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Abstract. In this paper, two integration schemes are employed to obtain solitons, singular periodic
waves and other types of solutions of the Drinfel’d–Sokolov–Wilson equation. The two schemes
studied in this paper are the Bäcklund transformation of Riccati equation and the trial function
approach. The corresponding constraint conditions of the solutions are also given.
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1. Introduction

It is well known that nonlinear evolution equations (NLEEs) are widely used to describe
physical phenomena in various scientific and engineering fields, such as fluid mechanics,
plasma physics, optical fibres, biology, solid-state physics, etc. In order to understand the
mechanisms of those physical phenomena, it is necessary to explore their solutions and
properties. Considerable efforts have been made by many mathematicians and physical
scientists to obtain exact solutions of such nonlinear evolution equations and a num-
ber of powerful and efficient methods, such as trial equation method [1,2], multiple
exp-function method [3], extended tanh method [4], (G′/G)-expansion method [5], trans-
formed rational function method [6,7] etc. have been developed by those scientists. The
Drinfel’d–Sokolov–Wilson equation (DSWE) that is to be studied in this paper is given
by {

ut + pvvx = 0,

vt + ruvx + suxv + qvxxx = 0,
(1)
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where p, q, r, s are some nonzero parameters. Equation (1) is originally introduced by
Drinfel’d and Sokolov [8] and Wilson [9] as a model of dispersive water waves, and it
plays an important role in fluid dynamics [10,11]. Recently, eq. (1) has been studied by
several researchers [12–14].

Lu [15] has introduced a reliable and effective method called the Bäcklund transfor-
mation method of Riccati equation to look for new exact solutions of nonlinear fractional
PDEs. The Bäcklund transformation method of Riccati equation [15] is based on the
assumption that exact solutions of NLEEs can be expressed by a polynomial in ψ,

such that ψ = ψ(ξ) satisfies the Bäcklund transformation of Riccati equation. In
this paper, we employ two integration schemes, the Bäcklund transformation of Riccati
equation [15] and the trial function approach [1,2], to obtain explicit expression of
solutions of eq. (1).

2. Integration schemes

In this section, we outline the description of the Bäcklund transformation of Riccati
equation method and the trial function approach.

2.1 The Bäcklund transformation of Riccati equation

Recall that the Riccati equation

φ′(ξ) = σ + φ2(ξ), (2)

has the following exact solutions:

φ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−√−σ tanh
(√−σ ξ

)
, σ < 0,

−√−σ coth
(√−σ ξ

)
, σ < 0,√

σ tan
(√

σ ξ
)
, σ > 0,

−√
σ cot

(√
σ ξ

)
, σ > 0,

− 1

ξ + �
, � = const., σ = 0.

(3)

Next, let us consider the nonlinear evolution equation (NLEE):

F(u, ut , ux, uxx, uxt , ...) = 0, (4)

where u = u(x, t) is an unknown function, F is a polynomial in u and its various partial
derivatives ut , ux with respect to t, x respectively, in which the highest-order derivatives
and nonlinear terms are involved.

By using the travelling wave transformation

u(x, t) = U(ξ), ξ = k(x − ct), (5)

where k, c are constants to be determined later, we can reduce eq. (4) to a nonlinear
ordinary differential equation (NLODE) of the form

P
(
U,U ′, U ′′, ...

) = 0. (6)
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Step 1. Suppose that eq. (6) has the following solution:

u(ξ) =
N∑

l=0

alψ
l(ξ), (7)

where al (l = 0, ..., N) are constants to be determined and ψ(ξ) comes from the following
Bäcklund transformation for the Riccati equation:

ψ(ξ) = −σB + D φ(ξ)

D + B φ(ξ)
, (8)

that is ψ(ξ) satisfies the Riccati equation

ψ ′(ξ) = σ + ψ2(ξ), (9)

where B,D are arbitrary parameters, σ is a constant to be determined and B �= 0, φ(ξ)

are the well-known solutions (3).

Step 2. Balancing the highest-order derivatives and nonlinear term in (6) to determine
the positive integer N in (7).

Step 3. Substituting the explicit formal solution (7) with (8) into eq. (6) and setting the
coefficients of the powers of φ(ξ) to be zero, we obtain a system of algebraic equa-
tions which can be solved by Maple or Mathematica to get the unknown constants
al (l = 0, ..., N), σ , k and c. Consequently, we obtain the exact solutions of eq. (4).

2.2 Trial equation approach

In this subsection we outline the main steps of the trial equation method as follows:

Step 1. Take the trial equation

(
u′)2 = F(u) =

s∑
l=0

alu
l, (10)

where al (l = 0, 1, ..., s) are constants to be determined. Substituting eq. (10) and other
derivative terms such as u′′ or u′′′ and so on into eq. (6) yields a polynomial G(u) of u.
According to the balance principle we can determine the value of s. Setting the coeffi-
cients of G(u) to zero, we get a system of algebraic equations. Solving this system, we
shall determine c, k and values of a0, a1, ..., as .

Step 2. Rewrite eq. (10) by the integral form

±(ξ − ξ0) =
∫

1√
F(u)

du. (11)

According to the complete discrimination system of the polynomial, we classify the roots
of F(u), and solve the integral equation (11). Thus, we obtain the exact solutions to
eq. (4).
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3. The Drinfel’d–Sokolov–Wilson equation

Hirota and Satsuma [16] have proposed a system of coupled KdV equations, describing
the interaction of two long waves with different dispersion relations:{

ut − 1
2 (uxxx + 6uux) − 2bvvx = 0,

vt + vxxx + 3uvx = 0,
(12)

where it was shown that this equation is a special case of the four-reduced Kadomtsev–
Petviashvili (KP) hierarchy. Moreover, as has been shown by Wilson, eq. (12) can be
obtained within a general construction due to Drinfel’d and Sokolov. In fact, Wilson
[9] has shown how this equation can be related to the affine Lie algebra C

(1)
2 . Start-

ing from this general Drinfel’d–Sokolov construction, Wilson has also identified another
interesting equation that reads as{

ut + 3vvx = 0,

vt + 2uvx + uxv + 2vxxx = 0,
(13)

and is referred to as the Drinfel’d–Sokolov–Wilson (DSW) equation.
In this section, we employ the Bäcklund transformation of Riccati equation method and

the trial function approach to eq. (1). To this end, we use the wave transformation

u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = k(x − ct), (14)

to convert eq. (1) to the following ODEs:{ −kcU ′ + pkV V ′ = 0,

−kcV ′ + rkUV ′ + skU ′V + qk3V ′′′ = 0.
(15)

By integrating the first equation in eq. (15), we obtain

U = p

2c
V 2. (16)

Substituting (16) into the second equation in eq. (15), we can obtain

−kcV ′ + pk

2c
(r + 2s)V 2V ′ + qk3V ′′′ = 0, (17)

which can be reduced to

−6c2V + p(r + 2s)V 3 + 6qck2V ′′ = 0, (18)

with zero constant of integration.

3.1 The Bäcklund transformation of Riccati equation method applied to DSW equation

In this subsection, the Bäcklund transformation of the Riccati equation is applied to obtain
the exact solutions of the DSW equation.

Balancing V ′′ with V 3 in eq. (18), we obtain N = 1. Then the solution has the form

V (ξ) = a0 + a1

(−σB + Dφ(ξ)

D + Bφ(ξ)

)
. (19)
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Substituting (19) along with (2) into (18) and then setting the coefficients of φ(ξ) to be
zero, we can obtain a set of algebraic equations which can be solved by Mathematica to
get the following solution:

a0 = 0, σ = c

2k2q
, a1 = ±k

√
− 12cq

p(r + 2s)
, (20)

where c, k are arbitrary real constants. The solution of eq. (1) corresponding to eq. (20)
has the following cases:

If cq < 0, we obtain

u1(x, t) = 6c

r + 2s

⎛
⎜⎝

√
−c

2qk2 B − D tanh
(√

−c
2qk2 (k(x − ct))

)

D −
√

−c
2qk2 B tanh

(√
−c

2qk2 (k(x − ct))
)

⎞
⎟⎠

2

, (21)

v1(x, t) = ±
√

12c2

p(r + 2s)

⎛
⎜⎝

√
−c

2qk2 B − D tanh
(√

−c
2qk2 (k(x − ct))

)

D −
√

−c
2qk2 B tanh

(√
−c

2qk2 (k(x − ct))
)

⎞
⎟⎠ (22)

or

u2(x, t) = 6c

r + 2s

⎛
⎜⎝

√
−c

2qk2 B − D coth
(√

−c
2qk2 (k(x − ct))

)

D −
√

−c
2qk2 B coth

(√
−c

2qk2 (k(x − ct))
)

⎞
⎟⎠

2

, (23)

v2(x, t) = ±
√

12c2

p(r + 2s)

⎛
⎜⎝

√
−c

2qk2 B − D coth
(√

−c
2qk2 (k(x − ct))

)

D −
√

−c
2qk2 B coth

(√
−c

2qk2 (k(x − ct))
)

⎞
⎟⎠ .

(24)

If cq > 0, we obtain

u3(x, t) = −6c

r + 2s

⎛
⎜⎝

−
√

c
2qk2 B + D tan

(√
c

2qk2 (k(x − ct))
)

D +
√

c
2qk2 B tan

(√
c

2qk2 (k(x − ct))
)

⎞
⎟⎠

2

, (25)

v3(x, t) = ±
√

−12c2

p(r + 2s)

⎛
⎜⎝

−
√

c
2qk2 B + D tan

(√
c

2qk2 (k(x − ct))
)

D +
√

c
2qk2 B tan

(√
c

2qk2 (k(x − ct))
)

⎞
⎟⎠

(26)

or

u4(x, t) = −6c

r + 2s

⎛
⎜⎝

√
c

2qk2 B + D cot
(√

c
2qk2 (k(x − ct))

)

−D +
√

c
2qk2 B cot

(√
c

2qk2 (k(x − ct))
)

⎞
⎟⎠

2

, (27)
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v4(x, t) = ±
√

−12c2

p(r + 2s)

⎛
⎜⎝

√
c

2qk2 B + D cot
(√

c
2qk2 (k(x − ct))

)

−D +
√

c
2qk2 B cot

(√
c

2qk2 (k(x − ct))
)

⎞
⎟⎠ .

(28)

These solutions are being reported here for the first time because B �= 0.

3.2 The trial equation method applied to the DSW equation

The trial equation method is applied to obtain exact solutions of the DSW equation. Bal-
ancing V ′′ with V 3 in eq. (18), we get s = 4. Using the solution procedure of the trial
equation method, we obtain the system of algebraic equations as follows:

3cqk2a1 = 0, (29)

6c(qk2a2 − c) = 0, (30)

9cqk2a3 = 0, (31)

12cqk2a4 + p(r + 2s) = 0. (32)

Solving the above system of algebraic equations, we obtain the following results:

a1 = 0, a2 = c

qk2
, a3 = 0, a4 = −p(r + 2s)

12cqk2
. (33)

Substituting these results into eqs (10) and (11), we get

±(ξ − ξ0) =
∫

1√
a0 + c

qk2 V
2 − p(r+2s)

12cqk2 V 4
dV , (34)

where a0 is an arbitrary real constant. Now, we discuss two cases as follows:

Case 1. If we set a0 = 0 in eq. (34) and integrating with respect to V , we get the
following exact solution of eq. (1):

If cq > 0, we obtain

u1(x, t) = 6c

r + 2s
sech2

(√
c

qk2
(k(x − ct) − ξ0)

)
, (35)

v1(x, t) = ±
√

12c2

p(r + 2s)
sech

(√
c

qk2
(k(x − ct) − ξ0)

)
(36)

or

u2(x, t) = −6c

r + 2s
csch2

(√
c

qk2
(k(x − ct) − ξ0)

)
, (37)

v2(x, t) = ±
√

−12c2

p(r + 2s)
csch

(√
c

qk2
(k(x − ct) − ξ0)

)
. (38)
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Solutions (35) and (36) are solitary wave solutions and solutions (37) and (38) are singular
solitary wave solutions.

If cq < 0, we obtain

u3(x, t) = 6c

r + 2s
sec2

(√
−c

qk2
(k(x − ct) − ξ0)

)
, (39)

v3(x, t) = ±
√

12c2

p(r + 2s)
sec

(√
−c

qk2
(k(x − ct) − ξ0)

)
(40)

or

u4(x, t) = −6c

r + 2s
csc2

(√
−c

qk2
(k(x − ct) − ξ0)

)
, (41)

v4(x, t) = ∓
√

12c2

p(r + 2s)
csc

(√
−c

qk2
(k(x − ct) − ξ0)

)
. (42)

These solutions are singular periodic wave solutions.

Case 2. If we set a0 = −3c3/(pqk2(r + 2s)) in eq. (34) and integrating with respect
to V , we get the following exact solution of eq. (1):

If cq < 0, we obtain

u5(x, t) = 6c

r + 2s
tanh2

(√
−c

2qk2
(k(x − ct) − ξ0)

)
, (43)

v5(x, t) = ±
√

12c2

p(r + 2s)
tanh

(√
−c

2qk2
(k(x − ct) − ξ0)

)
(44)

or

u6(x, t) = 6c

r + 2s
coth2

(√
−c

2qk2
(k(x − ct) − ξ0)

)
, (45)

v6(x, t) = ±
√

12c2

p(r + 2s)
coth

(√
−c

2qk2
(k(x − ct) − ξ0)

)
. (46)

Solutions (43) and (44) are shock wave solutions and (45) and (46) are singular soliton
solutions.

If cq > 0, we obtain

u7(x, t) = −6c

r + 2s
tan2

(√
−c

2qk2
(k(x − ct) − ξ0)

)
, (47)

v7(x, t) = ±
√

−12c2

p(r + 2s)
tan

(√
−c

2qk2
(k(x − ct) − ξ0)

)
(48)
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or

u8(x, t) = −6c

r + 2s
cot2

(√
−c

2qk2
(k(x − ct) − ξ0)

)
, (49)

v8(x, t) = ∓
√

−12c2

p(r + 2s)
cot

(√
−c

2qk2
(k(x − ct) − ξ0)

)
. (50)

These solutions are singular periodic wave solutions.
The solutions (37), (38), (41) and (42) obtained by using the trial solution approach are

not reported in [12–14] using the direct algebraic method and the exp-function method.

4. Conclusions

Many powerful methods are used in solitary wave theory to examine exact soliton solu-
tions for NLEEs [1–16]. In this paper, we studied the new application of the Bäcklund
transformation of Riccati equation [15] and the trial function approach [1,2] to derive
new solitary wave solutions, singular periodic solutions and other types of solutions of
the Drinfel’d–Sokolov–Wilson equation. These methods are not only efficient, but also
have the merit of being widely applicable. The results show that the proposed methods
are direct, effective and can be applied to many other NLEEs in mathematical physics.
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