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Abstract. By judicious exploitation of the transpose operator relation in conjunction with the
differential equations of special functions of mathematical physics, integral representations of the
on- and off-shell Jost functions are derived from the particular integrals of the inhomogeneous
Schrödinger equation. Using the particular integral of the inhomogeneous Schrödinger equation,
exact analytical expressions for the Coulomb and Coulomb plus Yamaguchi off-shell Jost solutions
are constructed in the maximal reduced form. As a case study, the limiting behaviours and the
on-shell discontinuities of the Coulomb plus Yamaguchi Jost solutions are verified numerically.
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1. Introduction

The Jost function f�(k) [1] plays an important role in examining the analytic properties
of partial wave scattering amplitude which is determined by the behaviour of irregular
solution f�(k, r) of the radial Schrödinger equation near the origin. The Jost function
has two integral representations [2]; one in terms of the irregular solution f�(k, r) and
the other in terms of the regular solution ϕ�(k, r). The integral representation related
to the irregular solution f�(k, r) follows directly from the integral equation for on-shell
Jost solution f�(k, r), while the other integral representation is derived with particular
emphasis on the asymptotic behaviour of the regular solution ϕ�(k, r). The off-shell Jost
function [3] is also determined from the off-shell Jost solution f�(k, q, r) in the same
way as f�(k) is obtained from f�(k, r). Based on the differential equation approach [4] to
the T-matrix, Fuda and Whiting [3] have introduced the concept of off-shell Jost function
f�(k, q). It is a function of wave number k and off-shell momentum q. The off-shell
Jost function f�(k, q) also has two integral representations; one in terms of off-shell Jost
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solution f�(k, q, r) and the other involves a free-particle off-shell solution and the on-
shell regular solution ϕ�(k, r). The latter was obtained by Fuda [3,5] by using momentum
space formalism of the off-shell Jost function and Kowalski’s generalization of Sasakawa
method [6], while the former one follows directly from the integral representation for
f�(k, q, r). One of us derived these integral representations (i) by exploiting the off-shell
Jost solution f�(k, q, r) together with the boundary conditions [7] on on-shell regular and
irregular solutions and (ii) by making judicious use of the transpose operator relation [8]
on the particular solution of inhomogeneous Schrödinger equation for f�(k, q, r) [9] for
the partial wave � = 0 only.

The objective of the present work is to reconstruct these integral representations for
both on- and off-shell Jost functions in all partial waves by exploiting the particular
solution of the inhomogeneous differential equation for f�(k, q, r) together with trans-
pose operator relation and interacting Green’s functions. Section 2 is devoted to develop
basic formalism for the integral representations of Jost functions in the representation
space approach. Finally, in §3 we construct analytical expressions of the off-shell Jost
solutions for Coulomb and Coulomb plus Yamaguchi potentials and study their limiting
behaviours with particular emphasis on their on-shell discontinuity both analytically as
well as numerically and present concluding remarks.

2. Basic formalism for the integral representations of Jost functions

The off-shell Jost solution f�(k, q, r) for spherically symmetric potential V (r) satisfies
the inhomogeneous differential equation[

d2

dr2
+ k2 − �(� + 1)

r2
− V (r)

]
f�(k, q, r) = (k2 − q2)ĥ

(+)
� (qr) ei�π/2.

(1)

The off-shell Jost function is obtained as

f�(k, q) = lim
r→0

(qr)�
e−i�π/2

(2� + 1)!! f�(k, q, r). (2)

The off-shell Jost solution satisfies the asymptotic boundary condition

f�(k, q, r) −→
r→∞ eiqr . (3)

It is well known that Riccatti–Hankel function ĥ
(+)
� (qr) satisfies the differential equation[

d2

dr2
+ q2 − �(� + 1)

r2

]
ĥ

(+)
� (qr) = 0. (4)

Equation (4) may be expressed as

ei�π/2(k2 − q2)ĥ
(+)
� (qr) =

[
d2

dr2
+ k2 − �(� + 1)

r2

]
ĥ

(+)
� (qr) ei�π/2. (5)

Combination of eqs (1) and (5) leads to[
d2

dr2
+k2− �(�+1)

r2

]
(f�(k, q, r)− ĥ

(+)
� (qr) ei�π/2) = V (r)f�(k, q, r). (6)
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One can also rewrite eq. (6) in the following form:[
d2

dr2
+ k2 − �(� + 1)

r2
− V (r)

]
(f�(k, q, r) − ĥ

(+)
� (qr) ei�π/2)

= ei�π/2 V (r) ĥ
(+)
� (qr). (7)

The particular integrals of eqs (1), (6) and (7) are written as

f�(k, q, r) = ei�π/2(k2 − q2)

∫ ∞

r

dr ′ĥ(+)
� (qr ′)G(I)

� (r, r ′), (8)

f�(k, q, r) = ei�π/2ĥ
(+)
� (qr) +

∫ ∞

r

dr ′ V (r ′)G0(I )
� (r, r ′)f�(k, q, r ′) (9)

and

f�(k, q, r) = ei�π/2ĥ
(+)
� (qr) + ei�π/2

∫ ∞

r

dr ′ V (r ′)ĥ(+)
� (qr ′)G(I)

� (r, r ′).

(10)

The quantity G
(I)
� (r, r ′) is the irregular Green’s function [2] for motion in the potential

V (r) and is defined as

G
(I)
� (r, r ′) = − 1

��(k)

[
ϕ�(k, r)f�(k, r ′) − ϕ�(k, r ′)f�(k, r)

]
(11)

with

��(k) = (2� + 1)!!
k�

ei�π/2f�(k). (12)

Here G
0(I )
� (r, r ′) is the free-particle Green’s function and the quantities ϕ�(k, r) and

f�(k, r) stand for the regular and irregular solutions of the Schrödinger equation with
potentialV (r). Equation (10) will follow automatically from eq. (8). This is as follows.

In conjunction with eq. (5), eq. (8) may be rewritten as

f�(k, q, r) = ei�π/2
∫ ∞

r

dr ′G(I)
� (r, r ′)

[
d2

dr ′2 + k2 − �(� + 1)

r ′2

]
ĥ

(+)
� (qr ′).

(13)

By the judicious use of transpose operator relation [8] 〈ϕ| Ô |ψ〉 = 〈ψ | Õ |ϕ〉, Õ = Ô

together with the well-known differential equation for the Green’s function[
d2

dr2
+ k2 − �(� + 1)

r2
− V (r)

]
G

(I)
� (r, r ′) = δ(r − r ′) (14)

eq. (13) leads to eq. (10). From eqs (2) and (8)–(11), the integral representation of the off-
and on-shell Jost functions are obtained as

f�(k, q) = (k2 − q2) q�

(2� + 1)!!
∫ ∞

0
dr ĥ

(+)
� (qr)ϕ�(k, r), (15)

f�(k, q) = 1 + q� e−i�π/2

(2� + 1)!!
∫ ∞

0
dr V (r) ϕ0

� (k, r) f�(k, q, r) (16)
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and

f�(k, q) = 1 + q�

(2� + 1)!!
∫ ∞

0
dr V (r) ĥ

(+)
� (qr)ϕ�(k, r). (17)

Equations (15) and (17) are equivalent. Equation (15) is the most suitable form for deriv-
ing analytical expression for off-shell Jost function as it does not involve the potential
explicitly. However, one can arrive at eq. (15) from eq. (17) by adopting the following
two methods.

The Schrödinger equation for the regular solution ϕ�(k, r) for motion in a potential
V (r) may be expressed as[

d2

dr2
+ k2 − �(� + 1)

r2

]
ϕ�(k, r) = V (r)ϕ�(k, r). (18)

Substitution of eq. (18) in eq. (17) leads to

f�(k, q) = 1 + q�

(2�+1)!!
∫ ∞

0
dr ĥ

(+)
� (qr)

[
d2

dr2
+k2 − �(� + 1)

r2

]
ϕ�(k, r).

(19)

Integrating the above equation twice by parts along with the limiting behaviours
limr→0ϕ�(k, r) = r�+1 and limx→0ĥ

(+)
� (x) = (2� − 1)!!x−�, one arrives at eq. (15).

On the other hand, one can easily obtain eq. (15) by exploiting the transpose operator
relation [8] in eq. (19) along with eq. (5).

The corresponding on-shell versions of the Jost function are

f�(k) = 1 + k� e−i�π/2

(2� + 1)!!
∫ ∞

0
dr V (r)ϕ0

� (k, r)f�(k, r) (20)

and

f�(k) = 1 + k�

(2� + 1)!!
∫ ∞

0
dr V (r) ĥ

(+)
� (kr)ϕ�(k, r). (21)

Equations (15)–(17) hold good for both short-range and Coulomb potentials.

3. Results and conclusion

For scattering on a short-range potential f�(k, q) is a continuous function of the off-shell
momentum. This is, however, not true for Coulomb and Coulomb plus short-range poten-
tials [10] and they exhibit discontinuity at the energy shell. The results for the off-shell
Jost function for motion in Coulomb and Coulomb-nuclear potentials have been reported
earlier in a number of publications [10–21] but the results for the off-shell Jost solutions
for Coulomb and Coulomb-like interactions are relatively new [15–22]. Knowledge of
off-shell Jost solutions and Jost functions are required for calculating transition matrices
[17,18,20,21,23]. The off-shell Jost function can also be obtained directly from off-shell
Jost solution. By using any one of the representations cited in eqs (8)–(10), one can
construct off-shell Jost solution for motion in a potential V (r). In the following, we shall
construct the expression for off-shell Jost solution for motion in Coulomb plus Yamaguchi
potential.
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From eq. (8), the off-shell Jost solution for Coulomb–Yamaguchi potential is written as

f CY(k, q, r) = (k2 − q2)

∫ ∞

r

dr ′eiqr ′
G(I)(r, r ′), (22)

where G(I)(r, r ′) stands for the irregular Green’s function for Coulomb plus Yamaguchi
interaction. The above equation involves certain tedious indefinite integrals. To circumvent
these difficulties in analytical calculations, the irregular Green’s function for Coulomb–
Yamaguchi potential is expressed in terms of pure Coulomb irregular Green’s function
and their integral transforms as

G(I)(r, r ′) = GC(I)(r, r ′) + λ

D(k)
I (k, β, r)

∫ ∞

r

dr ′g(r ′)GC(I)(r, r ′) (23)

with

I (k, β, r) =
∫ ∞

0
dr ′g(r ′)GC(I)(r, r ′) (24)

and

GC(I)(r, r ′) = −2ikrr ′e ik(r+r ′)[	(
1+iη,2; −2ikr ′)	̄(1+ iη,2; −2ikr)

− 	(1+ iη,2;−2ikr)	̄
(
1+ iη,2; −2ikr ′)]. (25)

Here, g(r) = e−βr is the form factor of the Yamaguchi potential and the Fredholm
determinant associated with regular or irregular boundary condition

D(k) = 1 − λ

(1 + iη)(β − ik)

[
1

(β2 + k2)

(
(β − ik)

(β + ik)

) iη

×2F1

(
1, iη; 2 + iη; (β + ik)

(β − ik)

)

− 1

2β(β − ik)
2F1

(
1, iη; 2 + iη;

(
(β + ik)

(β − ik)

)2
)]

. (26)

Combining eqs (8) and (23) in conjunction with eqs (24) and (25), the expression for
Coulomb–Yamaguchi off-shell Jost solution [17–22] is obtained as

f CY(k, q, r) = f C(k, q, r) + λ
reikr

D(k)(1 + iη)(β − ik)

×
[(

q + k

q − k

)iη

2F1

(
1, iη; 2 + iη; β + ik

β − ik

)

+ eiπ/2(q − k)

(β − iq)
2F1

(
1, iη; 2 + iη; (q − k)(β + ik)

(q + k)(β − ik)

)]

×
[

1

(1 + iη)(β − ik)
2F1

(
1, iη; 2 + iη; β + ik

β − ik

)

×	(1 + iη, 2; −2ikr)

+2ik �(1 + iη)

(β2 + k2)

(
β − ik

β + ik

)iη

�(1 + iη, 2; −2ikr)

+ 1

2ik

∞∑
n=0

ρn

n! θn+1(1 + iη, 2; −2ikr)

]
(27)
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with the Coulomb off-shell Jost solution

f C(k, q, r) = reikr

{[
eiπ/2(q − k)

(1 + iη)

]
2F1

(
1,iη;2+ iη; (q −k)

(q +k)

)
	(1+ iη,2;

−2ikr) − 2ik�(1 + iη)f C(k, q)�(1 + iη, 2; −2ikr)

− (k2 − q2)

2ik

∞∑
n=0

ρn

n! θn+1(1 + iη, 2; −2ikr)

}
(28)

and

ρ = (β + ik)/2ik. (29)

In deriving the above results, we have used the following standard integrals, relation and
integral representation [24–26]:∫ ∞

0
e−λzzν	(a, c;pz) = �(ν + 1)

λν+1 2F1 (a, ν + 1; c;p/λ) , (30)

F
(
b,S;1+S+b−d;1−μ

a

)
= aS�(1+b+S −d)

�(1+S−d)�(S)

×
∫ ∞

0
e−axxS−1�(b, d;μx)dx

Re S> 0, 1 + Re S > Re d (31)

2F1 (a, b; c; z) = (1 − z)c−a−b
2F1 (c − a, c − b; c; z) (32)

and

θσ (a, c; z) = 1

(c − 1)

[
	(a, c; z)

∫ z

0
e −z′

z′σ+c−2	̄(a, c; z′)dz′

−	̄(a, c; z)

∫ z

0
e−z′

z′σ+c−2	(a, c; z′)dz′
]

. (33)

Relatively recently, we have constructed the expressions for off-shell Jost solutions for
Coulomb and Coulomb plus Graz-I separable potentials [20] using different approaches
to the problem in the representation space. For S-waves the form factors of the Graz-I sep-
arable potential coincide with those of Yamaguchi [27]. Our constructed expressions for
off-shell Jost solutions for motion in Coulomb and Coulomb plus Yamaguchi potentials
produce their correct limiting behaviours and on-shell discontinuity. For example, when
λ = 0, f CY(k, q, r) → f C(k, q, r) and secondly, when η = 0, pure Yamaguchi Jost
solution is obtained [28]. When both λ and η tend to zero f CY(k, q, r) = eikr . The on-
shell limiting behaviours of f C(k, q, r) and f C(k, q) or f CY(k, q, r) and f CY(k, q) are
given by the singular factor (q−k)−iη. The corresponding on-shell functions are obtained
by using the relation [10,14]

f t (k, r) = lim
q→k

ωf t (k, q, r), k > 0 (34)

and

f t (k) = lim
q→k

ωf t (k, q), k > 0 (35)
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with

ω = eπη/2

�(1 + iη)

(
q − k

q + k

)iη

. (36)

Here t stands for either C or CY. We have verified that our expressions in eqs (27) and
(28) are at par with the above relations along with f CY(k, q, r) →

r→0
f CY(k, q).

The Yamaguchi potential with λ = −2.405 fm−3 and β = 1.1 fm−1 provides a reason-
able fit to (p – p) scattering data [18]. We have computed f CY(k, q, r) and f Y(k, q, r)
for various values of r = 0.1, 0.01 and 0.0 fm with real positive k and q by taking the
limit Im q → 0+ and our results are portrayed in figures 1–4 as a function of off-shell
momentum q for laboratory energies of 10 and 30 MeV respectively. The values of the
off-shell Jost solutions for pure Yamaguchi potential have been obtained by turning off
the Coulomb interaction in the numerical routine for f CY(k, q, r). Therefore, the two sets
of numbers, namely those for f CY(k, q, r) and f Y(k, q, r) are expected to provide a basis
for looking into the role of Coulomb interaction in the (p – p) off-shell scattering [18,21].
As expected, f Y(k, q, r) is a continuous function of the off-shell momentum q. In contrast
to this, f CY(k, q, r) exhibits a discontinuity at the on-shell point q = k. It is observed that
Re f Y(k, q, r) and Re f CY(k, q, r) with r = 0.1, 0.01 and 0.0 fm have positive values over
the entire range of q under consideration while Im f Y(k, q, r) and Im f CY(k, q, r) possess
negative values over the entire range for r = 0.01 and 0.0 fm and change sign at q = 2.75
and 2.50 fm−1 with r = 0.1 fm for 10 and 30 MeV respectively. It is well known that as r
→ 0, f (k, q, r) → f (k, q) and looking closely into our figures, we see that our numerical
results support it.
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Figure 1. Real part of f (k, q, r) as a function of off-shell momentum q for ELab =
10 MeV.
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Figure 2. Imaginary part of f (k, q, r) as a function of off-shell momentum q for
ELab = 10 MeV.

In view of the importance of the experiments which involve charged hadrons, the inter-
est in studying potentials consisting of the sum of a short-range finite rank separable
potential and Coulomb potential is increased. Calculations in physics involving such
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Figure 3. Real part of f (k, q, r) as a function of off-shell momentum q for ELab =
30 MeV.
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Figure 4. Imaginary part of f (k, q, r) as a function of off-shell momentum q for
ELab = 30 MeV.

interactions generally use off-energy shell elements of the two-particle transition matri-
ces. The fully off- and half-off-shell T-matrix elements are directly related to off-shell Jost
solutions and Jost functions. The T-matrix has established importance in nuclear physics
with respect to its close relation to experiment. The on-shell T-matrix elements are related
to scattering phase shifts and the half-shell element of the T-matrix T (k, q, k2) defines
the transition probability per unit time for change in a system from an initial state to all
accessible final states. Here, the time for the two-nucleon scattering process is restricted
on one side only [14,29–31]. In this case, the half-off-shell T-matrix is applicable. Also
the phase of the half-off-shell T-matrix is the scattering phase shift [3]. In (p-2p) reaction,
the momentum transfer distribution is closely co-related with the distribution of momenta
which the nuclear proton had before it was knocked out. In such a case, a single proton
is knocked out of the nucleus and the momentum transfer distribution measured [32]. In
the three-body problem, the off-shell T-matrix is a direct and transparent link between
experimental two-nucleon data and three-nucleon observables. The T-matrix is therefore
closely related to the experiment. Any nuclear process depends on these elements in one
way or another. Thus, off-shell Jost solutions and Jost functions are immensely popular
tools for dynamical calculations in nuclear physics. In contrast to Fuda [3,5] and Newton
[2], the present approach is much more simpler and provides a common basis for deriving
all the integral representations for the Jost functions.
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