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Abstract. We solve the Nakajima–Zwanzig (NZ) non-Markovian master equation to study the
dynamics of different types of three-level atomic systems interacting with bosonic Lorentzian reser-
voirs at zero temperature. Von Neumann entropy (S) is used to show the evolution of the degree
of entanglement of the subsystems. The results presented are also compared with some recently
published reports.
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1. Introduction

Schrödinger equation is used to describe the evolution of closed systems, while real physi-
cal systems interact with their environment and these interactions are the non-coherence
source. This means that we cannot use Schrödinger equation to describe such real phys-
ical systems. Therefore, we need a new formulation to study open quantum systems
[1,2]. Investigating the evolution of open quantum systems is not easy and some approxi-
mations are required to obtain equations of motion [3]. Open quantum systems are divided
into two systems: Markovian and non-Markovian systems [4]. The most important dif-
ference between Markovian and non-Markovian systems lies in the memory effects
(environment flow-back information to system) [5]. There are several approaches to des-
cribe the evolution of non-Markovian open quantum systems, for example, pseudomode
approach [6,7] and time convolutionless projection operator (TCL) [8]. Dalton and Gar-
raway [9,10] used pseudomode method to describe the evolution of the �-type atom
coupled to an electromagnetic field (single bosonic reservoir and two independent reser-
voirs). The two-level atomic systems have been studied using NZ approach in [11] and
the three-level atomic systems in �, � and V atomic types have been studied in [12–20].

In recent years, research on quantum entanglement has attracted a lot of attention, which
has a lot of application in quantum information theory [21]. Interaction of atom–reservoir,
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will lead to entanglement between the atom and the reservoir. Time evolution of entropy
of reservoir or the atom shows the time evolution of degree of entanglement between
subsystems [22]. According to Araki and Leib’s [23] theorem, for any two-component
systems (here atom (A) and reservoir (R)), the total entropy (SAR) is limited by

|SA(t) − SR(t)| ≤ SAR(t) ≤ SA(t) + SR(t). (1)

The motivation of our work is to compare different types of three-level atoms in single
bosonic reservoir and two independent reservoirs and thus find the effect of reservoir on
atoms.

In this paper, after a brief review of three different types of three-level atoms in §2, we
introduce the Hamiltonians for three-level atoms in a single reservoir in §3.1. Then in
§3.2, we solve the NZ equation to describe the evolution of different types of three-level
atoms in a single reservoir. We write the entropy evolution of the atoms in single reser-
voirs to measure the degree of entanglement in §3.3 and then we compare entanglement
in different types of atoms for two different states in §3.4. In §4, we do the above men-
tioned procedures for three-level atoms in two independent reservoirs and finally in §5,
we compare the entropy of three-level atoms in single and two independent reservoirs.

2. Three-level atoms

2.1 �-type three-level atomic system

The �-type three-level atomic system is shown in figure 1a. The dipole transitions
allowed in this system are |1〉 ↔ |2〉, with atomic transition frequency ω1 and |0〉 ↔ |2〉
with atomic transition frequency ω2. The dipole transition |2〉 ↔ |1〉 is forbidden. The

Figure 1. Three-level atoms: (a) �-type, (b) V-type and (c) �-type.
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couplings between the atom and the reservoir are respectively g
(1)
k and g

(2)
k for these

transitions [12,24].

2.2 V -type three-level atomic system

Figure 1b presents the V -type three-level atomic system. The dipole transitions allowed
in this system are |0〉 ↔ |1〉, with atomic transition frequency ω1 and |0〉 ↔ |2〉 with
atomic transition frequency ω2. The dipole transition |1〉 ↔ |2〉 is forbidden. The cou-
plings between the atom and the reservoir are respectively g

(1)
k and g

(2)
k for these cases

[14,24].

2.3 �-type three-level atomic system

The �-type three-level atomic system is shown in figure 1c. The dipole transitions
allowed are |0〉 ↔ |1〉, with atomic transition frequency ω1 and |1〉 ↔ |2〉 with
atomic transition frequency ω2 and dipole transition |0〉 ↔ |2〉 is forbidden. The coup-
lings between the atom and the reservoir are respectively g

(1)
k and g

(2)
k for these cases

[9,24].

3. Three-level atoms in a single reservoir

3.1 Models

The Hamiltonian for a three-level atom in different types interacts with a single bosonic
Lorentzian reservoir at zero temperature in rotating wave approximation (RWA) and can
be written as follows [5,25]:

H0� = (ω2 − ω1) |1〉 〈1| + ω2 |2〉 〈2| +
∑

k

ωka
†
kak,

HI� =
∑

k

g
(1)
k (a

†
k |1〉 〈2|) + g

(2)
k (a

†
k |0〉〈2|) + h.c., (2)

H0V = ω1 |1〉 〈1| + ω2 |2〉 〈2| +
∑

k

ωka
†
kak,

HIV =
∑

k

g
(1)
k (a

†
k |0〉 〈1|) + g

(2)
k (a

†
k |0〉〈2|) + h.c., (3)

H0� = ω1 |1〉 〈1| + (ω1 + ω2) |2〉〈2| +
∑

k

ωka
†
kak,

HI� =
∑

k

g
(1)
k (a

†
k |1〉 〈2|) + g

(2)
k (a

†
k |0〉〈1|) + h.c., (4)

where ω1, ω2 are defined in §2 and ωk is the field frequency of the kth field mode. The
constant gk describes the strength of coupling between the atom and the reservoir. ak and
a

†
k are annihilation and creation operators respectively.
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3.2 Dynamics of an atom in a single reservoir

First, we write Hamiltonians in the interaction picture and then we use the NZ master
equation to get dynamics of each models. NZ master equation is:

dρS(t)

dt
= −

∫ t

0
dt ′T RR[HI(t), [HI(s), ρS(s) ⊗ ρR]]. (5)

HI(t) is Hamiltonian in the interaction picture. Temperature is zero and density matrix of
the reservoir is ρR = |0〉〈0|.

Hamiltonians for three types of atoms in the interaction picture are

HI�(t) =
∑

k

g
(1)
k (a

†
k |1〉〈2|)e−i(ω1−ωk)t

+g
(2)
k (a

†
k |0〉〈2|)e−i(ω2−ωk)t + h.c., (6)

HIV (t) =
∑

k

g
(1)
k (a

†
k |0〉〈1|)e−i(ω1−ωk)t

+g
(2)
k (a

†
k |0〉〈2|)e−i(ω2−ωk)t + h.c., (7)

HI�(t) =
∑

k

g
(1)
k (a

†
k |0〉〈1|)e−i(ω1−ωk)t

+g
(2)
k (a

†
k |1〉〈2|)e−i(ω2−ωk)t + h.c. (8)

We put the general density matrix ρS(t)

ρS(t) =
⎡

⎣
ρ11(t) ρ12(t) ρ13(t)

ρ21(t) ρ22(t) ρ23(t)

ρ31(t) ρ32(t) ρ33(t)

⎤

⎦ , (9)

in eqs (6)–(8). The NZ master equation for these models becomes

˙ρS�(t) =
∫ t

0
dt ′f (t − t ′)

(
2ρS(t

′)|2〉 〈2| − |0〉〈2| ρS(t
′)|2〉〈0| − |0〉

× 〈2| ρS(t
′)|2〉〈1| − |1〉 〈2| ρS(t

′)|2〉〈0| − |1〉〈2| ρS(t
′)|2〉〈1|)

+
∫ t

0
dt ′f ∗(t − t ′)

(−|0〉〈2| ρS(t
′)|2〉〈0| + 2|2〉〈2| ρS(t

′) − |1〉

× 〈2| ρS(t
′)|2〉 〈0| −|0〉〈2| ρS(t

′)|2〉〈1| −|1〉〈2| ρS(t
′)|2〉〈1|) . (10)

The set of equations can be solved by employing the Laplace transform. The results are

ρ̃11(s) = ρ11(0)

s + 2f̃ ∗(s) + 2f̃ (s)
,

ρ̃12(s) = ρ12(0)

s + 2f̃ ∗(s)
,

ρ̃13(s) = ρ13(0)

s + 2f̃ ∗(s)
,
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ρ̃22(s) = ρ22(0)s + 2ρ22(0)f̃ (s) + 2ρ22(0)f̃ ∗(s) + 2ρ̃11(0)f̃ ∗(s)
(s + 2 ˜f (s) + 2f̃ ∗(s))

,

ρ̃23(s) = ρ23(0)s + 2ρ23(0)f̃ (s) + 2ρ23(0)f̃ ∗(s) + 2ρ̃11(0)f̃ ∗(s)
(s + 2f̃ (s) + 2f̃ ∗(s))

,

ρ̃33(s) = ρ33(0)s + 2ρ33(0)f̃ (s) + 2ρ33(0)f̃ ∗(s) + 2ρ̃11(0)f̃ ∗(s)
(s + 2f̃ (s) + 2f̃ ∗(s))

, (11)

where ρ̃ij (s) (i, j = 1, 2, 3), f̃ (s) and f̃ ∗(s) are Laplace transforms of ρij (t), f (t − t ′)
and f ∗(t − t ′) respectively. Finally, we need to use an inverse Laplace transform to find
the solution. The above procedure can be done for V - and �-type atoms also.

˙ρSV (t) =
∫ t

0
dt ′f (t − t ′)(ρS(t

′)|1〉〈1| − |0〉〈1| ρS(t
′)|1〉〈0| − |0〉〈1| ρS |2〉

× 〈0| − |0〉〈2| ρS(t
′)|1〉 〈0| + ρS(t

′)|2〉〈1| + ρS |1〉〈2| − |0〉
× 〈2| ρS(t

′)|2〉〈0| − |0〉〈2| ρS(t
′)|1〉〈0| − ρS(t

′)|2〉〈2|)
+

∫ t

0
dt ′f ∗(t − t ′)(|1〉〈1| ρS(t

′) − |0〉〈1| ρS(t
′)|1〉〈0| − |0〉

× 〈2| ρS(t
′)|1〉〈0| + ρS(t

′)|2〉〈2| − |0〉〈2| ρS(t
′)|2〉〈0| + ρS(t

′)|1〉
× 〈2| + ρS(t

′)|2〉〈1| − |0〉〈1| ρS(t
′)|2〉〈0|) (12)

and

˙ρS�(t) =
∫ t

0
dt ′f (t − t ′)(−|1〉〈2| ρS(t

′)|2〉〈1| − |0〉〈1| ρS(t
′)|1〉〈0| − |0〉

× 〈1| ρS(t
′)|2〉〈1| − |1〉〈2| ρS(t

′)|1〉〈0| + ρS(t
′)|1〉〈1| + ρS(t

′)|2〉
× 〈2|)e−i(ω0−ωk)(t−t ′) +

∫ t

0
dt ′f ∗(t − t ′)(|1〉〈1| ρS(t

′) − |0〉
× 〈1| ρS(t

′)|1〉〈0| − |1〉〈2| ρS(t
′)|1〉〈0| − |0〉〈1| ρS(t

′)|2〉
× 〈1| − |1〉〈2| ρS(t

′)|2〉〈1| + |2〉〈2| ρS(t
′)). (13)

Assuming three-level atoms are degenerate, it means ω1 = ω2 ≡ ω0 and suppose g
(1)
k =

g
(2)
k ≡ gk , the correlation function becomes

f (t − t ′) =
∑

k

|gk|2 e−i(ωk−ω0)(t−t ′). (14)

In continuous field frequency, we replace
∑

k |gk|2 by
∫

dωJ(ω)δ(ωk − ω). Here J (ω) is
Lorentzian spectral density which is defined as

J (ω) = 1

2π

�λ2

(λ2 + (ω − ω0)2)
(15)

and correlation function becomes

f (t − t ′) = 1

2
�λe−λt , (16)

where λ is the bandwidth of the reservoir and � is the coupling strength. The condition
� > λ

2 (� < λ
2 ) defines strong coupling (weak coupling) regime. We have used the
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initial state |ψ(0)〉 = (p|2〉 + √
1 − p2|1〉) ⊗ |0〉 for 0 ≤ p ≤ 1 and λ = 0.01� in our

calculations.

3.3 Degree of entanglement in a single reservoir

The reduced density matrix for atoms described in §3.2 has been calculated with initial
state |ψ(0)〉. Figure 2 demonstrates the evolution of entropy in a single reservoir with
different values of parameter p. The entropy value for the �-type atom is smaller than
the entropy peak of �- and V -types for p > 0.85. The peak of entropy in the �-type is
0.5 (for p = 0 and 1), while its entropy is minimum for p ≈ 0.8. The entropy increases
in time for a fixed value of the parameter p in all atom types. For a fixed time, the
�-type atom finds its maximum value of entropy in p = 1 and its minimum value in
p = 0, while for the V -type atom, entropy finds its minimum value at p = 0 and 1 and
its maximum value is located at p ≈ 0.4. In [20], when the atom interacts with a single
mode-field, the revival times in the �-type atom is greater than those in the �- and V-type
atoms. This means that the reservoir has greater correlation with the �- and V-type atoms
in comparison with �-type. But our simulation shows that for a k-mode reservoir in initial
states |ψ(0)〉, V- and �-type atoms at p > 0.85 have less correlation with the reservoir
while in some cases like p < 0.85, �-type atom has lower correlation with the reservoir.

Figure 2. Evolution of entropy in a single reservoir. (a) �-type atom, (b) �-type
atom and (c) V-type atom.
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3.4 Entropy evolution in three-level atoms with different initial states

Figure 3a demonstrates the evolution of entropy for initial state ψ1(0) = |2〉. This figure
shows that � atom has the greatest entropy. One may assume that the � atom has greatest
entropy in all the cases. But it is not true and the situation is very sensitive to the initial
state. Figure 3b presents the entropy evolution for initial state |ψ2(0)〉 = 1√

2
(2+|1〉). This

figure clearly shows that the V -type atom has the greatest value of entropy in comparison
with other types of atoms, while the � atom has the lowest entropy.

4. Three-level atoms in two independent reservoirs

4.1 Models

The Hamiltonian of three-level atoms in different types interacting with two indepen-
dent bosonic Lorentzian reservoirs at zero temperature in the RWA can be written as
follows [5]:

H0� = (ω2 − ω1) |1〉〈1| + ω2 |2〉〈2| +
∑

k

ωka
†
kak +

∑

l

ωlb
†
l bl,

HI� =
∑

k

g
(1)
k (a

†
k |1〉〈2|) +

∑

l

g
(2)
l (b

†
l |0〉〈2|) + h.c., (17)

H0V = ω1|1〉〈1| + ω2 |2〉〈2| +
∑

k

ωka
†
kak +

∑

l

ωlb
†
l bl,

HIV =
∑

k

g
(1)
k (a

†
k |0〉〈1|) +

∑

l

g
(2)
l (b

†
l |0〉〈2|) + h.c., (18)

H0� = ω1|1〉〈1| + (ω1 + ω2) |2〉〈2| +
∑

k

ωka
†
kak +

∑

l

ωlb
†
l bl,

HI� =
∑

k

g
(1)
k (a

†
k |1〉〈2|) +

∑

l

g
(2)
l (b

†
l |0〉〈1|) + h.c., (19)

Figure 3. Evolution of entropy in a single reservoir for different states. (a) ψ1(0) =
|2〉, (b) |ψ2(0)〉 = 1√

2
(|2〉 + |1〉).
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where ω1, ω2, ωk and gk are defined in §2, while ak (bl) and a
†
k (b

†
l ) are annihilation and

creation operators respectively.

4.2 Dynamics of atom in two independent reservoirs

Like §3.2, we get Hamiltonian in the interaction picture. Then, one can use eq. (1) to find
the dynamics of each model. The interaction part of the Hamiltonian for different types
of atoms are:

HI�(t) =
∑

k

g
(1)
k (a

†
k |1〉〈2|)e−i(ω1−ωk)t

+
∑

l

g
(2)
l (b

†
l |0〉〈2|)e−i(ω2−ωk)t + h.c., (20)

HIV (t) =
∑

k

g
(1)
k (a

†
k |0〉〈1|)e−i(ω1−ωk)t

+
∑

l

g
(2)
l (b

†
l |0〉〈2|)e−i(ω2−ωk)t + h.c., (21)

HI�(t) =
∑

k

g
(1)
k (a

†
k |0〉〈1|)e−i(ω1−ωk)t

+
∑

l

g
(2)
l (b

†
l |1〉〈2|)e−i(ω2−ωl)t + h.c. (22)

Therefore we have

ρ̇S�(t) =
∫ t

0
dt ′f (t − t ′)(|2〉〈2| ρS(t

′) − 2 |0〉〈2| ρS(t
′) |2〉〈0|

+ρS(t
′) |2〉〈2|) +

∫ t ′

0
dsf ∗(t − t ′)(|2〉〈2| ρS(t

′) − 2|1〉
× 〈2| ρS(t

′)|2〉〈1| + ρS(t
′)|2〉〈2|). (23)

For �-type atom, Laplace transform of density matrix becomes

ρ̃11(s) = ρ11(0)

s + 2f̃ ∗(s) + 2f̃ (s)
,

ρ̃12(s) = ρ12(0)

s + 2f̃ ∗(s)
,

ρ̃13(s) = ρ13(0)

s + 2f̃ ∗(s)
,

ρ̃22(s) = ρ22(0) + f̃ (s)ρ̃11(s) + f̃ ∗(s)ρ̃11(s)

s
,

ρ̃23(s) = ρ23(0)

s
,

ρ̃33(s) = ρ33(0) + f̃ (s)ρ̃11(s) + f̃ ∗(s)ρ̃11(s)

s
, (24)
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where ρ̃ij (s) (i, j = 1, 2, 3), f̃ (s) and f̃ ∗(s) are Laplace transforms of ρij (t),
f (t − t ′) and f ∗(t − t ′) respectively. Finally, we need to use an inverse Laplace transform
to find the solution. The above procedure can be done for V - and �-type atoms also.

ρ̇SV (t) =
∫ t

0
dt ′f (t − t ′)(|1〉〈1| ρS(t

′)−2 |0〉〈1| ρS(t
′) |1〉〈0| + ρS(t

′) |1〉〈1|

+
∫ t

0
dsf ∗(t − t ′)(|1〉〈1| ρS(t

′) − |0〉〈1| ρS(t
′)|1〉〈0| − |0〉

× 〈2| ρS(t
′)|2〉〈0| + ρS(t

′)|2〉〈2|) (25)

and

˙ρS�(t)=
∫ t

0
dt ′f (t−t ′)(|1〉〈1| ρS(t

′)−|0〉〈1| ρS(t
′)|1〉〈0| −|0〉〈1| ρS(t

′)|1〉〈0|

+ρS(t
′) |1〉〈1|) +

∫ t

0
dsf ∗(t − t ′)(|1〉〈1| ρS(t

′)− |2〉〈1| ρS(t
′) |1〉〈2|

+ρS(t
′) |2〉〈2| − |1〉〈2| ρS(t

′) |2〉〈1|). (26)

Considering ω1 = ω2 ≡ ω0, g
(1)
k = g

(2)
k ≡ gk and g

(1)
l = g

(2)
l ≡ gl , we have

f (t − t ′) =
∑

k

|gk|2 e−i(ωk−ω0)(t−t ′)

=
∑

l

|gl|2 e−i(ωl−ω0)(t−t ′) = 1

2
�λe−λt . (27)

We have taken initial state as |ψ(0)〉 = (p |2〉 + √
1 − p2 |1〉) ⊗ |0〉 for 0 ≤ p ≤ 1 and

λ = 0.01� in our numerical calculations.

4.3 Entanglement in two independent reservoirs

Reduced density matrix for different types of atoms interacting with two independent
reservoirs with initial state |2ψ(0)〉 has been calculated numerically. Figure 4 shows the
evolution of entropy for different types of atoms in two independent reservoirs with a
different parameter p. This figure clearly shows that the maximum value of entropy for
�- and V -type atoms is smaller than the entropy peak of the �-type atom when p > 0.85.
For a given value of time, the �-type atom has a minimum value for p ≈ 0.6, while the �-
type atom has maximum value of entropy when p = 1 and minimum value when p = 0.
In [20], in a two-mode field, V and � configurations have the maximum values of revival
time and therefore they have lower correlation with reservoirs, while in our simulation, in
two independent reservoirs for p > 0.85 it is true but for p < 0.85, � atom has lower
interaction with the medium.

4.4 Behaviour of entropy evolution in different types of atoms with respect to different
initial states

Figure 5a demonstrates evolution of the entropy calculated with initial state ψ1(0) = |2〉.
This figure shows that � atom has the greatest entropy. Figure 5b presents the entropy
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Figure 4. Evolution of entanglement in a single reservoir. (a) �-type atom, (b) �-
type atom and (c) V-type atom.

Figure 5. Evolution of entropy for different initial states. (a) |ψ1(0)〉 = |2〉,
(b) |ψ2(0)〉 = 1√

2
(|1〉 + |2〉).
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Figure 6. Evolution of entropy in a single and two independent reservoirs. (a) �-type
atom, (b) V-type atom and (c) �-type atom.

evolution for initial state |ψ2(0)〉 = 1√
2
(|2〉 + |1〉). One can find that the V -type atom has

the greatest value of entropy with the new initial state |ψ2(0)〉.
5. Comparison of the entropy of three-level atoms in a single and two independent
reservoirs

Figure 6 presents evolution of entropy in a single reservoir and also two reservoirs for
different types of atoms with initial state |ψ2(0)〉 = 1√

2
(|1〉 + |2〉). This figure already

shows that the entropy of the system in two reservoirs are greater than that in one reservoir
for � and �, while V -type finds its greater entropy in a single reservoir.

6. Conclusions and remarks

We have shown that entropy (S) of the system monotonically increases in time for any
fixed value of the parameter p in all kinds of atoms. Our calculations show that a �-type
atom has the greatest degree of entropy when compared with �- and V -type atoms when
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p > 0.85, while �-type atom has the smallest degree of entropy when compared with
�- and V -type atoms when p < 0.85. We chose |ψ1(0)〉 = |2〉 as the initial state and
showed that �-type atom has the greatest entropy with this initial state. Also, it is shown
that the V -type atom has the greatest entropy with initial state |ψ2(0)〉 = 1√

2
(|1〉 + |2〉).

It is possible that an atom in a single reservoir has greater entropy in comparison with its
entropy in two independent reservoirs.

Our investigation has been done with the same correlation function f (t − t ′) because
we assume ω1 = ω2 ≡ ω0 and g

(1)
k = g

(2)
k ≡ gk . It is interesting to study the evo-

lution of the system using different correlation functions. On the other hand, the effect
of phase damping, phase and amplitude damping or other medium perturbations has not
been considered here. These situations can be studied in further works.
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