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Abstract. The set of three static spherically symmetric solutions of the Einstein—-Maxwell field
equations by Maurya and Gupta, Astrophys. Space Sci. 333, 149 (2011) are modified by intro-
ducing the variable cosmological term. Motivated by Tiwari et al, Indian J. Pure Appl. Math. 31,
1017 (2000), some particular values of the cosmological term are taken to obtain well-behaved solu-
tions of the Einstein-Maxwell field equations. All the results given by Maurya and Gupta can be
obtained as particular cases of our solutions by choosing a cosmological term equal to zero.
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1. Introduction

Maurya and Gupta [1] have presented three well-behaved charged fluid models. Only one
model can be reduced to the neutral Vlasenko—Pronin superdense star [2], by removing
the charge while the other two models cannot be neutralized. These models are solutions
of the Einstein—-Maxwell field equations

1
Rab_ERgab:KTabv Cl,b,C: 1’23 -"547 (1)

where R,p, R, gup, &, and Ty, are the Ricci tensor, Ricci scalar, metric tensor, coupling
constant, and energy—momentum tensor respectively. Here, the left-hand side of the equa-
tion describes the geometry whereas the right-hand side represents the matter content of
the space-time. In 1917, to stabilize the Universe against the attractive effect of gravity,
Einstein introduced the cosmological constant, A, in the field equations given by eq. (1)
[3], which then takes the form

1
Rab_ERgub_Agab:KTa(}:n)v a,b’C: 1927"'74‘ (2)

Here notation Ta(zq) is used, as this part of the equation represents the matter contents.
Presently, we consider a problem of charged perfect fluid for which we have
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1 1
T;l’,n) = (CZIO + plugup + pgap + E |:FacF};C - Z chCdgab:| s 3)
with u? as the velocity four-vector, p as the density, p as the pressure, and F ab ag the
electromagnetic field tensor. The components are

2 2 2 2
(m) . > q q q q

Tbam :d1ag<c Kp+r—4,—/<p+r—, —Kp—r—4,—K -7 “)
In modern cosmology, the term A represents the dark energy. It is also equivalent to vac-
uum energy because it is the energy density of vacuum. Therefore, in the field equations,
the variable cosmological term is referred to as the vacuum content of the energy—momen-
tum tensor, i.e. TV = (/)N (r) Hence the energy—momentum tensor is a compo-

s Le. 1y, 8ab- gy p

sition of its matter and the vacuum contents, i.e. T, = Ta(,',") + T;;j). For our problem the
energy—momentum tensor becomes

1 o1 .
Toy = (CZIO + p)uaub + P8ab + E I:FachC - ZchFLdgab:| + Tu(llvj) (5)

This approach not only resolves some problems arising in cosmology (e.g. see [4,5])
but also satisfies the Bianchi identity. The conservation of energy—momentum tensor still
holds by considering conservation of 7,, as a whole, instead of taking conservation of
79" and T} separately. The equation of continuity with A is given as follows:

d A 1 > / d 4.
dr (p 8n>+2(cp+p)v = Snrtdr £ ©
For Robertson—Walker metric, Chen and Wu [6] and Abdel-Rahman [7] replaced A by
the square of the scale factor. Berman [5,8,9] found that the relation A 72 is true
for some static models. Beesham [10] also suggested that A cannot be a constant but a
variable of coordinates. Later on, using the idea of variable cosmological term, a number
of cosmological models have been discussed, e.g. [11-14]. Tiwari and co-workers in their
papers [15-23] strongly argued the importance of variable cosmological term in the field
of astrophysics and cosmology.

2. Basic field equations

The charged spheres are described by considering the most general spherically symmetric
static metric

ds? = e"dr? — e*dr? — r2de? — r*sin® 6dg>. @)

For this metric, the field equations become

2z 1 — —A
Tttt % — ko + E* + A(r), (8)
r r
’ 1 — —A
Ve U A, ©)

r r2
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> T4 T Ty

v VA v/2 v =N . 5
e " =kp+ E°— A(r), (10)

(rPE) = r’oe’. (11)
Here prime denotes differentiation with respect to » and E (r) represents the electric field
intensity within the sphere of radius r and o is the charged density.
To find solutions of eqs (8)—(10), we consider the substitutions, suggested by Durgapal
and Bannerji [24], x = C;r%, y*> = ¢", and z = e~*. These substitutions transform
egs (8)—(10) into simpler form

l=e 5, B ko (12)
X °= C] C] ’
v 1 — E?
IR . R (13)
y X C] C]
. ) . ) « E2
4xz—y+(4z+2xz)z+z=—p~l———A, (14)
y y ¢ G
dez , .
or = "2 (xE+E), (15)
X

where the dot denotes differentiation with respect to the variable x. The system of dif-
ferential eqs (12)—(15) is underdetermined. Eliminate one of the unknowns p from the
system by substituting the value of p from eq. (13) into eq. (14) to get

2
4x2zji+2x2)'/z'+<l —z+x5)—2xlé—>y=0. (16)
1
The number of unknowns are more than the number of equations. So, as in [1] the fol-
lowing physically reasonable ansatz for the gravitational potential z and the electric field
intensity E are considered
_ 5 E? _ox 17
= ( - )C) ) C_l - 77 ( )
for some positive parameter «. In the interior of the star, z = e = (1 — x)? is regular
and well-behaved at the origin. The electric field intensity is continuous, bounded and
increasing function from the origin to the boundary of the sphere. These values of z and
E transform eq. (16) into

41 —x)’j -4 —x)y+ (1 —a)y =0. (18)
Here, like [1], =1, > 1 and 0 < o < 1 generate new classes of solutions of eqs (7)—(9).

3. New models

Casel. 0<a <1

Equation (18) can be transformed to a standard Cauchy—Euler equation by the substitution
x=0-x)

4~2d2y 4~dy _
X@‘F XE‘F(I_O‘).V—O’ (19)
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which leads to the solution

y = ¢ cos[y/(1 —a)log /(1 — x)] + casin[y/(1 —alog /(1 —x)],  (20)
for some arbitrary constants of integration c; and c,. Some physical consideration can fix
these constants. Equations (12) and (13) give expressions of density and pressure where
an arbitrary function A(x) is involved. Some values may be assigned to A. Here, we
consider A = Ag + 8mp and A = Ay — 8mp as suggested by Tiwari et al [25]. Then
eqgs (12) and (13) yield

kp_ K [2(1—x)ﬂ[c1 sin f — ¢ cos f +(x—2)+%+ﬁ]
C K F 8w [c1 cos B + ¢; sin B] 2 C
(21)
kcp 65 ax Ay 8w |:2(1—x)\/mm sin B—c; cos B]
C 2 C «kF8m [c1 cos B + ¢, sin B]
+(x—2)+9+ﬂ}, 22)
2 C

where [/(I — @) log /(1 — x)] = B. The expressions for the pressure gradient and den-
sity gradient are furnished as

KCzd,O_ o 5 8 |:3a 24/1 — afcy sin B — ¢, cos B]

Cy dx 2 T kF8w

_(1 —a)[cy sin B — ¢; cos ,B]zi| (23)
[c1 cos B + ¢, sin B]? ’

2 [c1 cos B + ¢, sin B]

Cidx  «kF8z| 2 [c1 cos B + ¢, sin B]
(1 —a)[cy sin B — ¢; cos ﬁ]21|

[c1 cos B + ¢, sin B]?

kdp ok |:3a 21 — ale; sin B — ¢ cos B

(24)

Case?2. =1

For o = 1, eq. (18) yields
y =c3log(l — x) + ¢4, (25)

where c3 and ¢4 are constants of integration. Expressions for density, pressure, pressure
gradient, and density gradient are

Kp K 4c3(1 — x) 3x Ay
- = - 2+ -+ (26)
Cy K F8m cilog(l —x) + ¢y 2 C,
kcZp _6 11x Ay 8 4c3(1 — x) )
C1 - 2 C1 K:FST[ C310g(1—x)+6‘4
FEL @7)
2 c |’
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kctdp 11 8 4cs
Cidx 2 «kF8rlas(l—x)+ca
4C32 3
- + =,
(czlog(l —x) +c4)? 2
(28)
Kk d 4c 4cs?
e i : e (29)
C; dx cs(1—x)+cs  (czlog(l —x)+ca) 2
Case 3. a > 1
Equation (18) gives
y = ¢5 cosh 8 + c¢ sinh 8, 30)
where ¢s and cg are constants and 8 = [+/(a — 1)log+/(1 — x)]. Density, pressure,
pressure gradient, and density gradient for this model are
kKp K 2(1 — x)~/a — 1[cs sinh B + ¢ cosh ]
Ci «kF8w [c5 cosh B + ¢¢ sinh B]
oax Ay
-+ —=+ =, 31
+(x —2)+ >+ c, ] (31)
/cczp:6_5x_g_ﬁ_ 8
C] 2 C] K F 8
o 2(1—=x)a/a— 1[c5 sinh B + ¢¢ cosh ]
[c5 cosh B 4 c¢ sinh ]
b e
x=2)+—+—1|,
2 C
(32)
ke dp o« 8 30 24/ — 1[cs sinh B 4 ¢ cosh B]
Cidx 2 K F8m | 2 [c5 cosh B + ¢ sinh B]
(¢ — D)[cs sinh B + ¢ cosh B1? (33)
[cs cosh B + c¢¢ sinh B]? ’
Kk dp _ K 3a n 2+/a — 1[cy sinh B + ¢, cosh B]
Cidx «F8r| 2 [es cosh B + ¢ sin B]
(¢ — D)[cs sinh B + ¢ cosh B1? (34)
[c5 cosh B + cg sinh B]?
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4. Properties of solutions

The models given in the previous must satisfy some conditions to be physically acceptable
and to fix the arbitrary constants.

(1) Pressure p should be zero at boundary, i.e. p =0atr = a.

(2) Density p and pressure p must have non-zero finite values at r = 0.

(3) p and p should be monotonically decreasing from the centre towards the boundary,
ie. (dp/dr) < Oand (dp/dr) < 0.

(4) At the centre, the pressure—density ratio should be positive and less than 1, i.e.

0< Phr=0
(lo)r:O
(5) The pressure—density ratio (p/c?p) must decrease monotonically with the increase
of radius
d
e r <0 (35)
dx c?p /) o

(6) Velocity of sound should be less than that of light throughout the model and should
be decreasing towards the surface, i.e.

d /dp
(a (a))xzo =0 G0

(7) The central red shift Z, and the surface red shift Z, must be positive, finite, and
bounded i.e.

Zo=1€"?=1]0>0 and Z,=["“?—-1)]>0. (37)

(8) The solution should be free from physical and geometric singularities.
(9) At r = a our models must meet the Reissner—Nordstrom exterior solution

ds? = (1 —2M/r +¢€*/r})dt* — (1 —2M/r + &*/r*)"'dr?
— r2(d9? + sin® 6d¢?). (38)

This requires the continuity of the total charge ¢ = r>E, e*, and e” across the
boundary. Therefore,

e = | —2M/a + ¢*/a?, (39)
e*”(a) — y(2r=a) =1 2M/a + 62/a27 (40)
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Casel. 0<a <1

For0 <« < 1, atr = 0, we have

2 A 8 —2J/1— A
["”’] —6_ 20 _°F 72 5120000, @
1 d—o Ci Kk — 8w C1 C
2T = A
[Q] __ ¥ L S Y 43)
Cil,_y «-—8m c1 C,
Also,
b= . (44)
CPr=0

Equations (42)—(44) give limits for ¢, /c;, which appear to be

0.2A 4.0 ) 0.9A 6.7
- < =< — ,
Civl—a J1—a ¢ Civl—a J1—«

for A = Ao+87mp,
(45)

where C; > 0. On the boundary on setting x, = C1a*> = X where a is the radius of sphere
we get the value ¢, /cy.

¢ sin(v/1 —alog/1 —x) — Fycos(v/1 —alog+/1 —X)

= , 46
Cl cos(+/1 —alog+/1 —x) + F;sin(+/1 —alog+/1 —X) (46)

where
@4 -Q2+a)x) Ao @7

F - ’
L —ovT % 20—l 3

p and p are monotonically decreasing from the centre towards the boundary. The velocity
of sound at the centre is given by

dp [ (2= -2
2d = s ; e ~7 < 1, (48)
Codoo [3 -5 B (¥4 2 0 -0g)]

for all values of 0 < @ < 1 and ¢, /c;. The pressure—density ratio

2C K g—?\/l—a(Z—a)
(-2 - VT a -2+ )
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10—6?—;(1 — ) + 8«

+ 2
A K [ A
(6-& - Zm2svT—a-2+ )
& (20— -2vT-a)
N 0, (49)

2
A K )e / 2 A
( C? K—8m < c; 1 C?))

for all values of 0 < « < 1 and ¢;/c;. So pressure—density ratio is maximum at the
centre.
The gravitational redshift is given by
1

Z = - —1. (50)
cicos B+ cpsinf

At r = 0 its value is

(Z)yep = -CL, (51)
¢

As gravitational redshift should be positive and must be finite, at the centre the arbitrary
constant ¢ lies between zero and one, i.e. 0 < ¢; < 1. After differentiating eq. (50) with
respect to x, we get

d*z 1—
il IR ¢ o, (52)
dr? |,_, o

for all values of 0 < o < 1. The expression on the right-hand side is negative indicating
that the gravitational redshift is maximum at the centre and monotonically decreases in
the outward direction.

Case?2. a =1

For the second model, p is finite at r = 0. p and p are monotonically decreasing from
the centre towards the boundary. The inequalities, i.e. p,—¢ > 0, p,—¢ > 0 and

D=0 (53)
C"Pr=0
yield
0.08A A 1
s Y - R R (54)
4C1 Cy4 4C1 2
For this model, boundary conditions yield
—Ci[4 —-3Xx]—-2A
C3 il x] 0 (55)

c1 8C1(1—%) +[C1(4—3%) — 2A0llog(1 — %)

Also the velocity of sound at the centre is given by

[ LOZ[ [+ -]

c*dp i Br (3 dey  de?
2 k—8m \ 2 c4 cy?
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for @ = 1 and for all values of ¢3/c4.

2¢ 24¢3?
(2N e (B

<0, (57)

for all values of c3/cs. So pressure—density ratio is maximum at the centre. Gravitational
redshift is given by

1
Z = —1 (58)
czlog(l —x) +ca

and

] _
(Z)r—o = — 2. (59)
C4

We have 0 < ¢4 < 1 because gravitational redshift should be positive and must be finite
at the centre. By differentiating eq. (58) with respect to x, we get

dz c3 Cy
— =——<0. 60
[dx}r—o e ©0

The expression on the right-hand side is negative indicating that the gravitational redshift
is maximum at the centre and monotonically decreases in the outward direction.

Case3. o >1

Here the conditions p,—g > 0, p,—o > 0 and the condition given by eq. (53) gives

0.21\0 4 Co 0.9A0 6.7 (61)
— < —< — .
Civa—1 Ja-—1 Cs Civa—1 Ja-—1
Boundary conditions imply
ce _ sinh(va —1log+1— X) — Frcosh(v/a — 1log+/1 — X) 62)
cs F>sinh(v/a — 1log+/1 — X) — cosh(+/a — 1log+/1 — )E)’
where
2 X —4 A
(2+a)x —4) 0 63)

E=raoa-n " 20,1 —)Ja—1

(dp/dr)<0 and (dp/dr) <0 show that p and p are monotonically decreasing. Also the
velocity of sound at the centre appears to be

Pramana - J. Phys., Vol. 86, No. 4, April 2016 797



Tooba Feroze and Ghazala Nazeer

K—8m cs

dp _
[czdp]x_o s (Rl -]

, (64)

k—8m

where sound satisfies the inequality

for all values of « > 1 and c¢g/cs.

d (p
dx \2p /) |,—
Vo — 122 —a) — 6% (1 —a)
=20 —— | 8= 10+ : s .
K — A K c A
(6- & - m2zva=T-2+ )
. L (L0 -0) - 2va—1)

Kk — 8w A K ¢ A0\ )
(& (2zva 121 2))

+2C (65)

The expression on the right-hand side is negative for all values of @ > 1 and ¢¢/cs. Here
pressure—density ratio is maximum at the centre. Gravitational redshift is given by

1
Z= - -1 (66)
cs cosh B+ cg sinh
and
1—c
(Z) g = ——. (67)
Cs

We have 0 < ¢5 < 1 because gravitational redshift should be positive and finite at the
centre. While differentiating eq. (66) with respect to x, we get

dz ce V11—«
p— =C— 0, 68
[dX]xo s ©9

for all values of « > 1. The expression on the right-hand side is negative indicating that
the gravitational redshift is maximum at the centre and monotonically decreases in the
outward direction.

The expression for mass is written as follows:

ax . oax
m(a)=7|:2—x+7:|, (69)

for all values of « such that e™ = 1 — 2M/a + ¢*/a?, where M = m(a) and Y?(,_,, =
1 —2M/a + €*/a’ gives
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(1—-Xx)
= , 70
“ cos(v/1 —alog+/1 —X) 4 (c2/cy) sin(x/1 — alog+/1 — X) 0
o = a-o (1)
1 + (c3/cq) log(1 — x)
o5 = -9 (72)

cosh(v/a — 1log /1 — X) — (ce/cs) sinh(va — 11log /T — %)

5. Conclusion

We have discussed solutions of the Einstein-Maxwell field equations of the charged fluid
spheres having static spherically symmetric metric. By considering some substitutions,
new classes of solutions of the field equations are found. Density, pressure, density gra-
dient, pressure gradient and some other pressure—density relations are calculated. Two
specific values of the cosmological term, A, are chosen to get new solutions. The con-
ditions for well-behaved and regular models are discussed in detail in §4. Properties of
solutions and boundary conditions are checked for all the cases in detail. A is related to
pressure, and therefore, contributes to the effective gravitational mass of the astrophysical
system.

All the solutions presented by Maurya and Gupta in ref. [1] can be recovered as par-
ticular cases of the solutions obtained in our paper by taking A = 0. It is noted that the
effect of A on pressure and density is that pressure increases and density decreases for
increasing values of A. It is also noted that the cosmological term also has effects on the
bounds/limits for the ratio of constants involved in the solutions.
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