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Abstract. The overtaking collision between electron acoustic multisolitons in an unmagnetized
quantum plasma consisting of ions, and both hot and cold electrons has been investigated. The
Hirota bilinear method is employed to study phase shifts and trajectories during the overtaking
collision of multisolitons. It is observed that phase shifts are significantly affected by the quan-
tum parameter H . The phase shifts are proportional to B1/3 (dispersion coefficient) and are func-
tions of their respective amplitudes. It is also seen that the soliton structure occurs only if H < 2.
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1. Introduction

The mathematical modelling of physical phenomena often leads to nonlinear evolution
equations. It is worth mentioning that many of these equations are integrable which imp-
lies that, from these equations, one can extract almost as much information as one can
extract from the corresponding linear ones. The nonlinear equations, however, exhibit
richer phenomena than the linear equation. In particular, many of them support the soli-
tary waves or the so-called soliton solutions. Theoretically, the soliton concept was deve-
loped by Zabusky and Kruskal [1], who were experimenting with the numerical solution
of the Kortweg–de Vries (KdV) equation [2].

On the other hand, electron acoustic waves (EAWs) do exhibit soliton solutions and
have been investigated in detail both theoretically and experimentally by many resear-
chers [3–5]. The evolution of small-amplitude EAWs in collisionless plasma is usually
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described by nonlinear evolution equations such as KdV, KdV-type, Zakharov–Kuznetsov
(ZK) equation, and nonlinear Schrödinger equation [6–10]. EAWs have been observed
in the laboratory when the plasma consisted of two species of electrons with different
temperatures, referred to as hot and cold electrons [11,12]. Also, its propagation plays an
important role not only in the laboratory but also in space plasma. For example, the EAWs
have been used to describe the electrostatic component of the electrostatic noise, in the
cusp of terrestrial magnetosphere, earth bow shock and the heliosphere termination shock
[13–15]. It is important to note that electron acoustic waves (EAWs) are typically high-
frequency dispersive plasma waves because their frequency is much larger than the ion
frequency. In EAWs, the inertia is provided by the cold electrons and the restoring force
comes from the presence of hot electrons [16]. The ions play the role of a neutralizing
background. In this case, ion dynamics do not influence the EAWs. EAWs can only
propagate in a limited region of the system parameters. This is due to the short and long
wavelength of EAWs which face strong Landau damping on account of its resonance
with either hot or cold electron components. Watanabe and Taniuti [17] have first showed
the existence of electron acoustic waves in a plasma of two-temperature (hot and cold)
electrons. The EAWs will give stable oscillations only when the hot and cold electron
temperature ratio Th/Te ≤ 10 and 0.2 ≤ ne ≤ 0.8, where ne = nc + nh (the sum of cold
and hot electron densities). Otherwise it will be heavily damped.

Physics of quantum plasma has attracted a lot of attention because of its signifi-
cant applications in metal nanostructures [18], astrophysical systems [19], ultrasmall
electronic devices [20,21], biophotonics [22], cool vibes [23], neutron stars [24], laser-
produced plasmas [25], quantum wells and quantum diodes [26,27]. Thermal de Broglie
wavelength can measure the quantum effects of the particle composing the plasma as
λB = h̄/(mvT), where h̄ is the Planck’s constant, m is the particle mass and vT is the ther-
mal speed of the particle. When the de Broglie wavelength (λB) is equal to or greater than
the average interparticle distance n−1/3, i.e., nλ3 ≥ 1, the quantum effect starts playing
an important role. On the other hand, it is known from statistical mechanics of ordinary
gases that quantum effects are significant when the temperature (T ) is lower than the
Fermi temperature (TFe), i.e., TFe/T = 1

2 (3π2)2/3(nλ3) ≥ 1. If we compare classical
plasma with quantum plasma, we see that the electron de Broglie wavelength (λBe) is
less than the electron Debye radius (λDe) (i.e., λBe < λDe). But in quantum plasma (i.e.,
λBe > λDe) the density correction is significant because nλ3 ≥ 1. The numerical calcu-
lations done here are for plasma parameters satisfying the above criteria. The quantum
effect is incorporated in the Bohm term, introduced semiclassically in the field model by
Hass et al [28].

Quantum effects are usually studied with the help of two well-known formulations, viz.
the Wigner–Poisson and the Schrödinger–Poisson formulations. The Wigner–Poisson mo-
del is often used to study the quantum kinetic behaviour of plasma while the Schrödinger–
Poisson model describes the hydrodynamic behaviour of plasma particles in quantum
scale. The interaction of two unidirectional solitons is most frequently investigated not
only in physics but also in coastal engineering.

Several researchers [29–36] have investigated head-on collision and related phase shift
of different solitary waves in different plasma models. But the overtaking collisions of so-
litons, especially phase shifts after collision, have been studied by only a few researchers.
Only recently, Sahu and his collaborators [37,38] have studied the nonplanar effect on the
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two-soliton interaction when one soliton overtakes the other. They used Hirota’s bilinear
method to find multisoliton solution. Roy et al [39] have also studied the overtaking
collision of two solitons and obtained the phase shift during such collisions. But the inter-
action of three solitons and their related phase shifts due to the overtaking collision have
hardly been studied for quantum plasmas. The objective of the present paper is to study
the interaction and phase shift during collision of two- as well as three-electron acous-
tic soliton interactions using Hirota’s method in nonmagnetized, collisionless, ultracold
electron acoustic quantum plasma. The organization of the present paper is as follows:

Section 2 deals with the basic equations and derivation of the KdV equation by employ-
ing the reductive perturbation technique. In §3, the interactions of the two as well as
three solitons and their related phase shifts have been discussed. Finally, we make some
concluding remarks in §4.

2. Basic equations and derivation of KdV equation

Let us consider an unmagnetized and collisionless quantum plasma consisting of ions, and
both hot and cold electrons. We consider the dynamics of cold electrons in the background
of hot electrons and ions. The phase speed of EAWs lies between vFc and vFh, i.e. vFc �
ω � vFh, where vFc and vFh are Fermi velocities of cold and hot electrons, respectively.
The basic normalized equations are:

The continuity equation for cold electron is

∂n

∂t
+ ∂(nu)

∂x
= 0. (1)

The momentum equation for cold electron is

∂u

∂t
+ u

∂u

∂x
= α

∂φ

∂x
. (2)

The equation of momentum for inertialess hot electron is

∂φ

∂x
− nh

∂nh

∂x
+ H 2

2

∂

∂x

[
∂2√nh/∂x√

nh

]
= 0. (3)

The Poission equation is

∂2φ

∂x2
= nh + 1

α
n −

(
1 + 1

α

)
. (4)

Integrating eq. (3) once with the boundary condition, viz. nh → 1 and φ → 0 at ±∞, we
have

φ = −1

2
+ n2

h

2
− H 2

2
√

nh

∂2√nh

∂x2
, (5)

where n, nh, u and me are the electron number density normalized to n0, hot electron
number density normalized to nh0, cold electron velocity normalized to

√
2kBTFh/αe and

electron mass respectively. Also α = nh0/n0 > 1, TFh is the Fermi temperature of hot
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electron, kB is the Boltzmann constant and e is the electron charge. φ is the electrostatic
wave potential normalized to 2kBTFh/e, H is the nondimensional quantum parameter due
to hot electron determined by H = h̄ωph/2kBTFh, ωph = √

4πnh0e2/me is the hot elec-
tron plasma frequency, h̄ is the Planck’s constant. Space variables are normalized to the
Fermi wavelength of the hot electron (λFh = √

2kBTFh/4πnh0e2) and time is normalized
to the inverse of the cold elctron plasma frequency (ω−1

pc = √
me/4πn0e2). In an unper-

turbed state, neutrality condition gives n0 + nh0 = ni0. The Fermi temperature of hot
electrons is given by the relation mev

2
Fh/2 = kBTFh.

Now, we derive the KdV equation from eqs (1)–(5) by employing the reductive pertur-
bation technique. The independent variables are stretched as ξ = ε1/2(x − λt), τ = ε3/2t

and the dependent variables are expanded as

n = 1 + εn(1) + ε2n(2) + · · · , (6)

u = 0 + εu(1) + ε2u(2) + · · · , (7)

nh = 1 + εn
(1)
h + ε2n

(2)
h + · · · , (8)

φ = 0 + εφ(1) + ε2φ(2) + · · · , (9)

where ε is a small nonzero parameter proportional to the amplitude of perturbation. Now,
subtituting (6)–(9) into (1)–(5) and taking the terms in different powers of ε, we obtain in
the lowest order of ε, the dispersion relation as

λ2 = 1. (10)

In the next higher order of ε, we eliminate the second-order perturbed quantities from a
set of equations to obtain the required KdV equation. As this is a standard procedure, we
skip the details and just write the KdV equation.

∂φ(1)

∂τ
− Aφ(1) ∂φ(1)

∂ξ
+ B

∂3φ(1)

∂ξ 3
= 0, (11)

where the nonliner coefficient A and the dispersion coefficient B are given by

A = λ

2
(3α − 1), (12)

B = λ

2

(
1 − H 2

4

)
. (13)

The amplitude and width of a single soliton are respectively

φm = −3M

A
, (14)

W =
√

4B

M
, (15)

where M is the normalized constant speed of the wave frame.
Let us recall ξ by ξ̄B1/3, φ(1) by 6φ̄(1)A−1B1/3 and τ by τ̄ . Then eq. (11) will be

transformed to the following standard KdV equation:

∂φ̄(1)

∂τ̄
− 6φ̄(1) ∂φ̄(1)

∂ξ̄
+ ∂3φ̄(1)

∂ξ̄ 3
= 0. (16)

The transformations (11)–(16) are valid for B > 0 which implies H < 2.
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3. Results and discussion

3.1 Two-soliton solution

Now our aim is to obtain two-soliton solution of eq. (11) and to study the interaction
between them. To do so, we shall employ Hirota’s billinear method and we get the Hirota
bilinear form (for details, see refs [38–41])

(Dξ̄Dτ̄ + D4
ξ̄
){f · f } = 0. (17)

After some long but standard calculation, we get the two-soliton solution of the KdV
equation (11) as

φ(1) = −12
B1/3

A

k2
1eθ1 + k2

2eθ2 + a12eθ1+θ2(k2
2eθ1 + k2

1eθ2) + 2(k1 − k2)
2eθ1+θ2

(1 + eθ1 + eθ2 + a12eθ1+θ2)2

(18)

with

θi = ki

B1/3
ξ − k3

i τ + αi, a12 = (k1 − k2)
2/(k1 + k2)

2.

a12 determines the phase shifts of the respective solitons after overtaking takes place.
When τ 
 1, the solution of eq. (11) asymptotically transforms into a superposition

of two single-soliton solutions [41,42]

φ(1) ≈ −3B1/3

A

[
k2

1

2
sech2

{
k1

2B1/3
(ξ − B1/3k2

1τ − �1)

}

+k2
2

2
sech2

{
k2

2B1/3
(ξ − B1/3k2

2τ − �2)

}]
, (19)

where

�i = ±2B1/3

Ki

ln|√a12|, i = 1, 2.

It is to be noted that the phase shifts �1 and �2 are of the same sign and both of them are
proportional to B1/3 and the amplitude, a result consistent with those obtained in the study
of head-on collision [43,44] of two solitons. It is to be noted that B depends on H (see
eq. (13)). The phase shifts will also depend on the parameter H .

Here, while the coefficient A is independent of H , the coefficient B depends on H . It
is to be noted that dispersion coefficient B vanishes at H = 2. This critical value of H

destroys the KdV equation (eq. (11)) and no soliton can occur for this critical case. No
soliton solution is possible for H > 2. However, we find that when H < 2 formation of
soliton structure is possible.

In figure 1, time evalution of the interaction of two-soliton solution φ(1) vs. ξ is plotted
for different values of τ . At τ = −5, the larger amplitude soliton is behind the smaller
amplitude solitary wave. When τ = −1, two solitons merge and become one soliton at
τ = 0. But at τ = 1, they seperate from each other and then finally each appears as a sepe-
rate soliton acquiring their respective speed and shape unchanged. It can be clearly seen
from the exact two-soliton solution and asymptotical solution that while the amplitude of
the merged soliton is greater than the amplitude of the shorter soliton, it is less than the
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Figure 1. Variation of the two-soliton profiles φ(1) (eq. (18)) for different values of τ

with k1 = 1, k2 = 2, H = 1.5, α = 1.2, α1 = 1, α2 = 1.

amplitude of the taller soliton (for example, see the solution given by Drazin et al [42] in
page 76).

In figure 2, we have plotted the solitary potential structure φ(1) against ξ for different
values of H . It is seen from the figure that the amplitude of the solitons decreases with the
increase in H (0 < H < 2). Physically, this happens because the increase of H makes
the coefficient of the nonlinear term of KdV equation to decline, as a result of which
the amplitude of the soliton goes down. It is found that soliton with larger amplitude
overtakes the small one eventually because a12 is an important quantity which determines
the phase shift, that is the change of position, caused by the interaction of two solitons.

In figure 3, the variations of phase shifts are plotted against the parameter H , while the
other parameters are kept the same as those in figure 2. It is seen from figure 3 that the
phase shifts �1, �2 decrease with increase in H . They tend to vanish as H → 2. This
behaviour can be anticipated by the relationship between �i (i = 1, 2) and H through the
parametrs B (eq. (13)) and |�i | = ± 2B1/3

Ki
ln |√a12|, i = 1, 2.
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Figure 2. Two-soliton profiles φ(1) (eq. (18)) plotted against ξ for different values of
H . Other parameters are the same as those in figure 1.

Figure 3. Variation of the phase shift for two-soliton against the parameter H . Other
parameters are the same as those in figure 1.

3.2 Three-soliton solution

To construct three-soliton solution we use the Hirota perturbation and finally we get the
three-soliton solution of the KdV equation (11) as

φ(1) = −12
B1/3

A

L1

M1
, (20)

where

L1 = eθ1+θ2
[
2(k1 − k2)

2 + 2(k1 − k2)
2a13a23e2θ3 + a12k

2
1eθ2 + a12k

2
2eθ1

]
+eθ1+θ3

[
2(k1 − k3)

2 + 2(k1 − k3)
2a12a23e2θ2 + a13k

2
1eθ3 + a13k

2
3eθ1

]
+eθ2+θ3

[
2(k2 − k3)

2 + 2(k2 − k3)
2a12a13e2θ1 + a23k

2
2eθ3 + a23k

2
3eθ2

]
+k2

1eθ1 + k2
2eθ2 + k2

3eθ3

+B1eθ1+θ2+θ3
[
a12k

2
3eθ1+θ2 + a13k

2
2eθ1+θ3 + a23k

2
1eθ2+θ3

]
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Figure 4. Variation of the three-soliton profiles φ(1) (eq. (20)) for different values of τ .

+eθ1+θ2+θ3 [a12(k
2
1 + k2

2 + k2
3 + 2k1k2 − 2k1k3 − 2k2k3)

+a13(k
2
1 + k2

2 + k2
3 + 2k1k3 − 2k1k2 − 2k2k3)

+a23(k
2
1 + k2

2 + k2
3 + 2k2k3 − 2k1k2 − 2k1k3)

+B1(k
2
1 + k2

2 + k2
3 + 2k1k2 + 2k1k3 + 2k2k3)],

M1 = [1 + eθ1 + eθ2 + eθ3 + a12eθ1+θ2 + a13eθ1+θ3 + a23eθ2+θ3

+B1eθ1+θ2+θ3 ]2,

B1 = a12a13a23,

θi = ki

B1/3
ξ − k3

i τ + αi, i = 1, 2, 3.

For τ 
 1, the above solution is asymptotically transformed into a superposition of three
single-soliton solution as [41]

φ(1) ≈ −
3∑
i

Ai sech2

[
ki

2B1/3
(ξ − k2

i B
1/3τ − �′

i )

]
, (21)
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Figure 5. Variation of the phase shift for three-soliton against the parameter H .

where

Ai = 3B1/3k2
i /2A, i = 1, 2, 3

are the amplitudes and

�′
1 = ±2B1/3

k1
ln

∣∣∣∣ B1

a23

∣∣∣∣ , �′
2 = ±2B1/3

k2
ln

∣∣∣∣ B1

a13

∣∣∣∣ ,

�′
3 = ±2B1/3

k3
ln

∣∣∣∣ B1

a12

∣∣∣∣
are the phase shifts of the solitons.

In figure 4, time evalution of the interaction of three-soliton solution φ(1) vs. ξ is plotted
for different values of τ . At τ = −10, the larger-amplitude soliton is behind the smaller
amplitude solitary wave. When τ = −5, two solitons merge and become one soliton at
τ = 0. But at τ = 1, they seperate from each other and then finally each appears as a
seperate soliton acquiring its original speed and shape.

Figure 5 shows the variation of phase shift for respective solitons against H when the
values of the other parameters are kept fixed. As before, the phase shifts decrease with
increase in H as the value of B decreases with an increase of H .

4. Conclusion

In this paper, we have investigated the nature of nonlinear propagation of two- and three-
electron acoustic soliton solutions in an unmagnetized quantum plasma consisting of ions,
and both cold and hot electrons. The KdV equation is derived by RPT. Standard KdV
equation is obtained by suitable transformation. Using the Hirota’s direct method, we
have obtained two-soliton solution of the KdV equation. Propagation of two-soliton and
three-soliton has been discussed. We have observed that the larger soliton moves faster,
approches the smaller one and after the overtaking collision both resume their orginal
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shape and speed. The effects of parameters involved in the nonlinear and dispersion
coefficients of the KdV equation on the amplitude of two-solitons have been investi-
gated. Although head-on collision and overtaking collision are different phenomena,
qualitatively they are consistent with each other. In two-soliton solutions, it is found
that ki�i, i = 1, 2 have the same values. However, in three-soliton case, ki�i is not the
same for i = 1, 2, 3. Each of them is different from the others. Results obtained here
could be of interest in space and laboratory plasmas.

References

[1] N J Zabusky and M D Kruskal, Phys. Rev. Lett. 15, 240 (1965)
[2] D J Korteweg and G de Vries, Phil. Mag. 39, 422 (1895)
[3] M Yu and P K Shukla, J. Plasma Phys. 29, 409 (1983)
[4] R L Mace and M A Hellberg, J. Plasma Phys. 43, 239 (1990)
[5] N Dubouloz, R Pottelette, M Malingre and R A Treumann, Geophys. Res. Lett. 18, 155 (1991)
[6] S G Tagare, S V Singh, R V Reddy and G S Lakhina, Nonlinear Process. Geophys. 11, 215

(2004)
[7] E K El-Shewy, Chaos, Solitons and Fractals 31, 1020 (2007)
[8] S A Elwakil, M A Zahran and E K El-Shewy, Phys. Scr. 75, 803 (2007)
[9] I Kourakis and P K Shukla, Phys. Rev. E 69, 036411 (2004)

[10] P K Shukla, L Stenflo and M Hellberg, Phys. Rev. E 66, 027403 (2002)
[11] H Derfler and T C Simonen, Phys. Fluids 12, 269 (1969)
[12] S Ikezawa and Y Nakamura, J. Phys. Soc. Jpn 50, 962 (1981)
[13] F S Mozer, R E Ergun, M Temerin, C Catte, J Dombeck and J Wygant, Phys. Rev. Lett. 79,

1281 (1997)
[14] R E Ergun et al, Geophys. Res. Lett. 81, 826 (1998)
[15] R Pottelette, R E Ergun, R A Treumann, M Berthomier, C W Carlson, J P McFadden

and I Roth, Geophys. Res. Lett. 26, 2629 (1999)
[16] M Berthomier, R Pottelette and R A Treumann, Phys. Plasmas 6, 467 (1999)
[17] K Watanabe and T Taniuti, J. Phys. Soc. Jpn 43, 1819 (1977)
[18] G Manfredi, Fields Inst. Commun. 46, 263 (2005)
[19] M Opher, O L Silva, D E Dauger, V K Decyk and J Dawson, Phys. Plasmas 8, 2454 (2001)
[20] A Markowich, C Ringhofer and C Schmeiser, Semiconductor equations (Springer, Vienna,

1990)
[21] K F Berggren and Z L Ji, Chaos 6, 543 (1996)
[22] W L Barnes, A Dereux and T W Ebbesen, Nature (London) 424, 824 (2003)
[23] T C Killian, Nature (London) 441, 297 (2006)
[24] G Chabrier, F Douchin and A Y Potekhin, J. Phys.: Condens. Matter 14, 9133 (2002)
[25] K H Becker, K H Schoenbach and J G Eden, J. Phys. D: Appl. Phys. 39, R55 (2006)
[26] L K Ang, W S Koh, Y Y Lau and T J T Kwan, Phys. Plasmas 13, 056701 (2006)
[27] L K Ang and P Zhang, Phys. Rev. Lett. 98, 164802 (2007)
[28] F Hass and G Manfredi, Phys. Rev. E 62, 2764 (2000)
[29] K Roy, P Chatterjee and R Roychoudhury, Phys. Plasmas 21, 104509 (2014)
[30] P Chatterjee, U N Ghosh, K Roy, S V Muniandy, C S Wong and B Sahu, Phys. Plasmas 17,

122314 (2010)
[31] U N Ghosh, K Roy and P Chatterjee, Phys. Plasmas 18, 103703 (2011)
[32] J Han, X X Yang, D X Tian and W S Duan, Phys. Lett. A 372, 4817 (2008)
[33] E F El-Shamy, R Sabry, W W Moslem and P K Shukla, Phys. Lett. A 374, 290 (2009)
[34] P Chatterjee, R Roychoudhury and M K Ghorui, J. Plasma Phys. 79, 305 (2013)

882 Pramana – J. Phys., Vol. 86, No. 4, April 2016



Soliton interactions of electron acoustic waves

[35] P Chatterjee and U N Ghosh, Eur. Phys. J. D 64, 413 (2011)
[36] S K El-Labany, E F El-Shamy, W F El-Taibany and P K Shukla, Phys. Lett. A 374, 960 (2010)
[37] B Sahu, Europhys. Lett. 101, 55002 (2013)
[38] B Sahu and R Roychoudhury, Astrophys. Space Sci. 345, 91 (2013)
[39] K Roy, T K Maji, M K Ghorui, P Chatterjee and R Roychoudhury, Astrophys. Space Sci. 352,

151 (2014)
[40] R Hirota, Phys. Rev. Lett. 27, 1192 (1971)
[41] R Hirota, The direct method in the soliton theory (Cambridge University Press, 2004)
[42] P G Drazin and R S Johnson, Solitons: An introduction (Cambridge University Press, 1993)
[43] M K Ghorui, P Chatterjee and R Roychoudhury, Phys. Plasmas 343, 639 (2013)
[44] U N Ghosh, P Chatterjee and R Roychoudhury, Phys. Plasmas 19, 012113 (2012)

Pramana – J. Phys., Vol. 86, No. 4, April 2016 883


	Two-soliton and three-soliton interactions of electron acoustic waves in quantum plasma
	Abstract
	Introduction
	Basic equations and derivation of KdV equation
	Results and discussion 
	Two-soliton solution
	Three-soliton solution

	Conclusion
	References


