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Abstract. We explicitly derive the proper-time (τ ) principal Lyapunov exponent (λp) and coordinate-time
(t) principal Lyapunov exponent (λc) for Reissner–Nordstrøm (RN) black hole (BH). We also compute their

ratio. For RN space-time, it is shown that the ratio is (λp/λc) = r0/

√
r2

0 − 3Mr0 + 2Q2 for time-like circular

geodesics and for Schwarzschild BH, it is (λp/λc) = √
r0/

√
r0 − 3M . We further show that their ratio λp/λc

may vary from orbit to orbit. For instance, for Schwarzschild BH at the innermost stable circular orbit (ISCO),
the ratio is (λp/λc)|rISCO=6M = √

2 and at marginally bound circular orbit (MBCO) the ratio is calculated to be
(λp/λc)|rmb=4M = 2. Similarly, for extremal RN BH, the ratio at ISCO is (λp/λc)|rISCO=4M = 2

√
2/

√
3. We also

further analyse the geodesic stability via this exponent. By evaluating the Lyapunov exponent, it is shown that in
the eikonal limit, the real and imaginary parts of the quasinormal modes of RN BH is given by the frequency and
instability time-scale of the unstable null circular geodesics.

Keywords. Lyapunov exponent; proper time; coordinate time; quasinormal modes; innermost stable circular
orbit; marginally bound circular orbit.
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1. Introduction

Nonlinearity of Einstein’s equation is the reason for
non-linearity of Einstein’s general theory of relativ-
ity. So, there may be a certain link between nonlinear
Einstein’s general theory of relativity and non-linear
dynamics. Particularly, Lyapunov exponent [1] is one
of the bridges between them. In this paper, we shall
focus on the analytical calculations involving the Lya-
punov exponent in terms of the equation of circular
geodesics around a BH space-time. These equatorial
circular geodesics around a BH space-time play cru-
cial roles in general relativity for the classification of
the orbits. They also determine important features of
the space-time and give important information on the
background geometry.

The Lyapunov exponent (λ) has been used to probe
the instability of circular null geodesics and in terms
of the quasinormal modes (QNMs) for spherically
symmetric space-time of arbitrary dimensions [2], but
the focus there is on null circular geodesics. It has been

shown in ref. [2] that in the eikonal approximation, the real
and imaginary parts of the QNMs of any dimensions of
spherically symmetric, asymptotically flat space-time
are given by (multiples of) the frequency and instability
time-scale of the unstable circular photon geodesics.

Note however that the principal Lyapunov exponents
have been computed in [2–5] using coordinate time t ,
where t is measured by the asymptotic observers. Thus,
these exponents are explicitly coordinate-dependent
and therefore have a degree of un-physicality. Here, we
compute the principal Lyapunov exponent analytically
by using the proper time as well as coordinate time
and prove that their ratio i.e., λp/λc is not an invariant
quantity. Then we compare the results obtained using
both coordinate time and proper time. Using λ, we also
study the stability properties of the equatorial circular
geodesics for RN BH space-time.

We further elucidate the connection between the
Lyapunov exponent of the circular null geodesics in
terms of the frequency of QNMs for RN BH in the
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eikonal limit. Interestingly, for extremal BH this fre-
quency goes to zero. i.e.,

ωQNM = 0 (1)

and for non-extremal RN BH, the frequency of
QNM is

ωQNM = �

√
Mrc − Q2

r4
c

− i

(
n + 1

2

)

×
√

(Mrc − Q2)(3Mrc − 4Q2)

r6
c

, (2)

where n is the overtone number and � is the angular
momentum of perturbation.

For Schwarzschild BH, the QNM frequency
becomes

ωQNM = �

√
M

r3
c

− i

(
n + 1

2

) √
3M

r2
c

. (3)

Another interesting feature we have studied here is
that, when we use the proper time, the principal Lya-
punov exponent for RN space-time can be obtained
as

λp =
√

−(Mr3
0 − 6M2r2

0 + 9MQ2r0 − 4Q4)

r4
0 (r2

0 − 3Mr0 + 2Q2)
. (4)

When we use the coordinate time, the Lyapunov
exponent for RN space-time can be obtained as

λc =
√

−(Mr3
0 − 6M2r2

0 + 9MQ2r0 − 4Q4)

r6
0

(5)

and also their ratio
λp

λc

= r0√
r2

0 − 3Mr0 + 2Q2
(6)

is not an invariant quantity.
We would like to mention here for the reader a few

works that have addressed Lyapunov exponent for dif-
ferent types of BHs. The invariant properties of the
Lyapunov exponent were first discussed in [6] (see also
[7,8]). Sota et al [9] have first proposed and used
the invariant form of Lyapunov exponent, where the
proper time is employed for the exponents as an invari-
ant measure of time. Wu et al [10] have tested the
same problem using different approaches. More recent
proposals and discussions on that topic can be found in
[11,12]. A review on Lyapunov exponent can be found
in [13].

The paper is organized as follows: In §2, we pro-
vide the fundamentals of the Lyapunov exponent. In

§3, we shall completely describe the equatorial circular
geodesics, both time-like and null cases for RN BH and
also compute the proper time Lyapunov exponent as
well as coordinate time Lyapunov exponent. In §4, we
discuss similar features for extremal RN space-time. In
§5, we relate the QNMs of null circular geodesics in
terms of the Lyapunov exponent for a spherically sym-
metric RN space-time and Schwarzschild BH. In §6,
we present our conclusions.

2. Fundamentals of the Lyapunov exponent

Lyapunov exponent in a classical phase-space is a mea-
sure of the average rates of expansion and contraction
of trajectories surrounding it. They are asymptotic
quantities defined locally in state space, and describe
the exponential rate at which a perturbation to a tra-
jectory of a system grows or decays with time at a
certain location in the state space. A positive Lya-
punov exponent indicates a divergence between two
nearby geodesics, the paths of such a system are
extremely sensitive to changes of the initial conditions.
A negative Lyapunov exponent implies a convergence
between two nearby geodesics.

Let x(t), i.e., x(t = 0) = x0 denote a trajectory
of a system of equations governed by the following n-
dimensional autonomous system [14]:

dx

dt
= F(x; M). (7)

The vector x consists of n state variables, the function
F describes the non-linear evolution of the dynamical
system and M is a vector control parameter, while t

is the time parameter. The solutions are fixed points
or critical points when F(x; M) = 0. Let its solution
for M = M0 be x0, where x0 ∈ Rn and M0 ∈ Rm.
To calculate stability, we simply apply on x(t), a small
perturbation y(t) and obtain

x(t) = x0 + y(t). (8)

Substituting eq. (8) into eq. (7) yields

dy

dt
= F(x0 + y; M). (9)

Note that the fixed point x = x0 of eq. (7) has been
transformed into the fixed point y=0 of eq. (9). Ex-
panding eq. (9) in a Taylor series about x0 and keeping
only linear terms in the perturbation leads to

dy

dt
= F(x0; M0) + ∂F (x0; M0)

∂x
y + O(‖y‖2) (10)
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or

dy

dt
= ∂F (x0; M0)

∂x
y = Ay, (11)

where the matrix A is called the Jacobian matrix.
If the components of F are F1(x1, x2, x3, ..., xn),
F2(x1, x2, x3, ..., xn), F3(x1, x2, x3, ..., xn), then

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂F1
∂x1

∂F1
∂x2

... ∂F1
∂xn

∂F2
∂x1

∂F2
∂x2

...
∂F2
∂xn

. . . .

. . . .

. . . .
∂Fn

∂x1

∂Fn

∂x2
... ∂Fn

∂xn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (12)

The eigenvalues of the constant matrix A provide
information about the local stability of the fixed point
x0. The eigenvalues of A are also known as character-
istic exponents or Lyapunov exponents associated with
F at (x0, M0).

If we consider an initial deviation y(0), its evolution
is described by

y(t) = �(t)y(0), (13)

where �(t) is the fundamental(transition) matrix solu-
tion of eq. (11) associated with the trajectory, say x(t),
which governs the dynamical equation (7). For an
appropriately chosen value of y(0), the rate of expo-
nential expansion or contraction in the direction of
y(0) on the trajectory passing through x0 (trajectory at
t = 0) is given by

λi = lim
t→∞

(
1

t

)
ln

( ‖y(t)‖
‖y(0)‖

)
, (14)

where ‖‖ denotes a vector norm. The asymptotic
quantity λi is called the Lyapunov exponent.

If there exists a set of n Lyapunov exponents asso-
ciated with an n-dimensional autonomous system, they
can be ordered by size, i.e.,

λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn. (15)

The set of n-numbers λi is called the Lyapunov
spectrum.

Following Lyapunov [1], the fundamental matrix
�(t) is called regular if

lim
t→∞ ln |det �(t)| (16)

exists and is finite and if there exists a normal basis of
the n-dimensional state space such that

n∑
i=1

λi = lim
t→∞ ln |det �(t)|. (17)

If �(t) is regular, then according to a theorem
by Oseldec [15], the asymptotic quantity defined in
eq. (14) exists and is finite for any initial deviation y(0)

belonging to the n-dimensional space.
The asymptotic quantity λi given by eq. (14) is

also known as a one-dimensional exponent. For p di-
mensions, the p-dimensional Lyapunov exponent λ is
defined as

λp = lim
t→∞

(
1

t

)
ln

( ‖y1(t) ∧ y2(t) ∧ · · · ∧ yp(t)‖
‖y1(0) ∧ y2(0) ∧ · · · ∧ yp(0)‖

)
,

(18)

where ∧ is an exterior or vector cross product.
In the next section, we shall derive the expression

for Lyapunov exponent, using both coordinate time and
proper time.

2.1 Lyapunov exponent and radial effective potential

Now we compute second derivative of the square of
the radial component of the four-velocity in terms of
the Lyapunov exponent. Therefore, the Lagrangian
of a test particle in the equatorial plane for any static
spherically symmetric space-time can be written as

L = 1

2

[
gtt ṫ2 + grr ṙ2 + gφφ φ̇2

]
. (19)

Now, we define the canonical momenta as

pq = ∂L
∂q̇

. (20)

Using this, the generalized momenta can be derived as

pt = gtt ṫ = −E = Const. (21)
pφ = gφφ φ̇ = L = Const. (22)
pr = grr ṙ. (23)

Here (ṫ , ṙ, φ̇) denotes differentiation with respect to
the proper time (τ ). Again, from the Euler–Lagrange
equations of motion
dpq

dτ
= ∂L

∂q
. (24)

Using this, we get the non-linear differential equa-
tion in two-dimensional phase-space with phase-space
variables xi(t) = (pr, r).
dpr

dτ
= ∂L

∂r
and

dr

dτ
= pr

grr

. (25)

Now, linearizing the equation of motion about the cir-
cular orbits of constant r , we get the infinitesimal
evolution matrix as

Mij =

⎛
⎜⎜⎝

0
d

dr

(
∂L
∂r

)

1

grr

0

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
r=r0

. (26)
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For circular orbits of constant r = r0, the character-
istic values of the matrix gives information about the
stability of the orbit. The eigenvalues of this matrix
are called principal Lyapunov exponent. Therefore, the
eigenvalues of the evolution matrix along circular
orbits can be written as

λ2 = 1

grr

d

dr

(
∂L
∂r

)∣∣∣∣
r=r0

. (27)

Again, from Lagrange’s equation of motion

d

dτ

(
∂L
∂ṙ

)
− ∂L

∂r
= 0. (28)

Thus, the Lyapunov exponent (which is the inverse of
the instability time-scale associated with the geodesic
motions) in terms of the square of the radial velocity
(ṙ2) can be written as

∂L
∂r

= 1

2grr

d

dr
(ṙgrr )

2 . (29)

Finally, the principal Lyapunov exponent can be
rewritten as

λ2 = 1

2

1

grr

d

dr

[
1

grr

d

dr
(ṙgrr )

2
]

. (30)

Again for circular geodesics [16]

ṙ2 = (ṙ2)′ = 0, (31)

where prime denotes the derivative with respect to r .
Thus, for proper-time Lyapunov exponent eq. (30) must
be reduced to

λp = ±
√

(ṙ2)′′
2

(32)

and for coordinate-time Lyapunov exponent [2],
eq. (30) is given by

λc = ±
√

(ṙ2)′′
2ṫ2

. (33)

The Lyapunov exponent must be in ± pairs to con-
serve the volume of the phase-space. From now on we
shall take only the positive Lyapunov exponent. The
circular orbit is unstable when λp or λc is real, the cir-
cular orbit is stable when the λp or λc is imaginary and
the circular orbit is marginally stable when λp = 0 or
λc = 0.

(Note that Cardoso et al [2] have derived a coordinate-
time Lyapunov exponent, i.e., λc = √

V ′′
r /2ṫ2 with

Vr = ṙ2).
The above expression for λ is valid for any

spherically symmetric BH space-times [17–19], i.e.,

(Schwarzschild, Reissner–Nordstrøm, Schwarzschild–
de Sitter, Schwarzschild–anti-de Sitter, Reissner–
Nordstrøm–de Sitter, Reissner–Nordstrøm–anti-de Sitter
etc.). Also, it is valid for any axisymmetric space-time
[20–22].

2.2 Critical exponent and radial effective potential

Following Pretorius and Khurana [23], we can define a
critical exponent which is the ratio of Lyapunov time-
scale or instability time-scale Tλ and orbital time-scale
T	 can be written as

γ = 	

2πλ
= Tλ

T	

= Lyapunov time-scale

Orbital time-scale
, (34)

where Tλ = 1/λ and T	 = 2π/	. This is impor-
tant for black-hole merger in the ring down radiation.
In terms of the second derivative of the square of the
radial velocity (ṙ2), critical exponent can be written as

γp = 1

2π

√
2	2

(ṙ2)′′
, γc = 1

2π

√
2φ̇2

(ṙ2)′′
. (35)

Here, 	 is the angular velocity.
We shall now calculate the equatorial circular

geodesics for a spherically symmetric RN space-time.

3. Equatorial circular geodesics in spherically
symmetric RN space-time

First, we shall consider a static, spherically symmetric,
asymptotically flat solution of the coupled Einstein–
Maxwell equations in general relativity. They are des-
cribed by the RN space-time and the metric for such
space-time is given by

ds2 = −
(

1 − 2M

r
+ Q2

r2

)
dt2 + dr2

(
1 − 2M

r
+ Q2

r2

)

+r2
(

dθ2 + sin2 θdφ2
)

. (36)

To compute the geodesics in the equatorial plane
for this space-time, we follow [16]. To determine the
geodesic motion of a test particle in this plane we set
θ̇ = 0 and θ = constant = π/2.

Therefore, the necessary Lagrangian for this motion
is given by

L = 1

2

⎡
⎣ −

(
1 − 2M

r
+ Q2

r2

)
ṫ2

+ ṙ2
(

1 − 2M
r

+ Q2

r2

) + r2 φ̇2

⎤
⎦ . (37)



Pramana – J. Phys. (2016) 87: 5 Page 5 of 9 5

Using eq. (20), the generalized momenta can be
derived as

pt = −
(

1 − 2M

r
+ Q2

r2

)
ṫ = −E = Const. (38)

pφ = r2 φ̇ = L = Const. (39)

pr = ṙ(
1 − 2M

r
+ Q2

r2

) . (40)

Here, overdot denotes differentiation with respect to
the proper time (τ ). As the Lagrangian does not depend
on both t and φ, pt and pφ are conserved quantities.
Solving eqs (38) and (39) for ṫ and φ̇, we find

ṫ = E(
1 − 2M

r
+ Q2

r2

) and φ̇ = L

r2
, (41)

where E and L are the energy and angular momentum
per unit rest mass of the test particle.

The normalization of the four-velocity (uμ) gives
another integral equation for the geodesic motion:

gμνu
μuν = ε, (42)

or

− Eṫ + Lφ̇ + ṙ2
(

1 − 2M
r

+ Q2

r2

) = ε. (43)

Here ε = −1 for time-like geodesics, ε = 0 for light-
like geodesics and ε = +1 for space-like geodesics.
Substituting the value of ṫ and φ̇ from eq. (41) in
eq. (42), we obtain the radial equation for spherically
symmetric RN space-time:

ṙ2 = E2 −
(

L2

r2
− ε

) (
1 − 2M

r
+ Q2

r2

)
. (44)

3.1 Time-like case

Now, the radial equation of the test particle for time-
like circular geodesics [17,18]:

ṙ2 = E2 −
(

1 + L2

r2

) (
1 − 2M

r
+ Q2

r2

)
. (45)

To investigate the circular geodesic motion of the test
particle in the Einstein–Maxwell gravitational field, for
circular geodesics we must have constant r = r0 and
using the condition for circular orbit (31), we get the
energy and angular momentum per unit mass of the test
particle for time-like orbit as

E2
0 =

(
r2

0 − 2Mr0 + Q2
)2

r2
0 (r2

0 − 3Mr0 + 2Q2)

and

L2
0 = r2

0

(
Mr0 − Q2

)

r2
0 − 3Mr0 + 2Q2

. (46)

Circular motion is possible when both the energy and
the angular momentum are real and finite; therefore, we
must have r2

0 − 3Mr0 + 2Q2 > 0 and r0 > (Q2/M),
and the angular frequency at r = r0 is

	0 = φ̇

ṫ
=

√(
Mr0 − Q2

)

r2
0

. (47)

Hence, for non-extremal RN BH, the proper-time
Lyapunov exponent and coordinate-time Lyapunov
exponent are

λRN
p =

√
−(Mr3

0 − 6M2r2
0 + 9MQ2r0 − 4Q4)

r4
0 (r2

0 − 3Mr0 + 2Q2)
. (48)

λRN
c =

√
−(Mr3

0 − 6M2r2
0 + 9MQ2r0 − 4Q4)

r6
0

. (49)

Thus, the time-like circular geodesics of non-
extremal RN BH is stable when Mr3

0 − 6M2r2
0 +

9MQ2r0 − 4Q4 > 0 such that λp or λc is imaginary,
the circular geodesics is unstable when Mr3

0 −6M2r2
0 +

9MQ2r0 − 4Q4 < 0, i.e., λp or λc is real and the time-
like circular geodesics is marginally stable when
Mr3

0 − 6M2r2
0 + 9MQ2r0 − 4Q4 = 0 such that λp

or λc is equal to zero.
For completeness, we have also computed the ratio

λp/λc for RN space-time which is given by

λp

λc

= r0√
r2

0 − 3Mr0 + 2Q2
. (50)

For extremal RN BH, this ratio is

λp

λc

= r0√
(r0 − M)(r0 − 2M)

. (51)

For Schwarzschild BH, this ratio has been reduced to

λp

λc

=
√

r0√
r0 − 3M

. (52)

Now, we shall see the variation of the ratio of λp and λc

graphically (see figure 1) for Schwarzschild BH (Q =
0) and RN BH.

It can be easily seen from figure 1 that, the ratio of
λp and λc varies from orbit to orbit for different charge
parameters.
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Figure 1. The variation of λp/λc with r0/M for RN BH.
We choose different values of (Q/M), i.e., (Q/M) =
0, 0.5, 1.0, 2.0, 5.0. The range of validity for the charge to
mass ratio Q/M is 0 ≤ (Q/M) ≤ 1. In the graph, red indi-
cates the value of charge Q = 0, green indicates Q = 0.5M ,
yellow indicates Q = 1.0M , blue indicates Q = 2.0M and
violet indicates Q = 5.0M .

Thus, the solution of the system ṙ2 = (ṙ2)′ =
(ṙ2)′′ = 0 gives the radius of ISCO at r0 = rISCO for
non-extremal RN BH which is given by

rISCO

M
= 2 + Z1/3 + 4 − 3 (Q/M)2

Z1/3
, (53)

where

Z = 8 − 9

(
Q

M

)2

+ 2

(
Q

M

)4

+
√

5

(
Q

M

)4

− 9

(
Q

M

)6

+ 4

(
Q

M

)8

. (54)

As Schwarzschild space-time is a special case of RN
space-time which occurs in the limit Q = 0, we find
the radius of ISCO, rISCO = 6M .

Now the reciprocal of critical exponent for RN BH
is given by

1

γp

= T	

Tλ

=2π

√
−(Mr3

0 −6M2r2
0 +9MQ2r0 − 4Q4)

(Mr0 − Q2)(r2
0 − 3Mr0 + 2Q2)

.

(55)

For any unstable circular orbit, T	 > Tλ, i.e., Lyapunov
time-scale is shorter than the gravitational time-scale
making the instability observationally relevant [4].

Special case

For Schwarzschild BH Q= 0, the Lyapunov exponent
is

λSch
p =

√
−M(r0 − 6M)

r3
0 (r0 − 3M)

. (56)

λSch
c =

√
−M(r0 − 6M)

r4
0

. (57)

The reciprocal of critical exponent for Schwarzschild
BH is given by

1

γp

= T	

Tλ

= 2π

√
−(r0 − 6M)

(r0 − 3M)
. (58)

For any unstable circular orbit say for r0 = 4M , γ

becomes 1/2
√

2π . Therefore, Tλ < T	, i.e., Lyapunov
time-scale is shorter than the gravitational time-
scale [4].

3.2 Null case

As there is no proper time for photons, we have to only
compute the coordinate-time Lyapunov exponent. To
proceed this for null geodesics, the radial equation is
given by

ṙ2 = E2 − L2

r2

(
1 − 2M

r
+ Q2

r2

)
. (59)

Therefore, the energy and angular momentum evalu-
ated at r = rc for circular null geodesics are

Ec

Lc

= ±
√

r2
c − 2Mrc + Q2

r4
c

and

r2
c − 3Mrc + 2Q2 = 0. (60)

After introducing the impact parameter Dc =
Lc/Ec, the above equation is reduced to

1

Dc

= Ec

Lc

=
√

Mrc − Q2

r4
c

= 	c = φ̇

ṫ
, (61)

where 	c is the angular frequency measured by an
asymptotic observer at infinity.

Solving eq. (60), we obtain the radius of null circular
orbits as [24]

rc± = 3M

2

⎡
⎣1 ±

√
1 − 8

9

(
Q2

M2

)⎤
⎦ . (62)
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Using (32), the Lyapunov exponent for the null
circular geodesics is given by

λnull
c |RN =

√
(Mrc − Q2)(3Mrc − 4Q2)

r6
c

. (63)

So, the circular geodesics rc = rc+ and rc = rc− are
unstable because λnull

c |RN is real.
For Schwarzschild BH Q = 0, the Lyapunov expo-

nent reads as

λnull
c |Sch =

√
3M

r2
c

. (64)

It can be easily checked that for rc = 3M , λnull
c |Sch is

real which means that Schwarzschild photon sphere is
unstable.

4. Extremal RN space-time

4.1 Lyapunov exponent and equation of ISCO

For extremal RN BH, the radial equation of the test
particle for time-like circular geodesics is

ṙ2 = E2 −
(

1 + L2

r2

) (
1 − M

r

)2

. (65)

Thus, the Lyapunov exponent becomes

λex
p =

√
M(r0 − M)

r2
0

√
(r0 − 2M)

√− (r0 − 4M). (66)

λex
c = (r0 − M)

√
−M(r0 − 4M)

r6
0

. (67)

So, the time-like circular geodesics of the extremal
RN BH is stable when r0 > 4M such that λp or λc

is imaginary, the circular geodesics is unstable when
2M < r0 < 4M , i.e., λp or λc is real and the time-like
circular geodesics is marginally stable when r0 = 4M ,
such that λp or λc is equal to zero.

4.2 Lyapunov exponent and null circular geodesics

Analogously, using (32), the Lyapunov exponent for
the null circular geodesics is

λexn
c =

√
M2(rc − M)(3rc − 4M)

r6
c

. (68)

So the circular geodesics rc = 2M are unstable as λexn
c

is real. Note that, for extremal BH, this result is valid
for only single null geodesics, i.e., r0 �= rc. For r0 =

rc = M , the Lyapunov exponent becomes zero, i.e.,
λex

p = λex
c = λexn

c = 0.
Now we shall make a link between the Lyapunov

exponent of the null circular geodesics and the QNM
for RN BH in the eikonal limit.

5. Null circular geodesics and QNM for RN BH
in the eikonal limit

This section is devoted to study the QNM frequencies
for RN BH in the eikonal limit following the work by
Cardoso et al [2]. It is well known that the unstable
null circular geodesics is very useful to determine the
characteristic modes of BH, which is so called QNMs
[25–30]. To compute QNMs, we first consider the
wave equation for a massless scalar field in the back-
ground of RN space-time which may be cast in the form

d2X

dr2∗
+ Q0X = 0, (69)

where

Q0 = ω2 − Vs(r)

and

Vs(r) = �(� + 1)

r2
+ 2(Mr − Q2)(r2 − 2Mr + Q2)

r6
.

(70)

Here, � denotes the spherical harmonic index and r∗ is
the tortoise coordinates, ranging from −∞ to +∞.

In the eikonal limit, i.e., � → ∞, we get

Q0 ≈ ω2 − �

r2

(
1 − 2M

r
+ Q2

r2

)
. (71)

Using eq. (71), one may be able to find maximum value
of Q0 which occurs at r = rz:

r2
z − 3Mrz + 2Q2 = 0. (72)

Again we know that for null circular geodesics, the
radial equation is determined by eq. (60). Therefore,
unstable circular orbits could be determined when ṙ2 =
0, leading to

r2
c − 3Mrc + 2Q2 = 0. (73)

The maximum value of Q0 and the location of the null
circular geodesics are coincident at rz = rc. There-
fore, from eq. (69), one may find the QNM conditions
[31–33] as

Q0(rz)√
−2d2Q0

dr2∗

= i (n + 1/2) . (74)
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Equation (72) is evaluated at the extremum of Q0, i.e.,
the point r0 at which (dQ0/dr∗) = 0. Therefore, in the
large-� limit eq. (74) gives

ωQNM = �

√
Mrc − Q2

r4
c

− i

(
n + 1

2

)

×
√

(Mrc − Q2)(3Mrc − 4Q2)

r6
c

. (75)

The significance of eq. (75) is that in the eikonal
limit, the real and imaginary parts of the QNMs of RN
BH are given by the frequency and instability time-
scale of the unstable null circular geodesics. This is
one of the key results of the paper.

It should be noted that for extremal RN BH, as
λnull

c = 0 for r0 = rc = M , the value of ωQNM becomes

ωQNM = 0. (76)

For Schwarzschild BH, in the eikonal limit the fre-
quency of QNM is given by

ωQNM = �

√
M

r3
c

− i

(
n + 1

2

)√
3M

r2
c

. (77)

Thus, by calculating the Lyapunov exponent, which is
the reciprocal of the instability time-scale associated
with the geodesic motion, we found that, in the eikonal
limit, the frequency of QNMs of Schwarzschild BH
could be determined by parameters of the null circular
geodesics.

6. Discussion

In this article, we have used the Lyapunov exponent to
give a full description of time-like circular geodesics
and null circular geodesics in a spherically symmetric
RN BH space-time. Then, we explicitly derived the
proper-time Lyapunov exponent and coordinate-time
Lyapunov exponent for RN BH. We found that the ratio
of proper-time Lyapunov exponent and coordinate-
time Lyapunov exponent for RN space-time is

(λp/λc) = r0/

√
r2

0 − 3Mr0 + 2Q2.

For time-like circular geodesics and for Schwarzs-
child BH, the ratio is (λp/λc) = √

r0/
√

r0 − 3M . This
ratio also varies from orbit to orbit and may not contain
any generic information. For example, for Schwarzs-
child BH at ISCO the ratio is (λp/λc)|rISCO=6M =√

2 and at marginally bound circular orbit (MBCO),
the ratio is calculated to be (λp/λc)|rmb=4M = 2.

Similarly, for extremal RN BH, the ratio is at ISCO
(λp/λc)|rISCO=4M = (2

√
2/

√
3) and at MBCO is

(λp/λc)|rmb=(3+√
5)/2M

= (3 + √
5)/2.

We further showed that the Lyapunov exponent can
be used to determine the stability and instability of
equatorial circular geodesics, both time-like and null
case for RN BH space-time. Finally, we computed
the QNM frequencies for RN BH in the eikonal limit.
We found that in the eikonal limit, the real and imag-
inary parts of the QNMs of RN BH is given by the
frequency and instability time-scale of the unstable
null circular geodesics. For Schwarzschild BH, in the
eikonal limit, the real part of the complex QNM fre-
quencies are determined by the angular velocity of the
null circular geodesics and imaginary part is related
to the coordinate-time Lyapunov exponent of null
circular geodesics.

Besides, the theory of Lyapunov exponent has
important applications in the study of critical pheno-
mena in BH binaries [5]. It also plays a crucial role for
the physical understanding of ring-down radiation,
interpretation of numerical simulations of BH merger
and gravitational wave data analysis [23,34,35].
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