the values of φ
(i)
1 from (15)–(16) and

φ
(i)
2 into (21), we obtain

φ
(j)

3 = −1

k

(
α

ρ(j)
− iω

)
×
[

1

2
{r2E(j)(k, r)

− r

k
L(j)(kr) − arM(j)(kr)}

−{RE − aM}rL(j)(kr) + 1

k
G(j)(kr)

×
{a

2
E(j)(k, a) − (RE − aM)kaE(j)(k, a)

}
−
{

R

2
(E + Rk) + Rk[aF − (RE − aM)]E

}
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×E(j)(k, r)

k

]
× ∂2A

∂z2
1

eiθ

− i

k
{rL(j)(kr) + aF (j)(kr)

−(RE − aM)E(j)(k, r)}
×
[{

α

ρ(j)
− iω

}
∂A

∂z2
+ ∂2A

∂z1t1

]
eiθ

+E(j)(k, r)

k

∂A

∂t2
eiθ + φ̃

(j)

3 , (22)

where

G(j)(kr) = 1

γ (j)
{I0(kr)K1(kR) + K0(kr)I1(kR)}

and, for brevity of notations, we used

E = E(j)(k, R), M = M(j)(kR),

F = F (j)(kR), a = a(j)

and

φ̃
(j)

3 = −kE(j)(k, R) ×
[

2

{
E(j)(2k, R) − 1

kR

}
B

(j)

2

+
{
−2

(
E− 1

kR

)(
α

ρ(j)
− iω

)(
1

kR
+ α2

k

)

+1

2

(
1 + 2

R2k2
− E

kR

)(
3α

ρ(j)
− iω

)
− α

ρ(j)

−iω + α

ρ(j)k2

(
4α2

(
1

R
+ α2

)
− 3α3

)}
A2

−
{(

α

ρ(j)
+iω

)(
E − 1

kR

)
+ 2αα2

ρ(j)k

}
A2

k

]
Āeiθ

+H1E
(j)(2kr)e2iθ + J1E

(j)(3kr)e3iθ

+ c.c., (23)

where the arbitrary functions H1 and J1 can be deter-
mined from boundary conditions.

With the third-order solution, the condition for third-
order perturbation to be nonsecular is

i

(
∂A

∂t2
+ Vg

∂A

∂z2

)
+ P

∂2A

∂z2
1

= QA2Ā + RA, (24)

where

P = 1

2

dVg

dk
, R = −μ

∂D

∂k

(
∂D

∂ω

)−1

,

where μ is defined by k = kc +με2 with kc the critical
wave number.

It is now appropriate to introduce the transformations

ζ = ε−1(z2 − Vgt2) = ε(z1 − Vgt1) = ε(z − Vgt)

and

τ = t2 = εt1 = ε2t.

Equation (24) is reduced to

i
∂A

∂τ
+ P

∂2A

∂ξ2
= QA2Ā + RA, (25)

which is a complex Ginzburg–Landau equation, i.e.

P = Pr + iPi, Q = Qr + iQi and R = Rr + iRi.

The stability of a Ginzburg–Landau equation (25) is
discussed by Lange and Newell [17], and Matkowsky
and Volpert [18]. They showed that stability conditions
are

PrQr + PiQi and Qi < 0, (26)

provided that Rr = 0.
We notice that the condition Rr = 0 is satisfied when

ω = 0 and Pr = Qr = 0. In this case, (25) reduces to
the nonlinear diffusion equation (figure 1),

i
∂A

∂τ
+ Pi

∂2A

∂ξ2
= QiA

2Ā + RiA, (27)

where

Qi = k

ai

{
α2

[(
N + 1

R
+ α2 − 2kE

)

×
{

E(2k, R)E − 1

ρ

}
+ 3

Rρ

]
+ σ

R4

[
2RN(k2R2 − 1) + 4Rα2

+ 7 − 1

2
k2R2(1 − 3k2R2)

]
, (28)

with

N = − 1

(8k2R2 − 2)

{
R2α2

σ

[
1 + E2

ρ

]
+ k2R2 + 2

R

}
.

3. Exact solutions for the complex
Ginzburg–Landau equation

The complex Ginzburg–Landau equation:

i
∂A

∂τ
+ P

∂2A

∂ξ2
= QA2Ā + RA, (29)

where A = A(τ, ξ), P, Q and R are constants. Let

A(τ, ξ) = ϕ(τ, ξ)ei(κτ+ωξ). (30)

We get two equations:

∂ϕ

∂τ
+ 2ωP

∂ϕ

∂ξ
= 0, (31)

P
∂2ϕ

∂ξ2
− (κ + Pω2 + R)ϕ − Qϕ3 = 0. (32)
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Figure 1. The velocity potential (42) with different shapes are plotted: (a) solitary wave solutions, (b) contour plot.

Consider the travelling wave solutions ϕ(τ, ξ) =
ϕ(ζ ) and ζ = sτ − νξ , then eqs (31) and (32) become

(s − 2ωPν)ϕ = 0, (33)

Pν2ϕ′′ − (κ + Pω2 + R)ϕ − Qϕ3 = 0. (34)

The solution of eq. (33) is

(s − 2ωPν)ϕ = ζ + c, (35)

where c is the integral constant.

Case 1. Suppose the solutions of eq. (34) are of the
form

ϕ(ζ ) = a0 + a1F(ζ ), (36)

where a0, a1 are undetermined constants and F(ζ )

satisfies the ordinary differential equation (ODE)

F ′2(ζ ) = ρ2F 2(ζ ) + 2ρσF 3(ζ ) + σF 4(ζ ), (37)

where ρ, σ are constants and eq. (37) admits solutions,
see [14]:

F(ζ )=− ρ

σ

[
1

2
− 1

2
tanh

(
1

2
|ρ|ζ

)]
, if ρ<0, σ >0 (38)

and

F(ζ )=− ρ

σ

[
1

2
+ 1

2
tanh

(
1

2
|ρ|ζ

)]
, if ρ>0, σ <0. (39)

We substitute (36) into eq. (34), using subequation
(37) simultaneously. Solving the algebraic equations
obtained, yields,

a0 = ±
√−R − κ − ω2

√
Q

,

a1 = ±2σ(−R − κ − ω2)3/2

ρ
√

Q(R + κ + ω2)
,

ν = ±
√

2
√−R − κ − ω2

ρ
√

P
. (40)

We have solutions to eq. (29) (figures 2, 3 and 4)

A(τ, ξ) = sτ − νξ + c

s − 2ωPν
ei(κτ+ωξ), (41)

A(τ, ξ) =
[
±

√−R − κ − ω2
√

Q
± (−R − κ − ω2)3/2

√
Q(R + κ + ω2)

×
(
1− tanh

(
1

2
|ρ|(sτ−νξ)

))]
ei(κτ+ωξ),

if ρ < 0, σ > 0, (42)

A(τ, ξ) =
[
±

√−R − κ − ω2
√

Q
± (−R − κ − ω2)3/2

√
Q(R + κ + ω2)

×
(
1+ tanh

(
1

2
|ρ|(sτ − νξ)

))]
ei(κτ+ωξ)

if ρ > 0, σ < 0, (43)

where ρ, σ , ν, κ , ω, R, P and Q are arbitrary constants.

Case 2. Suppose the solutions of eq. (34) are of the
form

ϕ(ζ ) = a0 + a1F(ζ ) + a2F
2(ζ ), (44)

and F(ζ ) satisfies the ordinary differential equation
(ODE)

F ′2(ζ ) = ρF 2(ζ ) + λF 4(ζ ) + σF 6(ζ ). (45)

Equation (17) admits solutions, see [14]:

F(ζ ) =
[
−ρ

λ

(
1 ± tanh(

√
ρζ )

)]1/2
,

if ρ > 0, λ < 0, λ2 = 4ρσ. (46)
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Figure 2. The velocity potential (43) with different shapes are plotted: (a) solitary wave solutions, (b) contour plot.

We substitute (44) into eqs (34), using subequation
(45) simultaneously. Solving the algebraic equations
obtained yields (figure 5),

a0 = −
√−R − κ − ω2

√
Q

, a1 = 0,

a2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ(R + κ + ω2)

ρ
√

Q
√−R − κ − ω2

,

λ
√−R − κ − ω2

ρ
√

Q
,

± λ2(R + κ + ω2)

ρ
√

Q
√−R − κ − ω2

,

(47)

ν = ±
√−R − κ − ω2

√
2Pρ

, λ2 = 4ρσ. (48)

We have solutions to eq. (29) (figure 6)

A(τ, ξ) =
[
−

√−R−κ−ω2
√

Q
− R + κ + ω2

√
Q

√−R − κ − ω2

× (
1 ± tanh(

√
ρ(sτ − νξ))

) ]
ei(κτ+ωξ)

ν = ±
√−R − κ − ω2

√
2Pρ

, ρ > 0, λ < 0,

λ2 = 4ρσ, (49)

Figure 3. The velocity potential (43) with different shapes are plotted: (a) periodic travelling wave solutions, (b)
contour plot.
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Figure 4. The velocity potential (49) with different shapes are plotted: (a) travelling wave solutions, (b) contour plot.

A(τ, ξ) = −
√−R − κ − ω2

√
Q

× [
2 ± tanh(

√
ρ(sτ − νξ)

]
ei(κτ+ωξ)

ν = ±
√−R − κ − ω2

√
2Pρ

, ρ > 0, λ < 0,

λ2 = 4ρσ, (50)

A(τ, ξ) =
[
−

√−R − κ − ω2
√

Q

∓ λ(R + κ + ω2)√
Q

√−R − κ − ω2

]
ei(κτ+ωξ)

ν = ±
√−R − κ − ω2

√
2Pρ

, ρ > 0, λ < 0,

λ2 = 4ρσ. (51)

Case 3. There is a special case, if we take F ′ as the
form:

F ′2(ζ ) = ρ2F 2(ζ ) + 2ρσF 4(ζ ) + σ 2F 6(ζ ), (52)

where ρ, σ are constants and eq. (52) admits solutions:

F(ζ ) =
[
− ρ

2σ

(
1 ± tanh(ρ2ζ )

)]1/2
,

if ρ2 > 0, ρσ < 0. (53)

Figure 5. The velocity potential (50) with different shapes are plotted: (a) travelling wave solutions, (b) contour plot.
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Figure 6. The velocity potential (51) with different shapes are plotted: (a) travelling wave solutions, (b) contour plot.

Figure 7. The velocity potential (55) with different shapes are plotted: (a) travelling wave solutions, (b) contour plot.

We substitute (44) into eq. (34), using subequation
(45) simultaneously. Solving the algebraic equations
obtained yields (figure 7),

a0 = ±
√−R − κ − ω2

√
Q

, a1 = 0, a2 = ±2νσ
√

2P√
Q

,

ρ = ±
√−R − κ − ω2

ν
√

2P
. (54)

We have solutions to eq. (29)

A(τ, ξ) =
[
±

√−R − κ − ω2
√

Q
± νρ2

√
2P

2σ
√

Q

×
(
1− tanh

(
1

2
ρ2(sτ−νξ)

))]
ei(κτ+ωξ),

if ρ < 0, σ > 0. (55)

4. Conclusion

The nonlinear analysis of Rayleigh–Taylor instability
of cylindrical interface between the vapour and the
liquid phases of a fluid when there is a mass and heat
transfer across the interface was studied. Method of
multiple expansions has been used and it is shown that
the evolution of the amplitude is governed by the well-
known Ginzburg–Landau equation. It is observed that
the heat and mass transfer has a stabilizing effect on
the stability of the system, while vapour fraction desta-
bilizes the system. By using the F-expansion method, we
obtained exact solutions for the nonlinear Ginzburg–
Landau equation. The region of solutions was display-
ed graphically. This is of particular interest for many
applications in industrial and environmental processes.
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