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Abstract. The (4+1)-dimensional Fokas equation is derived in the process of extending the inte-
grable Kadomtsev–Petviashvili and Davey–Stewartson equations to higher-dimensional nonlinear
wave equations. This equation is under investigation in this paper. Hirota’s bilinear method is,
for the first time, used to solve such a higher-dimensional equation. In order to bilinearize the
Fokas equation, some appropriate transformations are adopted. As a result, single-soliton solution,
double-soliton solution and three-soliton solution are obtained. A new uniform formula of n-soliton
solution is derived from this. It is shown that the transformations adopted in this work play a key
role in converting the Fokas equation into Hirota’s bilinear form.
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1. Introduction

As pointed out by Drazin and Johnson [1], it is not easy to give a comprehensive and
precise definition of a soliton. However, one can associate the term with any solution of
nonlinear partial differential equations (PDEs) which (i) represents a wave of permanent
form, (ii) is localized, so that it decays or approaches a constant at infinity, and (iii) can
undergo a strong interaction with other solitons preserving its identity. As the soliton phe-
nomena were first observed in 1834 [2] and the Korteweg–de Vries (KdV) equation was
solved by the inverse scattering method [3], finding soliton solutions of nonlinear PDEs
has become one of the most exciting and extremely active areas of research. In the past
several decades, many methods have been proposed for solving nonlinear PDEs, such as
Bäcklund transformation [4], Darboux transformation [5], Hirota’s bilinear method [6],
homogeneous balance method [7], function expansion methods [8–15] and some others
[16–18]. Among them, Hirota’s bilinear method [6] is a purely algebraic method for con-
structing multisoliton solutions [19–25]. The key step of the method is to convert the
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given nonlinear PDE into the so-called bilinear form. For such bilinear forms, there is
no general rule to follow and one often tries to take some transformations like rational
transformation or logarithmic transformation [19].

Recently, Fokas [26] derived a new (4+1)-dimensional equation:

utx1 − 1

4
ux1x1x1x2 + 1

4
ux2x2x2x1 + 3

2
(u2)x1x2 − 3

2
uy1y2 = 0 (1)

in the process of extending the integrable Kadomtsev–Petviashvili (KP) and Davey–
Stewartson (DS) equations to some higher-dimensional nonlinear wave equations. Yang
and Yan [27] constructed Jacobi elliptic double periodic solutions, hyperbolic function
solutions and rational solutions of eq. (1) by investigating its symmetries. Lee et al [28]
obtained some exact solutions of eq. (1) by using modified tanh–coth method, extended
Jacobi elliptic function method and the exp-function method. Kim and Sakthivel [29]
obtained hyperbolic function solutions, trigonometric function solutions and rational solu-
tion of eq. (1) by applying G′/G-expansion method. Zhang and Zhang [30] gave the
space–time fractional derivative form of eq. (1) and obtained its generalized hyperbolic
function solutions, generalized trigonometric function solutions and rational solution.
More recently, He et al [31,32] obtained many new exact solutions of eq. (1) by using
extended F-expansion method. To the best of our knowledge, eq. (1) has not been stud-
ied by Hirota’s bilinear method and multisoliton solutions of this equation have not been
reported. Integrable nonlinear PDEs possess soliton solutions [33] and have important
physical applications ranging from fluid mechanics and nonlinear optics to quantum grav-
ity and field theories [26]. It is well known that both the celebrated KdV equation and
the nonlinear Schrödinger (NLS) equation have (exist) n-soliton solutions [2]. As two
extensions of the (1+1)-dimensional KdV and NLS equations into (2+1)-dimensional
space, the integrable KP and DS equations also possess n-soliton solutions [2]. Does the
(4+1)-dimensional Fokas equation (1) has multisoliton solutions? This paper will give a
positive answer to this question.

The rest of this paper is organized as follows: In §2, following Hirota’s bilinear method,
we first adopt some appropriate transformations to convert eq. (1) into the bilinear form
and then construct its multisoliton solutions. In §3, we conclude this paper.

2. Multisoliton solutions

First, we take the following transformation:

x = k1x1 + k2x2, (2)

where k1 and k2 are undetermined constants. Then eq. (1) becomes
[
ut + 1

4
k2(k

2
2 − k2

1)uxxx + 3

2
k2(u

2)x

]
x1

− 3

2
uy1y2 = 0. (3)

Suppose k1 �= k2 and let

u = (k2
2 − k2

1)(ln f )xx, f = f (t, x1, x2, y1, y2). (4)
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Then substituting eq. (4) into eq. (3) and eliminating the common factor k2
2 − k2

1 , we have
{
(ln f )xxt + 1

4
k2(k

2
2 − k2

1)(ln f )xxxxx + 3

2
k2(k

2
2 − k2

1)
[
(ln f )xx

]2
x

}
x1

−3

2
(ln f )xxy1y2 = 0,

which can be written as follows (when k1 �= 0):{
(ln f )xt + 1

4
k2(k

2
2 − k2

1)(ln f )xxxx + 3

2
k2(k

2
2 − k2

1)
[
(ln f )xx

]2

− 3

2k1
(ln f )y1y2

}
xx

= 0. (5)

Integrating eq. (5) with respect to x twice and selecting the integration constants as
zeros, we have

(ln f )xt + 1

4
k2(k

2
2 − k2

1)(ln f )xxxx + 3

2
k2(k

2
2 − k2

1)
[
(ln f )xx

]2

− 3

2k1
(ln f )y1y2 = 0, (6)

and hence obtain the bilinear form of eq. (1):[
DxDt + 1

4
k2(k

2
2 − k2

1)D
4
x − 3

2k1
Dy1Dy2

]
f · f = 0, (7)

where Dx , Dt , Dy1 and Dy2 are the Hirota’s differential operators [19] defined by

Dm
t Dn

xf (t, x) · g(t, x) = (∂t − ∂ ′
t )

m(∂x − ∂ ′
x)

nf (t, x)g(t ′, x ′)
∣∣
t ′=t,x ′=x .

Next we employ eq. (7) to construct multisoliton solutions of eq. (1). For this purpose,
it is necessary to consider the boundary condition of eq. (5). As tanh2-type solution
[27] of eq. (1) can be rewritten using the relationship sech2 + tanh2 = 1, eq. (1) exists
sech2-type solution with bell-shaped structure. Inspired by the structural features of such

a sech2-type solution and eq. (4), in this paper we give an assumption of the boundary
condition of eq. (5): ∀t , (ln f )xx → 0 for η → ±∞. Here η is a linear function of spatial
variables x, y1 and y2. In order to construct the single-soliton solution, we suppose

f = 1 + f (1)ε + f (2)ε2 + f (3)ε3 + · · · , (8)

substitute eq. (8) into eq. (7) and then collect the coefficients of the same order of ε. Then,
this process yields a system of differential equations

2

[
∂x∂t + 1

4
(k2

2 − k2
1)k2∂

4
x − 3

2k1
∂y1∂y2

]
f (1) = 0, (9)

2

[
∂x∂t + 1

4
k2(k

2
2 − k2

1)∂
4
x − 3

2k1
∂y1∂y2

]
f (2)

= −
[
DxDt + 1

4
k2(k

2
2 − k2

1)D
4
x − 3

2k1
Dy1Dy2

]
f (1) · f (1), (10)
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2

[
∂x∂t + 1

4
k2(k

2
2 − k2

1)∂
4
x − 3

2k1
∂y1∂y2

]
f (3)

= −2

[
DxDt + 1

4
k2(k

2
2 − k2

1)D
4
x − 3

2k1
Dy1Dy2

]
f (1) · f (2), (11)

and so forth. Let

f (1) = eξ1 , ξ1 = r1(ω1t + x + p1y1 + q1y2) + ξ
(0)
1 , (12)

be a solution of eq. (9). Here r1, ω1, p1 and q1 are constants to be determined, and ξ
(0)
1 is

an arbitrary constant. Insertion of eq. (12) into eq. (9) yields

ω1 = −1

4
k2(k

2
2 − k2

1)r
2
1 + 3

2k1
p1q1. (13)

Substituting eq. (13) into eqs (10) and (11), we can verify that

f (n) = 0, n = 2, 3, . . . . (14)

In this case, we can write

f1 = 1 + eξ1 , (15)

and hence obtain the following single-soliton solution of eq. (1):

u = (k2
2 − k2

1)
[
ln(1 + eξ1)

]
xx

= 1

4
r2

1 (k2
2 − k2

1)sech2 1

2
ξ1, (16)

where

ξ1 = r1

[
−1

4
k2r

2
1 (k2

2 − k2
1)t + 3

2k1
p1q1t + k1x1 + k2x2

+p1y1 + q1y2

]
+ ξ

(0)
1 .

In figure 1, the single-soliton solution (16) is shown by selecting r1 = 1, k1 = 1,
k2 = 3, p1 = 3, q1 = 2, ξ

(0)
1 = 0, y1 = 0, y2 = 0, from which we can see that the

single-soliton propagating along the negative direction of x-axis possesses a bell-shaped
structure.

For the double-soliton solution, we suppose

f (1) = eξ1 + eξ2 , ξ2 = r2(ω2t + x + p2y1 + q2y2) + ξ
(0)
2 , (17)

and substitute eq. (17) into eq. (9). Here r2, ω2, p2 and q2 are constants to be determined,
ξ

(0)
2 is an arbitrary constant. We then obtain

ω2 = −1

4
k2r

2
2 (k2

2 − k2
1) + 3

2k1
p2q2. (18)

In view of eq. (10), we further suppose

f (2) = eξ1+ξ2+A12 , (19)
where A12 is a constant to be determined. From eqs (10) and (19), we can obtain

eA12 = k1k2(k
2
2 − k2

1)(r2 − r1)
2 + 2(p2 − p1)(q2 − q1)

k1k2(k
2
2 − k2

1)(r2 + r1)2 + 2(p2 − p1)(q2 − q1)
. (20)
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Figure 1. Evolutionary plots of the single-soliton solution (16).

Substituting eqs (17)–(20) into eq. (11), we can verify that

f (n) = 0, n = 3, 4, . . . . (21)

In this case, we can write

f2 = 1 + eξ1 + eξ2 + eξ1+ξ2+A12 , (22)

and hence obtain the following double-soliton solution of eq. (1):

u = (k2
2 − k2

1)
[
ln(1 + eξ1 + eξ2 + eξ1+ξ2+A12)

]
xx

, (23)

where

ξi = ri

[
−1

4
k2(k

2
2 − k2

1)r
2
i t + 3

2k1
piqi t + k1x1 + k2x2

+p1y1 + q1y2

]
+ ξ

(0)
i , i = 1, 2.

In figure 2, a double-soluton solution (23) is shown. Here, we select r1 = 1, r2 = 2,
k1 = 1, k2 = 2, p1 = 3, p2 = 2, q1 = 2, q2 = 1, ξ

(0)
1 = 0, ξ

(0)
2 = 0, x1 = 0,

x2 = 0. It is easy to see that collision between the pair of bell-shaped solitons has elastic
characteristics. It must be noted that solitons do undergo elastic collision with colliding
solitons coming out of collision without any change in shape. In case of solitary waves,
this also can happen but is not general, for instance in [34].
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Figure 2. Evolutionary plots of the double-soliton solution (23).

We continue to construct the three-soliton solution. We suppose

f (1) = eξ1 + eξ2 + eξ3 , ξ3 = r3(ω3t + x + p3y1 + q3y2) + ξ
(0)
3 , (24)

and substitute eq. (24) into eq. (9). Here r3, ω3, p3 and q3 are constants to be determined,
ξ

(0)
3 is an arbitrary constant. We then obtain

ω3 = −1

4
k2r

2
3 (k2

2 − k2
1) + 3

2k1
p3q3. (25)

In view of eq. (10), we further suppose

f (2) = eξ1+ξ2+A12 + eξ1+ξ3+A13 + eξ2+ξ3+A23 , (26)

f (3) = eξ1+ξ2+ξ3+A12+A13+A23 , (27)

where A13 and A23 are constants to be determined. From eqs (10), (26) and (27), we
obtain

eA13 = k1k2(k
2
2 − k2

1)(r3 − r1)
2 + 2(p3 − p1)(q3 − q1)

k1k2(k
2
2 − k2

1)(r3 + r1)2 + 2(p3 − p1)(q3 − q1)
, (28)

eA23 = k1k2(k
2
2 − k2

1)(r3 − r2)
2 + 2(p3 − p2)(q3 − q2)

k1k2(k
2
2 − k2

1)(r3 + r2)2 + 2(p3 − p2)(q3 − q2)
. (29)
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Substituting eqs (25)–(29) into eq. (11), we can verify that

f (n) = 0, n = 4, 5, . . . . (30)

In this case, we can write

f3 = 1 + eξ1 + eξ2 + eξ3 + eξ1+ξ2+A12 + eξ1+ξ3+A13

+eξ2+ξ3+A23 + eξ1+ξ2+ξ3+A12+A13+A23 , (31)

and hence obtain the following three-soliton solution of eq. (1):

u = (k2
2 − k2

1)
[
ln

(
1 + eξ1 + eξ2 + eξ3 + eξ1+ξ2+A12 + eξ1+ξ3+A13

+ eξ2+ξ3+A23 + eξ1+ξ2+ξ3+A12+A13+A23
)]

xx
, (32)

where

ξi = ri

[
−1

4
k2(k

2
2 − k2

1)r
2
i t + 3

2k1
piqi t + k1x1 + k2x2

+p1y1 + q1y2

]
+ ξ

(0)
i , i = 1, 2, 3.

In figure 3, we select r1 = 1, r2 = 2, r3 = −1, k1 = 1, k2 = 2, k3 = 3, p1 = 1, p2 = 2,
p3 = −1, q1 = 2, q2 = 1, q3 = −1, ξ

(0)
1 = 0, ξ

(0)
2 = 0, ξ

(0)
3 = 0, x1 = 0, y1 = 0 and then

show an elastic collision that happened among the three-soliton solution (32).

Figure 3. Evolutionary plots of the three-soliton solution (32).
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Generally, by taking

fn =
∑

μ=0,1

e
∑

n
j=1μj ξj +A

∑
n
1≤j<lμj μlAjl , (33)

eAjl = k1k2(k
2
2 − k2

1)(rl − rj )
2 + 2(pl − pj )(ql − qj )

k1k2(k
2
2 − k2

1)(rl + rj )2 + 2(pl − pj )(ql − qj )
, (34)

we can obtain the uniform formula of n-soliton solution of eq. (1):

u = (k2
2 − k2

1)

⎡
⎣ln

⎛
⎝ ∑

μ=0,1

e
∑

n
j=1μj ξj +A

∑
n
1≤j<lμj μlAjl

⎞
⎠

⎤
⎦

xx

, (35)

where the summation
∑

μ=0,1 refers to all possible combinations of each μi = 0, 1 for
i = 1, 2, . . . , n.

To the best of our knowledge, the obtained double-soliton solution (23), three-soliton
solution (32) and n-soliton solution (35) are new.

Remark 1. As mentioned earlier, soliton solutions (16), (23), (32) and (35) have two cons-
traints: k1 �= k2 and k1 �= 0. Otherwise, the bilinear form (7) does not exist. For k1 = k2

or k1 = 0, there are no soliton solutions as expected for eq. (1). If k1 = k2, eq. (3) is
reduced to

k1utx + 3

2
k2

1(u
2)xx − 3

2
uy1y2 = 0. (36)

According to the homogeneous balance method [7], we can easily see that eq. (36) has
only trivial solutions. On the other hand, if k1 = 0, eq. (3) becomes

−3

2
uy1y2 = 0, (37)

which is a linear equation, and so has no soliton solution.

3. Conclusions

In summary, we have given bilinear form of the (4+1)-dimensional Fokas equation (1)
and hence obtained its single-soliton solution, double-soliton solution, three-soliton solu-
tion and the new uniform formula of n-soliton solution through Hirota’s bilinear method.
In the process of using Hirota’s bilinear method to solve eq. (1), one of the key steps is to
convert eq. (1) into the bilinear form (7) by the appropriate transformations (2), (4)–(6)
adopted in this work. Once a nonlinear PDE is converted into the bilinear form, then
multisoliton solutions are usually obtained. In order to construct bilinear forms of non-
linear PDEs, some dependent variable transformations need to be taken. However, there
is no general rule for the selection of such transformations. For the Fokas equation (1),
not only the dependent variable transformation (4) but also the independent variable trans-
formation (2) is taken. This paper shows that Hirota’s bilinear method with some appro-
priate transformations may provide us with an effective mathematical tool for constructing
multisoliton solutions of some other new higher-dimensional nonlinear PDEs.
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