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Abstract. Using direct numerical simulations of Rayleigh–Bénard convection (RBC), we perform a compara-
tive study of the spectra and fluxes of energy and entropy, and the scaling of large-scale quantities for large and
infinite Prandtl numbers in two (2D) and three (3D) dimensions. We observe close similarities between the 2D
and 3D RBC, in particular, the kinetic energy spectrum Eu(k) ∼ k−13/3, and the entropy spectrum exhibits a dual
branch with a dominant k−2 spectrum. We showed that the dominant Fourier modes in 2D and 3D flows are very
close. Consequently, the 3D RBC is quasi-two-dimensional, which is the reason for the similarities between the
2D and 3D RBC for large and infinite Prandtl numbers.
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1. Introduction

Thermal convection is an important mode of heat trans-
port in the interiors of stars and planets, as well as in
many engineering applications. Rayleigh–Bénard con-
vection (RBC) is an idealized model of thermal con-
vection, in which a fluid, placed horizontally between
two thermally conducting plates, is heated from the
bottom and cooled from the top [1]. The resulting
convective motion is primarily governed by two nondi-
mensional parameters, the Rayleigh number Ra, which
is the ratio between the buoyancy and viscous force,
and the Prandtl number Pr, which is the ratio between
the kinematic viscosity and thermal diffusivity.

The earth’s mantle and viscous fluids have large
Prandtl numbers, and their convective flow is dominated
by sharp ‘plumes’. Schmalzl et al [2,3] and van der Poel
et al [4] showed that for large Prandtl numbers, the flow
structures and global quantities, e.g., the Nusselt num-
ber and Reynolds number, exhibit similar behaviour for
three dimensions (3D) and two dimensions (2D). In the
present paper, we analyse the flow behaviour of 2D and
3D flows for large Prandtl numbers, and show that the
flow in the third direction in 3D RBC gets suppressed,
and the large-scale Fourier modes of 2D and 3D RBC
are very similar.

The energy and entropy spectra are important
quantities in Rayleigh–Bénard convection, and have
been studied extensively for various Prandtl num-
bers [5–13]. Pandey et al [13], in their numerical
simulations for very large Prandtl numbers in three
dimensions, reported that the kinetic energy spectrum
Eu(k) scales as k−13/3, and the entropy spectrum
Eθ(k) shows a dual branch with a dominant k−2 spec-
trum. They also showed that the scaling of the energy
and entropy spectra are similar for the free-slip and
no-slip boundary conditions, apart from the prefactors.

In this study, we performed 2D and 3D RBC simu-
lations for the Prandtl numbers 102, 103, and ∞, and
the Rayleigh numbers between 105 and 5 × 108. We
compute the ten most dominant Fourier modes of 2D
and 3D flows, and show them to be very close, which
is the reason for the similarities between 2D and 3D
RBC. We compute the spectra and fluxes of energy and
entropy for 2D and 3D flows, and show them to be very
similar. We also show that the viscous and thermal dis-
sipation rates for 2D and 3D RBC behave similarly.
For completeness and validation, we demonstrate sim-
ilarities between the Nusselt and Péclet numbers and
temperature fluctuations for 2D and 3D RBC, con-
sistent with the earlier results of Schmalzl et al [2,3],
van der Poel et al [4], and Silano et al [14].
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The paper is organized as follows: In §2, we discuss
the governing equations for large and infinite Prandtl
numbers. Details of our numerical simulations are pro-
vided in §3. In §4, we compare the most dominant
Fourier modes of 2D and 3D RBC for Pr = ∞. In §5,
we discuss the spectra and fluxes of the kinetic energy
and entropy. Scaling of large-scale quantities such as
the Nusselt and Péclet numbers, the temperature fluc-
tuations, and the viscous and thermal dissipation rates
are discussed in §6. We conclude in §7.

2. Governing equations

The equations of Rayleigh–Bénard convection under
Boussinesq approximation for a fluid confined between
two plates separated by a distance d are

∂u
∂t

+ (u · ∇)u = −∇σ + θ ẑ +
√

Pr

Ra
∇2u, (1)

∂θ

∂t
+ (u · ∇)θ = uz + 1√

PrRa
∇2θ, (2)

∇ · u = 0, (3)

where u = (ux, uy, uz) is the velocity field, θ and
σ are the deviations of the temperature and pressure
fields from the conduction state, and ẑ is the buoy-
ancy direction. The two nondimensional parameters
are Rayleigh number Ra = αg�d3/νκ and the Prandtl
number Pr = ν/κ , where � is the temperature dif-
ference between the top and bottom plates, g is the
acceleration due to gravity, and α, ν, and κ are the heat
expansion coefficient, kinematic viscosity, and thermal
diffusivity of the fluid, respectively. The above nondi-
mensional equations are obtained by using d,

√
αg�d ,

and � as the length, velocity, and temperature scales,
respectively.

For very large Prandtl numbers,
√

αg�d/Pr is used
as the velocity scale for the nondimensionalization,
which yields

1

Pr

[
∂u
∂t

+ (u · ∇)u
]

= −∇σ + θ ẑ + 1√
Ra

∇2u, (4)

∂θ

∂t
+ (u · ∇)θ = uz + 1√

Ra
∇2θ, (5)

∇ · u = 0. (6)

In the limit of infinite Prandtl number, eq. (4) reduces
to a linear equation [13]

−∇σ + θ ẑ + 1√
Ra

∇2u = 0. (7)

In the Fourier space, the above equation transforms to

− ikσ̂ (k) + θ̂ (k)ẑ − 1√
Ra

k2û(k) = 0, (8)

where σ̂ , θ̂ , and û are the Fourier transforms of σ , θ ,
and u, respectively, and k = (kx, ky, kz) is the wave
vector. Using the constraint that the flow is divergence-
free, i.e., k · û(k) = 0, the velocity and pressure fields
can be expressed in terms of temperature fluctuations
as [13]

σ̂ (k) = −i
kz

k2
θ̂ (k), (9)

ûz(k) = √
Ra

k2⊥
k4

θ̂ (k), (10)

ûx,y(k) = −√
Ra

kzkx,y

k4
θ̂ (k), (11)

where k2⊥ = k2
x + k2

y in 3D and k2⊥ = k2
x in 2D (assum-

ing ky = 0). Using these relations, the kinetic energy
Eu can be expressed in terms of entropy as

Eu(k) = 1

2
|û(k)|2 = 1

2
Ra

k2⊥
k6

|θ̂ (k)|2 = Ra
k2⊥
k6

Eθ(k).

(12)

For the Pr = ∞ limit, the nonlinear term for the
velocity field, (u·∇)u, is absent, and the pressure, buoy-
ancy, and viscous terms are comparable to each other.
Assuming that the large-scale Fourier modes dominate
the flow, we can estimate the ratios of these terms by
computing them for the most dominant u(k) that occurs
for k = (π/

√
2, 0, π). Hence, the aforementioned

ratios can be estimated to be approximately

|θ |
|∇σ | ≈ |θ(k)|

|kσ(k)| ≈ k

kz

≈ 1, (13)

|θ |
|∇2u|/√Ra

≈ |θ(k)|
|k2u(k)/

√
Ra| ≈ k

k⊥
≈ 1. (14)

For very large Pr, the nonlinear term for the velocity
field, (u · ∇)u, is weak, and consequently the kinetic
energy flux is very weak in this regime. The flow
is dominated by the pressure, buoyancy, and viscous
terms similar to that for the Pr = ∞ limit. The nonlin-
earity of the temperature equation, (u ·∇)θ , however is
quite strong, and it yields a finite entropy flux for large
and infinite Prandtl numbers. We shall demonstrate this
statement using numerical data.

In this paper, we solve RBC for large and infi-
nite Pr; for large Pr, we solve eqs (4)−(6), while for
Pr = ∞, we solve eqs (7), (5), (6). In the next sec-
tion, we describe the numerical method used for our
simulations.
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3. Numerical method

We solve the governing equations [eqs (4)−(6)] for
large Prandtl numbers and eqs (7), (5), (6) for Pr = ∞.
The box geometry of the 2D simulations is 2

√
2 : 1,

and that for the 3D simulations is 2
√

2 : 2
√

2 : 1. For

the horizontal plates, we employ stress-free boundary
condition for the velocity field, and conducting bound-
ary condition for the temperature field. However, for
the vertical side walls, periodic boundary condition is
used for both the temperature and velocity fields. The
fourth-order Runge–Kutta method is used for the time

Table 1. Details of our free-slip numerical simulations: Nx, Ny and Nz are the number of grid points in x-, y-, and
z-directions, respectively. The computed viscous dissipation rates C

comp.
εu are in good agreement with the corresponding

estimated values Cest.
εu

[=(Nu − 1)Ra/Pe2]. Similarly, the computed thermal dissipation rates C
comp.

εT ,1 and C
comp.

εT ,2 agree with

the corresponding estimated values Cest.
εT ,1 [=Nu] and Cest.

εT ,2 [=(Nu/Pe)(�/θL)2] reasonably well. For all the simulations
kmaxηθ � 1, indicating that our simulations are well resolved.

Pr Ra Nx × Ny × Nz Nu Pe C
comp.
εu Cest.

εu
C

comp.

εT ,1 C
comp.

εT ,2 Cest.
εT ,2 kmaxηθ

102 1 × 105 256 × 1 × 128 9.8 1.98 × 102 22.3 22.3 9.8 0.61 0.61 2.9
102 5 × 105 256 × 1 × 128 14.5 4.98 × 102 28.5 27.3 14.5 0.37 0.35 1.8
102 1 × 106 512 × 1 × 128 17.3 7.16 × 102 34.4 31.8 17.3 0.31 0.29 2.0
102 5 × 106 512 × 1 × 256 27.4 1.84 × 103 42.5 38.9 27.4 0.19 0.18 1.7
102 1 × 107 1024 × 1 × 256 34.7 3.13 × 103 36.5 34.5 34.7 0.14 0.13 1.9
102 5 × 107 1024 × 1 × 512 61.6 1.03 × 104 28.7 28.6 61.6 0.072 0.072 1.5
102 1 × 108 2048 × 1 × 512 79.8 1.70 × 104 27.1 27.1 79.8 0.056 0.056 1.7
103 1 × 105 256 × 1 × 128 9.8 1.98 × 102 22.3 22.3 9.8 0.60 0.60 1.6
103 5 × 105 512 × 1 × 128 16.0 5.36 × 102 26.1 26.1 16.0 0.36 0.36 1.4
103 1 × 106 512 × 1 × 256 19.8 8.24 × 102 27.7 27.7 19.8 0.29 0.29 1.5
103 5 × 106 1024 × 1 × 512 28.9 2.10 × 103 33.2 31.7 28.9 0.17 0.16 1.9
103 1 × 107 1024 × 1 × 512 35.4 3.26 × 103 33.5 32.4 35.4 0.13 0.13 1.5
103 5 × 107 2048 × 1 × 1024 57.7 8.79 × 103 38.0 36.7 57.3 0.080 0.078 1.7
∞ 1 × 105 128 × 1 × 64 9.8 1.98 × 102 22.3 22.3 9.8 0.60 0.60 4.5
∞ 5 × 105 128 × 1 × 64 16.0 5.37 × 102 26.1 26.1 16.1 0.36 0.36 2.7
∞ 1 × 106 256 × 1 × 128 19.8 2.25 × 102 27.6 27.6 19.8 0.29 0.29 4.3
∞ 5 × 106 512 × 1 × 128 32.6 2.27 × 103 30.8 30.8 32.6 0.17 0.17 3.6
∞ 1 × 107 512 × 1 × 256 40.5 3.52 × 103 31.9 31.9 40.5 0.14 0.14 4.0
∞ 5 × 107 1024 × 1 × 256 60.0 9.51 × 103 33.5 32.6 60.0 0.077 0.075 3.5
∞ 1 × 108 1024 × 1 × 512 74.3 1.49 × 104 33.9 32.9 74.7 0.061 0.059 3.9
∞ 5 × 108 2048 × 1 × 512 124 4.27 × 104 34.8 33.7 124 0.036 0.034 3.2
102 1.0 × 105 2563 9.8 1.98 × 102 22.3 22.3 9.8 0.60 0.60 1.9
102 6.5 × 105 2563 17.3 6.15 × 102 28.6 28.3 17.5 0.36 0.34 1.0
102 2.0 × 106 5123 24.1 1.20 × 103 32.1 32.2 24.1 0.25 0.24 1.4
102 5.0 × 106 5123 31.0 1.96 × 103 39.5 39.1 30.9 0.19 0.19 1.1
102 1.0 × 107 10243 38.1 2.92 × 103 43.7 43.4 38.2 0.16 0.16 1.7
103 6.5 × 104 2563 8.6 1.53 × 102 21.4 21.4 8.6 0.69 0.68 1.3
103 1.0 × 105 2563 9.8 1.98 × 102 22.3 22.3 9.8 0.60 0.60 1.1
103 3.2 × 105 5123 14.1 3.98 × 102 27.2 27.1 14.1 0.42 0.43 1.5
103 2.0 × 106 10243 24.3 1.10 × 103 38.7 38.3 24.3 0.26 0.26 1.6
103 6.0 × 106 10243 34.2 2.13 × 103 43.4 43.7 34.2 0.19 0.19 1.1
∞ 7.0 × 104 1283 8.8 1.59 × 102 21.4 21.6 8.8 0.67 0.68 1.7
∞ 3.2 × 105 1283 14.1 4.14 × 102 25.1 25.1 14.1 0.41 0.42 2.0
∞ 6.5 × 105 1283 17.4 6.36 × 102 26.7 26.7 17.4 0.33 0.34 1.6
∞ 3.9 × 106 2563 30.3 1.95 × 103 30.3 30.4 30.3 0.19 0.19 1.8
∞ 6.5 × 106 2563 36.1 2.70 × 103 33.5 31.8 36.0 0.16 0.16 1.5
∞ 9.8 × 106 2563 41.2 3.34 × 103 35.8 35.6 41.1 0.15 0.15 1.3
∞ 1.0 × 108 5123 87.5 1.38 × 104 45.6 45.3 87.2 0.07 0.07 1.3
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advancement, and 2/3 rule for dealiasing. We use the
pseudospectral code TARANG [15] for our simula-
tions. More details about the numerical scheme can
be found in ref. [12].

We perform direct numerical simulations (DNS) for
Prandtl numbers 102, 103, and ∞ and Rayleigh num-
bers in the range 105 to 5 × 108. The parameters and
grid resolutions of all our runs are listed in table 1.
Our grid resolution is such that the Batchelor length
scale is larger than the mean grid spacing, thus ensuring
that our simulations are fully resolved. Quantita-
tively, kmaxηθ � 1 for all the runs, where kmax is the
maximum wavenumber (inverse of the smallest length
scale), and ηθ = (κ3/εu)

1/4 is the Batchelor length.
We also perform simulations for Pr = 102 in a 2D

box of aspect ratio one with no-slip boundary condi-
tion on all sides. We use the spectral element code
NEK5000 [16]. The Rayleigh number is varied from
104 to 5 × 107. We chose a box with 28 × 28 spectral
elements and seventh-order polynomials within each
element, and therefore the overall grid resolution is
1962. For the spectra study, however, we use 15th-order
polynomials that yield 4202 effective grid points in
the box.

We compute the energy and entropy spectra and
fluxes, Nusselt and Péclet numbers, temperature fluc-
tuations, and dissipation rates using the numerical data
of the steady state. These quantities are averaged over
2000 eddy turnover times.

4. Low-wavenumber Fourier modes of 2D
and 3D flows

Schmalzl et al [2,3] and van der Poel et al [4] showed
that the flow of 3D RBC quite closely resembles the
2D flow for large Prandtl numbers. The temperature
isosurfaces for Pr = ∞ shown in figure 1 illustrates
an array of parallel rolls, thus suggesting a quasi-two-
dimensional structure for the flow. For 2D RBC, the
temperature field exhibited in figure 2 for Pr = 103, ∞,
and Ra = 106 quite closely resembles the rolls of
3D RBC. This similarity is because the most dom-
inant θ modes are common among 2D and 3D RBC
(to be discussed below). We also remark that at large
Rayleigh numbers, the plumes become somewhat tur-
bulent, as shown in figure 3 for Ra = 5 × 107 and
Pr = 100, 1000, ∞.

For comparison between the 2D and 3D RBC, we
perform 2D and 3D simulations for Pr = ∞ and
Ra = 107. The first six most dominant θ modes
are (0, 0, 2n) ≈ −1/(2nπ), where n = 1 to 6, as

Figure 1. Temperature isosurfaces for Pr = ∞ and Ra =
6.6 × 106 exhibiting sharp plumes and quasi-2D nature of
3D RBC. The red (blue) structures represent hot (cold) fluid
going up (down) (figure adapted from Pandey et al [13]).

(a)

(b)

Figure 2. Density plots of the temperature field in a 2D
box for Ra = 106 and (a) Pr = 103; (b) Pr = ∞. The
figures illustrate hot (red) and cold (blue) plumes.

(a)

(b)

(c)

Figure 3. Density plots of the temperature field for Ra =
5 × 107 and (a) Pr = 102; (b) Pr = 103; (c) Pr = ∞. The
structures get sharper with increasing Prandtl numbers [4].
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Table 2. Comparison of the ten most dominant entropy Fourier modes in 2D and 3D RBC for Pr = ∞ and Ra = 107. Here
(nx, ny, nz) are mode indices which are related to a mode k as (kx, ky, kz) = ( π√

2
nx,

π√
2
ny, πnz).

Mode (3D) Emode
θ /E3D

θ Emode
u /E3D

u Mode (2D) Emode
θ /E2D

θ Emode
u /E2D

u

(nx, ny, nz) (%) (%) (nx, nz) (%) (%)

(0,0,2) 30.4 0 (0,2) 30.6 0
(0,0,4) 7.81 0 (0,4) 7.79 0
(0,0,6) 3.56 0 (0,6) 3.54 0
(0,0,8) 2.03 0 (0,8) 2.03 0
(0,0,10) 1.30 0 (0,10) 1.31 0
(0,0,12) 0.87 0 (0,12) 0.90 0
(1,0,1) 0.018 19.6 (1,1) 0.020 20.4
(3,0,1) 0.011 2.05 (3,1) 0.018 3.39
(1,0,3) 0.011 0.046 (1,3) 0.011 0.046
(3,0,3) 0.003 0.039 (3,3) 0.007 0.095

shown by Mishra and Verma [12]; for these modes
u(k) = 0 [see eq. (12)]. In table 2, we list the ten most
dominant temperature modes along with their entropy
and kinetic energy. According to table 2, the entropy
and the kinetic energy of the top ten modes, (kx, kz)

in 2D and (kx, 0, kz) in 3D, are very close. This is
the reason for the flow structures of the 3D RBC to
be quasi-two-dimensional.

Apart from θ̂ (0, 0, 2n) modes, the next four most
dominant 2D modes are (1, 1), (3, 1), (1, 3), and
(3, 3). Clearly, (1, 1) is the most dominant mode
with a finite kinetic energy, and it corresponds to
a pair of rolls shown in figures 1−3. The mode
(1, 1) is a part of the most dominant triad inter-
action {(1, 1), (−1, 1), (0, 2)} [12]. The other modes
(3, 1), (1, 3) arise due to nonlinear interaction with
the (2, 2) mode, which is relatively weak but quite
important [17].

We also compute the total energy of the three com-
ponents of the velocity field in 3D and the two com-
ponents in 2D. We observe that in 3D, Ex/Eu =
0.55, Ey/Eu = 0.02, and Ez/Eu = 0.43, clearly
demonstrating the quasi-2D nature of the flow. Here,
Ex = 〈u2

x〉/2, Ey = 〈u2
y〉/2, Ez = 〈u2

z〉/2, Eu =
Ex + Ey + Ez, and 〈·〉 represents the time-averaged
value in the steady state. In 2D, the ratios are Ex/Eu =
0.58 and Ez/Eu = 0.42, which are quite close to the
corresponding ratios for the 3D RBC.

We also performed similar analysis for Pr = 100 and
1000 for 2D and 3D, whose behaviour is similar to that
for Pr = ∞ described above.

Schmalzl et al [2,3] decomposed the 3D veloc-
ity field into toroidal and poloidal components, and
showed that the toroidal component disappears in the

limit of infinite Prandtl number, consistent with the
analytical results of Vitanov [18]. Schmalzl et al [2]
argued that the vertical component of the vorticity dis-
appears in the Pr = ∞ limit, leading to vanishing of the
toroidal component of the velocity, and hence the two-
dimensionalization of the Pr = ∞ RBC. Our results
are consistent with those of Schmalzl et al [2,3] and
Vitanov [18].

5. Energy spectra and fluxes

In this section, we compute the spectra and fluxes of
energy and entropy for 2D and 3D RBC for large and
infinite Prandtl numbers and compare them. We show
that these quantities are very close to each other for 2D
and 3D RBC because the dominant Fourier modes for
them are very close to each other.

The one-dimensional kinetic energy and entropy
spectra are defined as

Eu(k) =
∑

k≤|k′|<k+1

|û(k′)|2
2

, (15)

Eθ(k) =
∑

k≤|k′|<k+1

|θ̂ (k′)|2
2

. (16)

The flow is anisotropic in 2D RBC, e.g., Ex/Ez =
1.37, but the degree of anisotropy is rather small.
Hence, the aforementioned one-dimensional spectra
give a good description of the flow properties.

The nonlinear interactions induce kinetic energy and
entropy transfers from larger length scales to smaller
length scales that results in kinetic energy and entropy



13 Page 6 of 10 Pramana – J. Phys. (2016) 87: 13

fluxes. Note that for Pr = ∞, the nonlinear interac-
tion among the velocity modes is absent, and hence the
kinetic energy flux is zero for this case. The kinetic
energy and entropy fluxes coming out of a wavenumber
sphere of radius k0 are given by [12,19]

�u(k0) =
∑
k≥k0

∑
p<k0

δk,p+q�

×([k · û(q)][û∗(k) · û(p)]), (17)

�θ(k0) =
∑
k≥k0

∑
p<k0

δk,p+q�

×([k · û(q)][θ̂∗(k) · θ̂ (p)]), (18)

where � stands for the imaginary part of the argument
and k, p and q are the wavenumbers of a triad with
k = p + q.

For 3D RBC with Pr = ∞, Pandey et al [13] derived
the kinetic energy and entropy spectra as

Eu(k)=(a2
2a3)

2/3d
(κ

d

)2
Ra(2/3)(3−2δ−ζ )(kd)−13/3, (19)

Eθ(k)=(a2
2a3)

2/3d�2Ra(2/3)(δ−ζ )(kd)−1/3, (20)

where a2, a3, ζ and δ are defined using θrms = a2�,
Pe = a3Ra1−ζ , and θres ∼ Raδ . θres is the temperature
fluctuation without θ̂ (0, 0, 2n) modes [13]. They also
argued that the kinetic energy flux �u(k) → 0, but
�θ(k) ≈ const. in the inertial range for Pr = ∞ RBC.
They showed that the above formulae also describe the
energy spectra for very large Prandtl numbers, i.e., for
Pr > 100.

The arguments of Pandey et al [13] are indepen-
dent of dimensionality, and hence we expect the above
expressions to hold in 2D as well for large and infinite
Prandtl numbers. In fact, the similarities must be very
close because of the identical dominant Fourier modes
in 2D and 3D RBC (see §4). To verify the above con-
jecture, we compute the energy and entropy spectra, as
well as their fluxes.

In figure 4, we plot the normalized kinetic spec-
trum Eu(k)k13/3 for Pr = 100, Ra = 107 and Pr =
∞, Ra = 108 for both 2D and 3D RBC. The figure
illustrates that the energy spectrum for 2D and 3D are
quite close. Hence, our conjecture that 2D and 3D
RBC exhibit similar kinetic energy spectrum is ver-
ified. Figure 5 exhibits the kinetic spectrum for an
RBC simulation in a unit box with no-slip boundary
condition for Pr = 100 and Ra = 107. The figure
demonstrates that Eu(k) ∼ k−13/3, similar to that of
free-slip boundary condition.

The kinetic energy flux �u for Pr = ∞ is zero due to
the absence of nonlinearity. However, �u is expected

Figure 4. The normalized kinetic energy spectrum
Eu(k)k13/3 as a function of wavenumber. Curves for 2D
and 3D collapse on each other and are nearly constant in the
inertial range, and hence Eu(k) ∼ k−13/3.

Figure 5. The kinetic energy spectrum Eu(k) for Pr = 102

and Ra = 107 in a 2D unit box with no-slip boundary con-
dition. The normalized spectrum is nearly constant in the
inertial range, and hence Eu(k) ∼ k−13/3 (figure adapted
from Pandey et al [13]).

Figure 6. Plot of the kinetic energy flux �u(k) vs. k. The
fluxes for Pr = 102 have been multiplied by a factor of 10−2

to fit properly in this figure. In 2D, �u(k) < 0, reminiscence
of 2D fluid turbulence.
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(a)

(b)

Figure 7. Plots of the ratios between (a) nonlinear and
pressure gradient terms and (b) nonlinear and buoyancy
terms of eq. (1). The nonlinearity is weak compared to
pressure gradient and buoyancy.

to be small (�1 in our normalized units) for large Pr.
In figure 6, we plot the kinetic energy flux �u(k) for
Pr = 102 and 103 for 2D and 3D RBC. As expected,
�u values are small for all the four cases. Interest-
ingly, the kinetic energy flux for 2D RBC is negative at
small wavenumbers, which is reminiscent of 2D fluid
turbulence [9,20]. The KE flux for 3D RBC is posi-
tive almost everywhere. Thus, the KE fluxes for 2D
and 3D RBC are somewhat different, but they play an
insignificant role in the large and infinite Prandtl num-
ber RBC. Hence, we can claim that a common feature
for the large Pr 2D and 3D RBC is that �u → 0.

The reason for the smallness of kinetic energy flux
for the large and infinite Pr RBC is that the nonlin-
ear term is much weaker than the pressure gradient
and the buoyancy terms of eq. (1). In figure 7, we plot
|u · ∇u|/|∇σ | and |u · ∇u|/|θ | as a function of Ra. The
aforementioned ratios lie between 0.001 and 0.1, and
they become smaller as Pr increases. These results show
that the nonlinear term is weak for large and infinite Pr
RBC. Note that |∇σ | ≈ |θ |, consistent with eq. (13).

In figure 8, we plot the entropy spectrum for Pr =
100, Ra = 107 and Pr = ∞, Ra = 108 for 2D and
3D RBC. Clearly, the entropy spectrum for the 2D and
3D RBC also show very similar behaviour. Note that

Figure 8. Entropy spectrum Eθ(k) vs. k. Eθ(k) exhibits
a dual branch with a dominant upper branch with Eθ(k) ∼
k−2. The lower branch is almost flat in the inertial range.

Figure 9. Entropy spectrum Eθ(k) for Pr = 102 and
Ra = 107 with no-slip boundary condition in a 2D box.
Its behaviour is very similar to that for the free-slip boundary
condition (figure adapted from Pandey et al [13]).

the entropy spectrum exhibits a dual spectrum, with the
top curve (E(k) ∼ k−2) representing the θ̂ (0, 0, 2n)

modes, whose values are close to −1/(2nπ) (see
§4 and Mishra and Verma [12]). The lower curve
in the spectrum, corresponding to modes other than
θ̂ (0, 0, 2n), is somewhat flat. We also observe simi-
lar entropy spectrum for no-slip boundary condition,
which is shown in figure 9 for Pr = 100 and Ra = 107.

We compute the entropy flux defined in eq. (18) [12]
for Pr = 100, Ra = 107 and Pr = ∞, Ra = 108

for both 2D and 3D RBC. In figure 10, we plot the
entropy flux �θ(k) for the above four cases. Clearly,
the behaviour of 2D and 3D RBC are very similar, with
a constant entropy flux in the inertial range.

In the next section, we shall compute large-scale
quantities for 2D and 3D RBC with large and infinite
Prandtl numbers.
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Figure 10. Plot of the entropy flux �θ(k) vs. k. The fluxes
are nearly constant in the inertial range, and are similar for
the 2D and 3D RBC.

6. Scaling of large-scale quantities

6.1 Nusselt and Péclet numbers

Schmalzl et al [2,3] and van der Poel et al [4] showed
that the Nusselt and Péclet numbers for 2D and 3D
RBC exhibit similar scaling. For validation of our data,
we also compute the Nusselt number Nu and Péclet
number Pe, as well as θrms using our data sets.

In figure 11, we plot the Nusselt number, Péclet
number and normalized root mean square temperature
fluctuations for Pr = 100, 1000, ∞ and Ra ranging
from 104 to 5 × 108 for both 2D and 3D RBC. We
also plot Nu and Pe for Pr = 100 with no-slip bound-
ary condition (shown by orange triangles). The figures
show that the 2D and 3D RBC have similar Nusselt and
Péclet number scaling, in particular Nu ∼ Ra0.3 and
Pe ∼ Ra0.6, with a weak variation of the exponents
with Pr and Ra. However, the Nu and Pe prefactors for
the no-slip data are lower than those for free-slip runs,
which is due to lower frictional force for the free-slip
boundary condition. These results are consistent with
those of Schmalzl et al [2,3], van der Poel et al [4],
Silano et al [14], and Pandey et al [13].

We observe that θrms/� is a constant. The details
of scaling and error bars are discussed in Pandey
et al [13]. These similarities are primarily due to the
quasi-2D nature of the 3D RBC.

6.2 Dissipation rates

In this subsection, we shall discuss the scaling of nor-
malized viscous and thermal dissipation rates for large
Prandtl numbers. Shraiman and Siggia [21] derived the
following exact relations between dissipation rates, Pr,

(a)

(b)

(c)

Figure 11. Plots of (a) Nusselt number Nu; (b) Péclet
number Pe; (c) normalized root mean square temperature
fluctuations θrms/� as a function of Rayleigh number. The
2D and 3D RBC exhibit similar scaling for large-scale quan-
tities, except for the no-slip data for Pr = 100 (orange
triangles), for which the prefactors are lower.

Ra, and Nu:

εu = ν〈|∇ × u|2〉 = ν3

d4

(Nu − 1)Ra

Pr2
, (21)

εT = κ〈|∇T |2〉 = κ
�2

d2
Nu, (22)

where εu and εT are the volume-averaged viscous and
thermal dissipation rates, respectively. For large and
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Figure 12. Normalized viscous dissipation rate Cεu as a
function of Ra. The values of Cεu are lower in 2D compared
to the values in 3D RBC.

infinite Prandtl numbers, which correspond to the vis-
cous dominated regime, an appropriate formula for the
normalized viscous dissipation rate is [13]

Cεu = εu

νU2
L/d2

= (Nu − 1)Ra

Pe2
. (23)

The corresponding formulas for the normalized ther-
mal dissipation rate are

CεT ,1 = εT

κ�2/d2
= Nu, (24)

CεT ,2 = εT

ULθ2
L/d

= Nu

Pe

(
�

θL

)2

. (25)

See Pandey et al [13] for a detailed discussion on the
dissipation rates for large Prandtl number convection.

Using the scaling of Nu and Pe, we find that for
Pr = ∞, Cεu is an approximate constant independent
of Ra [13]. In figure 12, we plot Cεu for Pr = 103 and
∞, according to which Cεu is nearly a constant with
a significant scatter of data. As evident from the fig-
ure, the normalized viscous dissipation rate for the 2D
RBC is a bit lower than the corresponding data for the
3D RBC, which is due to the inverse cascade of energy
in 2D RBC that suppresses �u (see figure 6).

In table 1, we list the normalized thermal dissipa-
tion rate CεT ,1 and the Nusselt number, and they are
observed to be quite close to each other, consistent
with eq. (24). In the table, we also list the com-
puted dissipation rate C

comp.

εT ,2 = εT /(ULθ2
L/d) and the

estimated dissipation rate Cest.
εT ,2 = (Nu/Pe)(�/θL)2,

where UL = √
2Eu and θL = √

2Eθ . These quantities
are close to each other, consistent with eq. (25).

Figure 13 exhibits CεT ,2 as a function of Ra. The
figure shows that the scaling of CεT ,2 in 2D is simi-
lar to that for 3D RBC. A detailed analysis indicates

Figure 13. Normalized thermal dissipation rate CεT ,2 as a
function of Rayleigh number. We observe CεT ,2 ∼ Ra−0.32

in 2D, which is similar to the scaling for Pr = ∞ in 3D.

that for 2D RBC, CεT ,2 = (22 ± 9)Ra−0.31±0.03, (24 ±
1.7)Ra−0.32±0.01, and (24 ± 2.1)Ra−0.32±0.01 for Pr =
102, 103, and ∞, respectively. For 3D RBC, Pandey
et al [13] reported CεT ,2 = (17 ± 5.1)Ra−0.29±0.02,
(16 ± 4.1)Ra−0.28±0.02, and (22 ± 2.2)Ra−0.31±0.01 for
Pr = 102, 103, and ∞, respectively. The scaling of
CεT ,2 for 2D and 3D RBC are similar.

These computations show that the behaviour of vis-
cous and thermal dissipation rates for 2D and 3D RBC
are quite similar.

7. Discussions and conclusions

We performed numerical simulations of 2D and 3D
RBC for Pr = 100, 1000, ∞, and Ra in the range of
105 to 5 × 108. We showed that the dominant Fourier
modes of the 2D and 3D flows are very close to each
other, which is the reason for the similarities between
the Nusselt and Péclet numbers in 2D and 3D RBC,
as reported by Schmalzl et al [2,3] and van der Poel
et al [4]. The flow in 3D RBC is quasi-two-dimensional
because of the strong suppression of the velocity in
one of the horizontal directions. These results are con-
sistent with the results of Schmalzl et al [2,3] and
Vitanov [18], according to which the toroidal com-
ponent of the velocity field in 3D RBC vanishes for
Pr = ∞.

We compute the spectra and fluxes of the kinetic
energy and entropy for the 2D RBC and show them to
be very similar to those for the 3D RBC. In particular,
we observe that the kinetic energy spectrum Eu(k) ∼
k−13/3, while the entropy spectrum exhibits a dual
branch, with a dominant k−2 branch corresponding
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to the θ̂ (0, 0, 2n) Fourier modes. The other entropy
branch is somewhat flat. The similarities between the
spectra and fluxes of 2D and 3D RBC are due to the
quasi-2D nature of 3D RBC.

We compute global quantities such as the Nusselt
and Péclet numbers, θrms, the kinetic energy and
thermal dissipation rates. All these quantities exhibit
similar behaviour in 2D and 3D RBC, which is consis-
tent with the results of Schmalzl et al [2,3] and van der
Poel et al [4].

Our results are essentially numerical. It will be use-
ful to construct low-dimensional models of Pr = ∞
convection, and study how the velocity in one of the
perpendicular direction gets suppressed. This work is
under progress.
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