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Abstract. Classical electrodynamics is reformulated in terms of wave functions in the classical
phase space of electrodynamics, following the Koopman–von Neumann–Sudarshan prescription
for classical mechanics on Hilbert spaces sans the superselection rule which prohibits interference
effects in classical mechanics. This is accomplished by transforming from a set of commuting
observables in one Hilbert space to another set of commuting observables in a larger Hilbert space.
This is necessary to clarify the theoretical basis of the much recent work on quantum-like features
exhibited by classical optics. Furthermore, following Bondar et al, Phys. Rev. A 88, 052108
(2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of the
Wigner function can be implemented by classical optics. This may be useful in interpreting quantum
information processing in terms of classical optics.
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1. Introduction

Much recent work has unexpectedly revealed that classical optics displays some quantum-
like behaviour such as entanglement, as originally predicted by Spreeuw [1] and inde-
pendently by Ghose and Samal [2]. This emerging field has been reviewed by Ghose
and Mukherjee [3] with emphasis on the Hilbert space structure of classical polarization
optics. Simon et al [4] have based their analysis of the classical optics framework on
the mathematical structure of Mueller matrices that are employed therein. Their analysis
suggests that it is the kinematic structure of classical optics, namely its Hilbert space

Pramana – J. Phys., Vol. 86, No. 6, June 2016 1161

http://crossmark.crossref.org/dialog/?doi=10.1007/s12043-015-1172-8-x&domain=pdf


A K Rajagopal and Partha Ghose

structure, that gives rise to the surprisingly quantum-like features in classical optics. The
words ‘entanglement’ and ‘Bell violation’ are correlation features of quantum mechanics.
Qian and Eberly [5,6] have shown that, without contradicting quantum mechanics, clas-
sical non-deterministic fields also provide a natural basis for entanglement and Bell
analyses. Surprisingly, these fields are not eliminated by the Clauser–Horne–Shimony–
Holt Bell violation tests as viable alternatives to quantum theory. They proposed an
experimental set-up for its verification. More recently, Aiello et al [7] have attempted
to develop a unified theory of different kinds of light beams exhibiting ‘classical entan-
glement’ and indicated several possible extensions of the idea, and Pereira et al [8]
have investigated the difference between classical and quantum inseparability in the
case of spin-orbit coupling through violations of an intensity-based Clauser–Horne–
Shimony–Holt (CHSH) inequality. There is an urgent need therefore to understand more
comprehensively the origin of such quantumness in patently classical phenomena. It
should be pointed out that exclusive quantum effects, such as the Aharonov–Bohm effect,
are not obtainable in these theories as they pertain to non-commuting operators in Hilbert
space whereas classical effects are associated with commuting operators. It is therefore
important to find the difference between the KvNS Hilbert space and the QM Hilbert
space, which is addressed here.

We shall show in this paper that the answer lies in the classic works of Koopman [9],
von Neumann [10] and others [11–25]. Sudarshan [26] developed a complete theory of
classical mechanics (CM) based on Hilbert spaces associated with commuting Hermi-
tian operators as observables (hereinafter referred to as the KvNS theory). There are
some recent papers that extend the KvNS formalism [16,28,29], but they are not our
concern here. The operators that correspond to position and momentum in the KvNS
formalism are taken to commute with each other. The formalism introduces additional
canonically conjugate operators λ̂q , λ̂p which are deemed ‘unobservable’. They have the
properties [q̂, λ̂q] = i = [p̂, λ̂p] and all others commuting among themselves. Also, the
superposition of states occurs in ensembles of classical states which do not correspond to
macroscopic Schrödinger-cat like states. Even though the KvNS theory is a reformulation
of classical mechanics (CM) on a Hilbert space, it is not known as yet to provide insight
into how CM can emerge from QM, or vice versa.

Our focus in this paper is on classical electrodynamics because it is in this area of
research that the quantum-like signatures mentioned above have so far been displayed
in the literature. The paper is divided into four sections. Section 2 describes the KvNS
theory with two subsections for making the paper self-contained. The first one briefly
reviews the salient features of the original KvNS theory of classical mechanics, and the
second subsection develops the full KvNS theory of classical electrodynamics. This is fol-
lowed by §3 in which the original commuting set of operators is transformed to another
commuting set which enabled Bondar et al [28] to deduce that the KvNS wave function
is a probability amplitude for a quantum particle at a certain point of the classical phase
space, implying that certain quantum processes are implementable by classical means.
Section 4 summarizes the work, thus rounding off this interesting and important obser-
vation that the Hilbert space framework in some general sense covers both quantum and
classical features with different implications. This does not in any way mean that QM and
CM are equivalent, but explains why one should expect to witness QM-like features in the
classical framework when viewed in a generalized Hilbert space theory such as KvNS.
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2. KvNS theory

2.1 Classical mechanics

The basic idea of the Koopman theory [9] lies in the classical phase-space description of
statistical mechanics. For simplicity of presentation here, we consider a single-particle
system described by a Hamiltonian H(p, q) in two-dimensional classical phase space
consisting of commuting position and momentum variables, and the distribution function
f (q, p; t). The classical Liouville equation obeyed by this distribution is given by

∂f (q, p; t)

∂t
=

(
∂H

∂q

∂

∂p
− ∂H

∂p

∂

∂q

)
f (q, p; t) ≡ −iL̂f (q, p; t). (1)

This was immediately followed up by von Neumann [10], and the two authors postulated
that this can be looked upon as arising from classical square integrable wave functions
ψ(q, p; t) in the Hilbert space of classical phase-space variables ψ(q, p; t), obeying the
time-development equation

∂ψ(q, p; t)

∂t
=

(
∂H

∂q

∂

∂p
− ∂H

∂p

∂

∂q

)
ψ(q, p; t) = −iL̂ψ(q, p; t). (2)

Its complex conjugate is given by

∂ψ∗(q, p; t)

∂t
=

(
∂H

∂q

∂

∂p
− ∂H

∂p

∂

∂q

)
ψ∗(q, p; t) = −iL̂ψ∗(q, p; t). (3)

The Hilbert space is equipped with the scalar product

〈φ|ψ〉 =
∫

dp dq φ∗(q, p)ψ(q, p). (4)

Here, the classical coordinates and momenta are represented by commuting operators.
This Hilbert space is twice the size of the usual case and the integrability condition is thus
given by

‖ψ‖2=
∫ ∫

dq dp ψ∗(q, p; t)ψ(q, p; t) = N. (5)

The integration goes over all q, p from −∞ to +∞. We shall use dimensionless variables
in this development and identify the density in phase space by

ψ∗(q, p; t)ψ(q, p; t) = |ψ(q, p; t)|2 ≡ ρ(q, p; t). (6)

From eqs (2) and (3), we deduce the equation obeyed by the density defined by eq. (6),

∂ρ(q, p; t)

∂t
=

(
∂H

∂q

∂

∂p
− ∂H

∂p

∂

∂q

)
ρ(q, p; t) ⇒ i

∂ρ

∂t
= L̂ρ. (7)

This is a derivation of the standard Liouville equation, starting from the postulated eq. (2)
for the classical wave function ψ(q, p; t). It shows that the dynamics of ρ, the probability
density, can be recovered from the dynamics of the underlying wave function ψ and ψ∗.
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The doubling of the variables in the Liouvillean theory is natural and has been used
elsewhere. It is also used within quantum field theory as well as in the density matrix
theory of quantum mechanics. A classical mechanics was later developed by Sudarshan
[26] as a ‘hidden variables’ quantum theory with only the absolute values of the ψs as
relevant, i.e., ψ = √

ρ. In other words, in Sudarshan’s theory a ‘superselection rule’
operates that makes all transitions between quantum wave functions with different phases
unobservable, resulting in classical mechanics as a ‘hidden variable’ quantum theory. This
construction of Sudarshan is to be contrasted with that of Koopman and von Neumann.

To elucidate how the KvN formalism also triggers a ‘superselection rule’ that decouples
the phase and the amplitude of the KvNS wave function, consider the simple case of a
free-particle Hamiltonian H = p2/2m. Then q is a cyclic coordinate, p is a constant
of motion and q = (p/m)t + constant. However, Mauro [16] showed that a suitable
representation of the phase space reveals the phase feature for free particles as well, which
we describe now. The Liouville equation is

∂ρ(ϕ)

∂t
= − ∂

∂q

( p

m
ρ(ϕ)

)
. (8)

Thus, although the Liouville equation dρ/dt = 0 holds, this continuity equation features
only the square of the amplitude

√
ρ of the wave function but not its phase S which can

be defined by writing ψ = √
ρ exp(iS). This can also be seen by inserting this expression

for ψ in eqs (2) and (3) and separating the real and imaginary parts to get

i
∂
√

ρ

∂t
= L̂

√
ρ, i

∂S

∂t
= L̂S. (9)

This shows that the amplitude and phase evolve independently. This is a result of a
‘superselection rule’, and it is possible to work only with

√
ρ.

The commuting q̂, p̂ operators have continuous spectra from −∞ to +∞,

q̂|q, p〉 = q|q, p〉, p̂|q, p〉 = p|q, p〉, (10)

with {|q, p〉} spanning the KvN Hilbert space, being orthonormal and a complete set:

〈q ′, p′|q ′′, p′′〉 = δ(q ′ − q ′′)δ(p′ − p′′), (11)∫ ∫
dq dp |q, p〉〈q, p| = 1. (12)

The operators −i∂q and −i∂p are Hermitian in this representation:

〈q ′, p′| − i∂q |ψ〉 = −i∂q ′ 〈q ′, p′|ψ〉, (13)

〈q ′, p′| − i∂p|ψ〉 = −i∂p′ 〈q ′, p′|ψ〉. (14)

Hence it follows from (10), (13) and (14) that

〈q ′, p′|[q̂,−i∂q ]|ψ〉 = 〈q ′, p′|i|ψ〉, (15)

〈q ′, p′|[p̂,−i∂p|ψ〉 = 〈q ′, p′|i|ψ〉, (16)
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and all other commutators vanish. Thus, there are two more commuting operators in the
KvN Hilbert space, λ̂q = −i∂q and λ̂p = −i∂p, with the properties [p, λ̂p] = i = [q, λ̂q].
The Hilbert space can be described by any pair of commuting operators, and there are
four choices: (q, p), (q, λp), (λq, p) and (λq, λp). The classical Liouville equation for
the classical state is written as

∂

∂t
|ψ(t)〉 = (∂qH λ̂p − ∂pHλ̂q)|ψ(t)〉. (17)

Let us now make a unitary transformation from the commuting variables (q, p) to the
commuting variables (q, λp) [16] such that

q̂|q, λp〉 = q|q, λp〉, λ̂p|q, λp〉 = λp|q, λp〉. (18)

The transformation equations are therefore

−i
∂

∂p′ 〈q ′, p′|q, λp〉 = λp〈q ′, p′|q, λp〉 (19)

so that

〈q ′, p′|q, λp〉 = 1√
2π

δ(q − q ′) exp(ip′λp). (20)

Thus, {|q, λp〉} form a complete orthonormal set related to the {|q, p〉} complete set by
the transformation function (20). Hence,

〈q, λp|ψ〉 =
∫ ∫

dq ′dp〈q, λp|q ′, p〉〈q ′, p|ψ〉

= 1√
2π

∫
dp exp

(
ipλp

) 〈q, p|ψ〉, (21)

or equivalently,

ψ(q, λp, t) = 1√
2π

∫
dp exp

(
ipλp

)
ψ(q, p, t). (22)

Let us consider a particle in an external potential V (q). The Hamiltonian H = p2/2 +
V (q), and we obtain the Liouville equation for the classical wave function

i
∂

∂t
ψ(q, λp, t) =

(
∂

∂q

∂

∂λp

− V ′(q)λp

)
ψ(q, λp, t) (23)

and its complex conjugate

i
∂

∂t
ψ∗(q, λp, t) = −

(
∂

∂q

∂

∂λp

− V ′(q)λp

)
ψ∗(q, λp, t), (24)
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from which we deduce the density–current relationship

∂

∂t
ρ(q, λp, t) = −J (q, λp, t),

J (q, λp, t) = i

(
ψ∗ ∂

∂q

∂

∂λp

ψ − ∂

∂q

∂

∂λp

ψ∗ψ
)

. (25)

If we now write

ψ(q, λp, t) = √
ρ(q, λp, t) exp

(
iS(q, λp, t)

)
, (26)

we see that the time derivatives of density and amplitude get connected unlike in the (q, p)
representation, but within the classical Hilbert space theory. This shows that in the new
alternate representation of the classical KvN Hilbert space, phase features are present.
For a free particle considered in eqs (8) and (9), V (q) = 0, and the (q, λp) representation
now exhibits a phase in its KvN wave functions (eqs (25) and (26)).

If one wishes this phase of the wave function to be unobservable, like in the (q, p) rep-
resentation, one has to invoke a superselection rule, prohibiting superpositions of states
to be written. This can be done by requiring that only the positive square root

√
ρ(ϕ)

of the probability density is physically relevant [26]. This can be understood in terms
of the structure of Hilbert spaces in the following way. The absolute phase of a state is
not measurable either in quantum mechanics or in classical optics. This is why all states
(vectors in Hilbert space) which differ only by a phase are identified to get ‘rays’ or ‘pro-
jective rays’. The space of rays is therefore CP = H/U(1). Examples are the Bloch
sphere in quantum mechanics and the Poincare sphere in classical polarization optics.
Relative phases, however, remain observable in both quantum mechanics and classical
optics, but not in classical mechanics. To avoid relative phases in classical mechanics,
a further projection or identification is required, namely, all states that differ by rela-
tive phases must also be identified. Hence, the space in classical mechanics must be the
quotient space CP ∗ = CP/U(1). This results in the ‘superselection rule’ operating
on CP*, preventing superposition of states and interference. An example would be the
identification/projection of all circles on a sphere S2 to a single circle S1.

A few remarks are in order here. First, the (q, p) and (q, λp) representations are made
physically inequivalent by changing the observables from functions of the commuting set
(q, p) to functions of the commuting set (q, λp) [16]. This corresponds to an enlarge-
ment of the space CP ∗ to CP . The CP space allows coherent superpositions of states
and renders their relative phases observable. Second, if one imposes the superselection
condition on the (q, λp) representation, it becomes equivalent to the (q, p) representation.
This is reflected in the reduction of the CP space to CP ∗. Third, the crucial differences
between a classical Hilbert space theory with phases and a quantum theory lie in the com-
mutativity of all observables in the classical theory as well as in the different dynamical
evolution equations in the two cases. Finally, there are other possible representations as
indicated above, and they could presumably be of some importance in the grey region at
the interface of classical and quantum mechanics.

As a classical electromagnetic field is formally an infinite collection of classical har-
monic oscillators and shows interference effects, it should be possible to develop a
KvN-type theory of such fields by using a projective Hilbert space CP so that no supers-
election rule operates. Such a field will have coherence properties like those of quantum
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mechanics except those specifically associated with quantization. This is what we do in
the next section.

2.2 Classical electrodynamics

The classical electromagnetic field is specified by the complex valued electric and mag-
netic fields �E(�x, t) and �B(�x, t) at every space-time point. Hence, let the classical ‘wave
function’ of the electromagnetic field be a six-component column vector

ψ(Ei, Bi) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Ex

Ey

Ez

−Bx

−By

−Bz

⎞
⎟⎟⎟⎟⎟⎟⎠

(27)

and its dual ψ†(Ei, Bi) = (
E∗

x , E
∗
y , E

∗
z ,−B∗

x ,−B∗
y ,−B∗

z

)
. These wave functions are

functions of all the phase-space variables, all of which are components of the fields. For
free fields there is a constraint due to gauge invariance, namely �E · �B = 0, which can
be taken care of by choosing unit polarization vectors of the two fields �eE and �eB to be
orthogonal, �eE · �eB = 0. There are two more kinematic constraints, namely div �E = 0 and
div �B = 0. Denoting the set of complex dynamical variables {Ei, Bi} by ϕ, one can write
superpositions αψ(ϕ) + βφ(ϕ) with arbitrary complex coefficients α and β, and define
the inner products

〈φ|ψ〉 =
∫

�idEi�j dBjδ( �E · �B)〈φ|Ei, Bi〉〈Ei, Bi |ψ〉

=
∫

dϕ φ†(ϕ)ψ(ϕ), (28)

where the integration measure is the phase-space volume dϕ = �idEi�j dBjδ( �E · �B).
The scalar product is given by

‖ψ‖2= 〈ψ |ψ〉 =
∫

dϕ ψ†(ϕ)ψ(ϕ) =
∫

dϕ ρ(ϕ) (29)

with ρ(ϕ) = ψ†(ϕ)ψ(ϕ) = ∑
i (E

∗
i Ei + B∗

i Bi) (i = x, y, z), the energy density of the
field which is a collection of three independent harmonic oscillators with the constraint
�E · �B = 0 which reduces the effective number to two. Normalized by the total energy,

this gives the probability density in phase space if one treats the magnetic fields {Bi} as
the cordinates and the electric fields {Ei} as the conjugate momenta such that �E · �B = 0,
leading to two orthogonal sets of fields (Ex, 0, 0, 0, By, 0) and (0, Ey, 0, Bx, 0, 0), and
the third one orthogonal to these two does not exist in the free field case as there are
no charges and currents. These constitute the two oscillators associated with the free
EM fields. The ψ(ϕ) are square integrable functions and span a complex Hilbert space,
and ψ†(ϕ) are their duals. In classical theory �E and �B commute. Using units in which
ε0 = μ0 = c = 1, let the equations of motion for the wave functions be

∂

∂t
ψ(ϕ, t) = −iL̂ψ(ϕ, t) = −

∑
i

βi∂iψ(ϕ, t), (30)

∂

∂t
ψ(ϕ, t)† = −iψ(ϕ, t)†L̂ = −

∑
i

∂iψ(ϕ, t)†βi, (31)
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where ∂i ≡ ∂/∂xi , L̂ = −i
∑

i βi∂i is the Liouvillian operator and β
†
i = βi are the

Hermitian operators with the following matrix representations:

βx =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 1 0 0 0
0 −1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, βy =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

βz =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −1 0
0 0 0 1 0 0
0 0 0 0 0 0
0 1 0 0 0 0

−1 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Hence

−
∑

i

βi∂i =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 ∂z −∂y

0 0 0 −∂z 0 ∂x

0 0 0 ∂y −∂x 0
0 −∂z ∂y 0 0 0
∂z 0 −∂x 0 0 0

−∂y ∂x 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

These Hermitian matrices satisfy the algebra

[βi, βj ] = εijkβk. (32)

It is straightforward to verify that eqs (30) and (31) encode the Maxwell equations

�̇E = curl �B, �̇B = −curl �E. (33)

Multiplying the first equation by ψ(ϕ, t)† from the left and the second equation by ψ(ϕ, t)

from the right and adding them, one gets the continuity equation

∂ρ(ϕ, t)

∂t
= −2iψ(ϕ, t)†L̂ψ(ϕ, t) = −

∑
i

∂iSi(ϕ, t),

Si(ϕ, t) = ψ†(ϕ, t)βiψ(ϕ, t). (34)

It is easily verified that Si = ( �E · �B)i are components of the Poynting vector. This is the
Liouville equation for the phase density.

In order to go over to a KvN-type Hilbert space theory in CP space, let us now make
a unitary transformation from the commuting variables ϕ = (B,E) to the commuting
variables χ = (B, λE) in the KvN Hilbert space such that

B̂i |B, λE〉 = Bi |B, λE〉, λ̂Ei
|B, λE〉 = λEi

|B, λE〉 (35)
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with the properties λ̂Ei
= −i∂Ei

, [Ei, λ̂Ei
] = i, and with the transformation

〈B ′, E′|B, λE〉 = 1

(2π)3/2
�iδ(Bi − B ′

i ) exp

(
i
∑

i

E′
iλEi

)
. (36)

Following essentially the same procedure as defined in the previous section, one obtains

ψ(χ, t) = 1

(2π)3/2

∫
d3E exp

(
i
∑

i

EiλEi

)
ψ(ϕ, t). (37)

Let us introduce the corresponding Hermitian operator λ̂Bi
= −i∂Bi

with the properties
λ̂Bi

|B, λE〉 = λBi
|B, λE〉, [Bi, λ̂Bi

] = i. The Liouville equations for the classical wave
function and its adjoint (sum on repeated indices assumed) in the new variables are

i
∂

∂t
ψ(χ, t) =

(
∂

∂B∗
i

∂

∂λEi

− B∗
i λEi

)
ψ(χ, t), (38)

i
∂

∂t
ψ∗(χ, t) = −

(
∂

∂B∗
i

∂

∂λEi

− B∗
i λEi

)
ψ∗(χ, t). (39)

It follows from these equations that

∂

∂t
ρ(χ, t) = −J (χ, t), (40)

J (χ, t) = i

(
ψ∗ ∂

∂B∗
i

∂

∂λEi

ψ − ∂

∂B∗
i

∂

∂λEi

ψ∗ψ
)

. (41)

Writing ψ(χ, t) in the form

ψ(χ, t) = √
ρ(χ, t) exp

(
iS(B∗

i , λEi
, t)

)
, (42)

makes it clear that the time derivatives of the density and amplitude get connected within
the classical Hilbert space theory of the electromagnetic field. This shows that phase
features are preserved in the (Bi, λEi

) representation of the classical KvN Hilbert space
of the electromagnetic field. This completes the construction of a KvNS theory of the
classical electromagnetic field in Hilbert space. A Hilbert space structure is sufficient to
permit entanglement (in the sense of non-separability) by virtue of the Schmidt theorem
[27] which predates quantum mechanics, and hence Bell violations [5,6].

In this context, the work of Bondar et al [28], which we shall summarize in the next
section, is of particular interest. It shows that the KvNS wave function is the probability
amplitude for a quantum particle at a certain point of the classical phase space. It clarifies
the meaning of a Hilbert space in relation to classical features of the quantum structure.
This requires a change of representation from {q, p} to {q, λp}.

3. The significance of the Wigner function

Recently, Bondar et al [28] have reformulated the KvN theory following a Wigner
function-like formulation. The significance of the Wigner function in quantum phase
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space has so far been that it mimics the classical distribution function but with character-
istic quantum features embedded in it. Specifically, this phase-space distribution is not
positive everywhere, the quantumness being conventionally attributed to its negative fea-
tures. What Bondar and his coworkers have shown is that the Wigner function is a wave
function rather than a distribution function, and hence is ‘a probability amplitude for the
quantum particle to be at a certain point of the classical phase space’. It reduces to the
KvNS wave function rather than to a classical distribution function in the classical limit.
Since wave functions can be negative, the ‘mystery’ of the negativity of the Wigner func-
tion disappears. The essential quantumness of a process lies not in the negativity of the
Wigner function but in the distinctiveness of quantum processes to make transitions from
positivity to non-positivity and vice versa compared to negativity and positivity preserving
processes only in classical physics.

We now give a summary of this formulation for completeness. The point of depar-
ture from KvN and [16] in this formulation is to define new momentum and coordinate
operators obeying a quantum-like commutation relation

[q̂Q, p̂Q] = ih̄κ, 0 ≤ κ ≤ 1. (43)

These operators are defined in terms of the classical operators

q̂Q = q̂ − 1

2
h̄κλ̂p, p̂Q = p̂ + 1

2
h̄κλ̂q . (44)

The extra information beyond the KvN Hilbert space structure is contained in the opera-
tors (43), (44) which obey the Ehrenfest theorems, from which a unique Hamiltonian-like
operator ĤQC can be defined such that

ih̄
d

dt
|�κ(t)〉 = ĤQC |�κ(t)〉, (45)

ĤQC = h̄p̂λ̂q + 1

κ

(
U

(
q̂ − 1

2
h̄κλ̂p

)
− U

(
q̂ + 1

2
h̄κλ̂p

))
. (46)

The states {|�κ(t)〉} are a complete orthonormal set of solutions of eq. (45). The parame-
ter κ denotes the quantum structure if it is equal to 1 and classical nature if it is set equal
to 0. In fact, in the classical limit, ĤQC goes to h̄L̂ = h̄(p̂λ̂q − U ′(q)λ̂p). The important
point that emerges from this formulation is that the unified wave function |�κ(t)〉 defined
by eq. (45) in the qp-representation is proportional to the Wigner function W(q, p),

〈qp|�κ(t)〉 =
√

2πh̄κW(q, p),

W(q, p) =
∫

dy

2πh̄κ
ρκ

(
q − y

2
, q + y

2

)
exp

(
ipy

h̄κ

)
. (47)

Here, ρκ

(
q − y

2 , q + y

2

)
is the density matrix and is proportional to 〈qλp|�κ〉 and the

transformation from the qλp to the qp representation gives the expression in eq. (47).
The normalization of the states 〈�κ |�κ〉 = 1 implies that the density matrix corresponds
to a pure state ρ̂2

κ = ρ̂κ . Thus, the Wigner function of a pure state maps the quantum wave
function into a corresponding KvN classical wave function rather than to a classical phase-
space distribution, as was originally thought by KvN! Thus, what has been discovered
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by this method of Bondar et al is the important fact that the KvNS wave function is the
probability amplitude for a quantum particle at a certain point of the classical phase space,
which implies that certain positivity- and non-positivity-preserving quantum processes
are implementable by classical means. This explains why classical optical methods may
simulate some quantum gates [1,3].

4. Concluding remarks

The basic motivation of this paper has been to clarify the theoretical basis of quantum-
like features such as ‘entanglement’ and ‘Bell violation’ exhibited by classical optics.
This has been done by formulating classical electrodynamics as a complete phase-space
theory based on Hilbert spaces. The guiding principles were laid down long ago by
Koopman, von Neumann and Sudarshan who developed a complete theory of classical
mechanics based on the phase-space description of statistical mechanics. The wave func-
tions in KvNS theory are square integrable functions which span a Hilbert space, just
as quantum mechanical wave functions do, with the difference that a superselection rule
has to be invoked in the case of classical mechanics to prevent coherent superpositions.
No such rule need be invoked in the case of classical electrodynamics. This demystifies
the occurrence of interference, ‘entanglement’ and ‘Bell violation’ that have already been
observed in classical optics. Viewed in this way, the main difference between classical
and quantum theories lies in the absence of non-commuting operators in the former. In
other words, it is not only the projective Hilbert space structure of quantum mechanics
but also its non-commutative operator structure that distinguishes it from classical optics.

The recent work of Bondar and coworkers is also briefly sketched in order to bring out
the connection of these KvNS wave functions and Wigner functions, showing that the
latter reduce to the former in the classical limit and not to classical distribution functions
in phase space, as was originally believed. This is significant in showing that the Wigner
function is a probability amplitude rather than a probability distribution for a quantum
particle at a certain point of the classical phase space, and amplitudes can be negative
as well as positive. This has the important implication that certain quantum processes,
namely those which preserve the positivity or non-positivity of the Wigner function, are
implementable by classical means. This may be of practical importance for understanding
quantum information processing, based on Hibert space theory of classical optics.
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Note added in the proof

The algebra satisfied by the β matrices is SU(2) × SU(2) and not SU(2) as in eq. (32)
as can be verified by making a unitary transformation that makes them block dia-
gonal and changes the elements of the column vector ψ(E,B) (eq. (27)) to (Ex + iBx,

· · · , Ex − iBx, · · · ).
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