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Abstract. In this paper, the chaos control and the synchronization of two fractional-order Liu
chaotic systems with unknown parameters are studied. According to the Lyapunov stabilization
theory and the adaptive control theorem, the adaptive control rule is obtained for the described
error dynamic stabilization. Using the adaptive rule and a proper Lyapunov candidate function, the
unknown coefficients of the system are estimated and the stabilization of the synchronizer system
is demonstrated. Finally, the numerical simulation illustrates the efficiency of the proposed method
in synchronizing two chaotic systems.
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1. Introduction

The chaotic behaviour of the dynamic systems can be observed in several real applications
in the world, such as circuits, mathematics, power systems, medicine, electrochemical
biology, etc. [1,2]. Thus, chaos is one of the most interesting subjects to attract the experts
from various fields of science. The fractional calculus was established about 300 years
ago. But, its applications in physics and engineering have been studied only in recent
decades. Most of the practical and industrial systems could be modelled with fractional-
order derivations [3]. Currently, the control and synchronization of chaotic systems is one
of the most appealing subject, to many scientists [4]. For instance, in [5], the stabilization
of an integrated fractional-order chaos system was studied. In [6], the stabilization of the
fractional-order system using the active control method was investigated. In [7], a method
for the stabilization of a fractional-order system based on the active sliding mode was
presented. In [8], the Routh–Hurwitz method in fractional-order systems was used to syn-
chronize the Duffing–vander Pol fractional-order chaos system. In [9], a smart resistant
fractional-order sliding level was determined and the sliding control was studied for a
non-linear system. In [10], a new hyperchaotic fractional-order system was presented and
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the synchronization of a class of non-linear fractional-order systems was considered. In
[11], the adaptive sliding mode control for a new class of chaotic fractional-order systems,
which are non-deterministic, was proposed. For this aim, the fractional-order deriva-
tion was used to produce sliding level. In [12], the scientists analysed the behaviour of
fractional-order chaotic systems, investigating the stabilization conditions by using the
projective method. In [13], a simple but efficient way to control the fractional-order chaos
system, using the TS fuzzy model and adaptive regulation mechanism was presented. In
[14], the second-order sliding mode control to stabilize one class of non-deterministic
fractional-order system with external disturbances was studied. In [15], an adaptive
fractional-order feedback controller to stabilize the chaos systems was presented. Then, a
simple but practical method to synchronize the fractional-order chaos system was investi-
gated. In [16], synchronization of chaotic systems based on adaptive fuzzy control was
expressed. In [17] adaptive schemes were proposed for the synchronization of the
fractional-order chaotic system based on the stability theory of fractional-order sys-
tems. In [18], an adaptive synchronization approach for fractional-order chaotic systems
with fractional order based on the Mittag–Leffler function and the generalized Gron-
wall inequality was presented. In [19] an adaptive control law was designed to realize
the complex modified projective synchronization (CMPS) for two different types of
fractional-order chaotic systems.

In this paper, a fractional-order chaotic system with unknown parameters is considered,
for which the adaptive controller is designed. Using the Lyapunov theory and the appro-
priate adaptive rule, the control rule is proved. The organization of this paper is as follows:
In §2, the basic concepts of fractional calculus is presented. In §3, the problem is intro-
duced. Section 4 includes the process of obtaining the adaptive control and the parameter
estimation rule to synchronize the fractional-order chaotic system with unknown param-
eters. In §5, the simulation results of the proposed method are presented. Section 6
contains the conclusion of appropriate performance of this method to synchronize the
fractional-order chaotic systems.

2. Mathematical preliminaries

The derivative-integrator operator is represented by aD
q
t , which is used to show the frac-

tional derivation and integral operator. For positive values of q, it is a derivation symbol
and for negative values of q it turns into an integral symbol. The definitions usually used
for the fractional derivation are Grunwald–Letnikov, Riemann–Liouville and Caputo.

aD
q
t = Dq =

⎧
⎪⎪⎨

⎪⎪⎩

dq/dtq , q > 0
1, q = 0
t∫

a

(dτ)q � I−q, q < 0
. (1)

The second definition of Riemann–Liouville [14] is the definition of RL, which is known
as the simplest one as follows:

aD
q
t f (t) = 1

�(n − q)

d

dt

∫ t

a

f (τ )

(t − τ)q−n+1
dτ, (2)

where n − 1 < q < n and �(·) is the gamma function.
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According to eqs (1) and (2), the Riemann–Liouville fractional derivative and integral
operators of order 0 < q < 1 are defined as

Dq = 0D
q
t f (t) = 1

�(1 − q)

d

dt

∫ t

0
(t − τ)−qf (τ )dτ

and

0I
q
t f (t) = 1

�(q)

∫ t

0
(t − τ)q−1f (τ)dτ

respectively. From the above definition, note that [3]

0D
q
t = d

dt
(0I

1−q
t ).

3. Description of the problem

3.1 Designing an adaptive controller for the synchronization of a chaos system

In order to synchronize the behaviour of chaotic system, the Liu system with three degrees
of freedom is defined by the following equations [21]:

⎧
⎨

⎩

ẋ = a(z − x)

ẏ = bx − dxz

ż = kxy − cy − gz

, (3)

where x, y, z are the state variables and a, b, c, d, g, k ∈ R are the system parameters.
To synchronize two systems, the master system is defined as follows:

D
q
t x1 = a(z1 − x1),

D
q
t y1 = bx1 − dx1z1,

D
q
t z1 = kx1y1 − cy1 − gz1, (4)

where z1, y1, x1 are the master system variables and q is the order of fractional derivation.
The slave system is as follows:

D
q
t x2 = a1(z2 − x2) + u1(t),

D
q
t y2 = b1x2 − d1x2z2 + u2(t),

D
q
t z2 = k1x2y2 − c1y2 − g1z2 + u3(t), (5)

where z2, y2, x2 are variables of the slave system, q represents the order of fractional
derivation and a1, b1, c1, d1, g1, k1 are the unknown model parameters and the design
control signal to synchronize two systems are defined by u1, u2, u3.

The chaotic fractional-order Liu system is analysed and synthesized by an elec-
tronic circuit model of mixed shape unit. The components of the realization of chaotic
fractional-order Liu system are resistor, capacitance, and operational amplifiers. For more
details about the application and realization of chaotic fractional-order Liu system, see
[20,22] and references therein.
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4. Adaptive controller design

In this section, the synchronization of two chaotic systems with unknown parameters is
studied.

Define
ex = x2 − x1; ey = y2 − y1; ez = z2 − z1; ã = a1 − a; b̃ = b1 − b

c̃ = c1 − c; d = d1 − d; g̃ = g1 − g; k̃ = k1 − k, (6)

where a1, b1, c1, d1, g1, k1 are the estimations for the parameters a, b, c, d, g, k.

By subtracting eq. (4) from eq. (5), the error dynamic equation is obtained as follows:

Dqex = a(ez − ex) + ã(z2 − x2) + u1(t),

Dqey = bex − d(x2z2 − x1z1) + b̃x2 − d̃x2z2 + u2(t),

Dqez = k(x2y2 − x1y1) − cey − gez + k̃x2y2 − c̃y2 − g̃z2 + u3(t). (7)

Theorem 1. If the control rule is

u1 = aex − aez − ã (z2 − x2) − A1I
1−qex + I 1−q (ã (z2 − x2)) ,

u2 = −bex +d(x2z2 − x1z1)− b̃x2 + d̃x2z2 −A2 I
1−q ey + I

1−q(b̃x2 + d̃x2z2),

u3 = −k (x2y2 − x1y1) + cey + gez − k̃x2y2 + c̃y2 + g̃z2 − A3 I
1−q ez

+ I
1−q(k̃x2y2 + c̃y2 + g̃z2) (8)

and, the adaptation rules are

ȧ1 = ex(x2 − z2); ḃ1 = −ey(x2); ċ1 = −ez(y2),

ḋ1 = −ey(x2z2); ġ1 = −ez(z2); k̇1 = −ez(x2y2), (9)

where A1, A2, A3 are the positive coefficients, then the states of system in eq. (5) are
asymptotically approximated to the states of system in eq. (4).

Proof. To prove the synchronization of two systems in eqs (4) and (5), using the control
rule shown in eq. (8) and the parameter updating rule in eq. (9), the stabilization of the
system must be investigated. For this, the Lyapunov candidate function should be positive
definite with negative definite derivation along the trajectory of the system.

The Lyapunov candidate function is defined as follows:

V = 1

2

(
e2
x + e2

y + e2
z + ã2 + b̃2 + c̃2 + d̃2 + g̃2 + k̃2

)
. (10)

By differentiation from eq. (10), we derive

V̇ = exėx + eyėy + ezėz + ˙̃aã + ˙̃
bb̃ + ˙̃cc̃ + ˙̃

dd̃ + ˙̃gg̃ + ˙̃
kk̃

= exD
1−q(Dqex) + eyD

1−q(Dqey) + ezD
1−q(Dqez)

+ ˙̃aã + ˙̃
bb̃ + ˙̃cc̃ + ˙̃

dd̃ + ˙̃gg̃ + ˙̃
kk̃. (11)
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Substituting eq. (7) in eq. (11), we have

= exD
1−q(a(ez − ex) + ã(z2 − x2) + u1(t))

+eyD
1−q(bex − d(x2z2 − x1z1) + b̃x2 − d̃x2z2 + u2(t))

+ezD
1−q(k(x2y2 − x1y1) − cey − gez + k̃x2y2 − c̃y2 − g̃z2 + u3(t))

+˙̃aã + ˙̃
bb̃ + ˙̃cc̃ + ˙̃

dd̃ + ˙̃gg̃ + ˙̃
kk̃. (12)

The control inputs u1, u2, u3 must be selected, so that the values of V and V̇ are the pos-
itive definite and negative respectively. Thus, by substituting u1, u2, u3 from eq. (8) and
the parameter estimation rules in eq. (9) into eq. (12), the following relation is achieved:

V̇ = −A1e
2
x − A2e

2
y − A3e

2
z < 0. (13)

Therefore, the available control rule is shown in eq. (8), the system states in eq. (5) are
asymptotically approximated by the system states of eq. (4). �

Remark. Analysis of stability against noise having master system of eq. (4) and slave
system are as follows:

D
q
t x2 = a1(z2 − x2) + n1(t) + u1(t),

D
q
t y2 = b1x2 − d1x2z2 + n2(t) + u2 (t) ,

D
q
t z2 = k1x2y2 − c1y2 − g1z2 + n3(t) + u3(t), (14)

where n1(t), n2(t), n3(t) are norm bonded external noise signals. According to the defini-
tions given in eq. (6) and by subtracting eq. (4) from eq. (14), the error dynamic equation
is obtained as follows:

Dqex = a(ez − ex) + ã(z2 − x2) + n1(t) + u1(t),

Dqey = bex − d(x2z2 − x1z1) + b̃x2 − d̃x2z2 + n2(t) + u2(t),

Dqez = k(x2y2 − x1y1)−cey −gez + k̃x2y2

−c̃y2 − g̃z2 + n3(t) + u3(t). (15)

Theorem 2. If the control law is according to eq. (8) with suitable selection of positive
coefficientsA1, A2, A3 and parameter estimation law is according to eq. (9) then, the states
of the system in eq. (14) are approximated asymptotically to the states of system in eq. (4).

Proof. According to eqs (10), (11), Lyapunov candidate function and differentiation are
defined. By the placement of eq. (15) in eq. (11) we have

V̇ = exD
1−q (a(ez − ex) + ã(z2 − x2) + n1(t) + u1 (t))

+eyD
1−q

(
bex − d (x2z2 − x1z1) + b̃x2 − d̃x2z2 + n2(t) + u2 (t)

)

+ezD
1−q

(
k(x2y2 −x1y1)−cey −gez+ k̃x2y2 − c̃y2 − g̃z2 +n3(t)+u3(t)

)

+˙̃aã + ˙̃
bb̃ + ˙̃cc̃ + ˙̃

dd̃ + ˙̃gg̃ + ˙̃
kk̃. (16)
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If the following conditions are satisfied with suitable selection of positive coefficients
A1, A2, A3 by substituting u1, u2, u3 from eq. (8) and the parameters estimation rules
in eq. (9) into eq. (16),

‖A1ex‖ >
∥
∥D1−qn1(t)

∥
∥ ⇒ ‖A1‖ >

∥
∥D1−qn1(t)

∥
∥

‖ex‖ ,

∥
∥A2ey

∥
∥ >

∥
∥D1−qn2(t)

∥
∥ ⇒ ‖A2‖ >

∥
∥D1−qn2(t)

∥
∥

∥
∥ey

∥
∥

,

‖A3ez‖ >
∥
∥D1−qn3(t)

∥
∥ ⇒ ‖A3‖ >

∥
∥D1−qn3(t)

∥
∥

‖ez‖ . (17)

Then, the inequality (13) holds. �

5. Numerical simulations

In this section, the efficiency of our proposed method is assessed. The simulation results
are performed on the synchronization of Liu-fractional chaotic systems with different
initial states. In this simulation, the sampling time and the order of fractional derivation
are defined as h= 0.001 and q= 0.98 respectively. The initial states are as follows:

[dq−1x1(0), dq−1y1(0), dq−1z1(0)]T = [0.5, 0.5, 0.5]T ,

[dq−1x2(0), dq−1y2(0), dq−1z2(0)]T = [1, 1, 1]T .

For some specific values of a, b, c, d, g, k, the system identified with eq. (3) is con-
verted to be a chaotic system whose behaviour for a = 8, b = 40, c = 10/3, d =
1, g = 4, k = 1 are illustrated in figures 1*. In addition, its chaotic behaviour and but-
terfly effect treatment are depicted in the same figure. In figure 2, the synchronization
performance of fractional-order chaotic systems in eqs (4) and (5) are presented for all
possible states. From figure 3, it is evident that the synchronization error converges to
zero. In figure 4, the control signal for three states is plotted.

6. Conclusion

In this paper, the synchronization issue of fractional-order chaotic systems using the
adaptive control method has been investigated. According to the stabilization theory of
Lyapunov and the adaptive control theory, a controller was designed to stabilize and syn-
chronize fractional-order chaotic systems. In addition to an adaptive control rule, the
synchronization rule for unknown parameters of the system was also presented. Finally,
the simulation results demonstrated the appropriate performance of this method in order
to synchronize the fractional-order chaotic systems.

* Figures 1–4 can be accessed from http://www.ias.ac.in/pramana/v86/supplement.pdf.
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