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Abstract. The set of three static spherically symmetric solutions of the Einstein–Maxwell field
equations by Maurya and Gupta, Astrophys. Space Sci. 333, 149 (2011) are modified by intro-
ducing the variable cosmological term. Motivated by Tiwari et al, Indian J. Pure Appl. Math. 31,
1017 (2000), some particular values of the cosmological term are taken to obtain well-behaved solu-
tions of the Einstein–Maxwell field equations. All the results given by Maurya and Gupta can be
obtained as particular cases of our solutions by choosing a cosmological term equal to zero.
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1. Introduction

Maurya and Gupta [1] have presented three well-behaved charged fluid models. Only one
model can be reduced to the neutral Vlasenko–Pronin superdense star [2], by removing
the charge while the other two models cannot be neutralized. These models are solutions
of the Einstein–Maxwell field equations

Rab − 1

2
Rgab = κTab, a, b, c = 1, 2, ..., 4, (1)

where Rab, R, gab, κ , and Tab are the Ricci tensor, Ricci scalar, metric tensor, coupling
constant, and energy–momentum tensor respectively. Here, the left-hand side of the equa-
tion describes the geometry whereas the right-hand side represents the matter content of
the space-time. In 1917, to stabilize the Universe against the attractive effect of gravity,
Einstein introduced the cosmological constant, �, in the field equations given by eq. (1)
[3], which then takes the form

Rab − 1

2
Rgab − �gab = κT

(m)
ab , a, b, c = 1, 2, ..., 4. (2)

Here notation T
(m)
ab is used, as this part of the equation represents the matter contents.

Presently, we consider a problem of charged perfect fluid for which we have

Pramana – J. Phys., Vol. 86, No. 4, April 2016 789

http://crossmark.crossref.org/dialog/?doi=10.1007/s12043-015-1085-6-x&domain=pdf


Tooba Feroze and Ghazala Nazeer

T
(m)
ab = (c2ρ + p)uaub + pgab + 1

4π

[
FacF

c
b − 1

4
FcdF

cdgab

]
, (3)

with ua as the velocity four-vector, ρ as the density, p as the pressure, and Fab as the
electromagnetic field tensor. The components are

T
a(m)
b = diag

(
c2κρ + q2

r4
,−κp + q2

r4
, −κp − q2

r4
,−κp − q2

r4

)
. (4)

In modern cosmology, the term � represents the dark energy. It is also equivalent to vac-
uum energy because it is the energy density of vacuum. Therefore, in the field equations,
the variable cosmological term is referred to as the vacuum content of the energy–momen-
tum tensor, i.e. T

(v)
ab = (1/κ)�(r)gab. Hence the energy–momentum tensor is a compo-

sition of its matter and the vacuum contents, i.e. Tab = T
(m)
ab + T

(v)
ab . For our problem the

energy–momentum tensor becomes

Tab = (c2ρ + p)uaub + pgab + 1

4π

[
FacF

c
b − 1

4
FcdF

cdgab

]
+ T

(v)
ab . (5)

This approach not only resolves some problems arising in cosmology (e.g. see [4,5])
but also satisfies the Bianchi identity. The conservation of energy–momentum tensor still
holds by considering conservation of Tab as a whole, instead of taking conservation of
T

(m)
ab and T

(v)
ab separately. The equation of continuity with � is given as follows:

d

dr

(
p − �

8π

)
+ 1

2
(c2ρ + p)ν ′ = 1

8πr4

d

dr
r4E2. (6)

For Robertson–Walker metric, Chen and Wu [6] and Abdel-Rahman [7] replaced � by
the square of the scale factor. Berman [5,8,9] found that the relation � ∝ t−2 is true
for some static models. Beesham [10] also suggested that � cannot be a constant but a
variable of coordinates. Later on, using the idea of variable cosmological term, a number
of cosmological models have been discussed, e.g. [11–14]. Tiwari and co-workers in their
papers [15–23] strongly argued the importance of variable cosmological term in the field
of astrophysics and cosmology.

2. Basic field equations

The charged spheres are described by considering the most general spherically symmetric
static metric

ds2 = eν(r)dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdφ2. (7)

For this metric, the field equations become

λ′

r
e−λ + (1 − e−λ)

r2
= κc2ρ + E2 + �(r), (8)

ν ′

r
e−λ − (1 − e−λ)

r2
= κp − E2 − �(r), (9)
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[
ν ′′

2
− ν ′λ′

4
+ ν ′2

4
+ ν ′ − λ′

2r

]
e−λ = κp + E2 − �(r), (10)

(
r2E

)′ = r2σeλ. (11)

Here prime denotes differentiation with respect to r and E(r) represents the electric field
intensity within the sphere of radius r and σ is the charged density.

To find solutions of eqs (8)–(10), we consider the substitutions, suggested by Durgapal
and Bannerji [24], x = C1r

2, y2 = eν, and z = e−λ. These substitutions transform
eqs (8)–(10) into simpler form

1 − z

x
− 2 ż = E2

C1
+ κc2ρ

C1
+ �, (12)

4z
ẏ

y
− 1 − z

x
= κp

C1
− E2

C1
− �, (13)

4xz
ÿ

y
+ (4z + 2xż)

ẏ

y
+ ż = κp

C1
+ E2

C1
− �, (14)

σ 2 = 4cz

x

(
xĖ + E

)2
, (15)

where the dot denotes differentiation with respect to the variable x. The system of dif-
ferential eqs (12)–(15) is underdetermined. Eliminate one of the unknowns p from the
system by substituting the value of p from eq. (13) into eq. (14) to get

4x2zÿ + 2x2ẏż +
(

1 − z + xẏ − 2x
E2

C1

)
y = 0. (16)

The number of unknowns are more than the number of equations. So, as in [1] the fol-
lowing physically reasonable ansatz for the gravitational potential z and the electric field
intensity E are considered

z = (1 − x)2,
E2

C1
= αx

2
, (17)

for some positive parameter α. In the interior of the star, z = e−λ = (1 − x)2 is regular
and well-behaved at the origin. The electric field intensity is continuous, bounded and
increasing function from the origin to the boundary of the sphere. These values of z and
E transform eq. (16) into

4(1 − x)2ÿ − 4(1 − x)ẏ + (1 − α)y = 0. (18)

Here, like [1], α = 1, α > 1 and 0 ≤ α < 1 generate new classes of solutions of eqs (7)–(9).

3. New models

Case 1. 0 ≤ α < 1

Equation (18) can be transformed to a standard Cauchy–Euler equation by the substitution
x̃ = (1 − x)

4x̃2 d2y

dx̃2
+ 4x̃

dy

dx̃
+ (1 − α)y = 0, (19)
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which leads to the solution

y = c1 cos[√(1 − α) log
√

(1 − x)] + c2 sin[√(1 − α log
√

(1 − x)], (20)

for some arbitrary constants of integration c1 and c2. Some physical consideration can fix
these constants. Equations (12) and (13) give expressions of density and pressure where
an arbitrary function �(x) is involved. Some values may be assigned to �. Here, we
consider � = �0 + 8πp and � = �0 − 8πp as suggested by Tiwari et al [25]. Then
eqs (12) and (13) yield

κp

C1
= κ

κ ∓ 8π

[
2(1−x)

√
1 − α[c1 sin β − c2 cos β]

[c1 cos β + c2 sin β] +(x−2)+ αx

2
+ �0

C1

]
,

(21)

κc2ρ

C1
= 6−5x − αx

2
− �0

C1
− 8π

κ ∓ 8π

[
2(1−x)

√
1 − α[c1 sin β−c2 cos β]

[c1 cos β + c2 sin β]
+ (x − 2) + α

2
+ �0

C1

]
, (22)

where [√(1 − α) log
√

(1 − x)] = β. The expressions for the pressure gradient and den-
sity gradient are furnished as

κc2

C1

dρ

dx
= −α

2
− 5 − 8π

κ ∓ 8π

[
3α

2
− 2

√
1 − α[c1 sin β − c2 cos β]
[c1 cos β + c2 sin β]

− (1 − α)[c1 sin β − c2 cos β]2

[c1 cos β + c2 sin β]2

]
, (23)

κ

C1

dp

dx
= κ

κ ∓ 8π

[
3α

2
− 2

√
1 − α[c1 sin β − c2 cos β]
[c1 cos β + c2 sin β]

− (1 − α)[c1 sin β − c2 cos β]2

[c1 cos β + c2 sin β]2

]
. (24)

Case 2. α = 1

For α = 1, eq. (18) yields

y = c3 log(1 − x) + c4, (25)

where c3 and c4 are constants of integration. Expressions for density, pressure, pressure
gradient, and density gradient are

κp

C1
= κ

κ ∓ 8π

[
− 4c3(1 − x)

c3 log(1 − x) + c4
− 2 + 3x

2
+ �0

C1

]
, (26)

κc2ρ

C1
= 6 − 11x

2
− �0

C1
− 8π

κ ∓ 8π

[
− 4c3(1 − x)

c3 log(1 − x) + c4
− 2

+3x

2
+ �0

C1

]
, (27)
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κc2

C1

dρ

dx
= − 11

2
− 8π

κ ∓ 8π

[
4c3

c3(1 − x) + c4

− 4c3
2

(c3 log(1 − x) + c4)2
+ 3

2

]
,

(28)

κ

C1

dp

dx
= 4c3

c3(1 − x) + c4
− 4c3

2

(c3 log(1 − x) + c4)2
+ 3

2
. (29)

Case 3. α > 1

Equation (18) gives

y = c5 cosh β + c6 sinh β, (30)

where c5 and c6 are constants and β = [√(α − 1) log
√

(1 − x)]. Density, pressure,
pressure gradient, and density gradient for this model are

κp

C1
= κ

κ ∓ 8π

[
−2(1 − x)

√
α − 1[c5 sinh β + c6 cosh β]

[c5 cosh β + c6 sinh β]
+(x − 2) + αx

2
+ �0

C1

]
, (31)

κc2ρ

C1
= 6 − 5x − αx

2
− �0

C1
− 8π

κ ∓ 8π

×
[
−2(1−x)

√
α− 1[c5 sinh β + c6 cosh β]

[c5 cosh β + c6 sinh β]
+ (x−2)+ αx

2
+ �0

C1

]
,

(32)

κc2

C 1

dρ

dx
= −α

2
− 5 − 8π

κ ∓ 8π

[
3α

2
+ 2

√
α − 1[c5 sinh β + c6 cosh β]
[c5 cosh β + c6 sinh β]

− (α − 1)[c5 sinh β + c6 cosh β]2

[c5 cosh β + c6 sinh β]2

]
, (33)

κ

C1

dp

dx
= κ

κ ∓ 8π

[
3α

2
+ 2

√
α − 1[c1 sinh β + c2 cosh β]

[c5 cosh β + c6 sin β]
+ (α − 1)[c5 sinh β + c6 cosh β]2

[c5 cosh β + c6 sinh β]2

]
. (34)
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4. Properties of solutions

The models given in the previous must satisfy some conditions to be physically acceptable
and to fix the arbitrary constants.

(1) Pressure p should be zero at boundary, i.e. p = 0 at r = a.
(2) Density ρ and pressure p must have non-zero finite values at r = 0.
(3) ρ and p should be monotonically decreasing from the centre towards the boundary,

i.e. (dρ/dr) < 0 and (dp/dr) < 0.
(4) At the centre, the pressure–density ratio should be positive and less than 1, i.e.

0 <
(p)r=0

(ρ)r=0
< 1.

(5) The pressure–density ratio (p/c2ρ) must decrease monotonically with the increase
of radius

(
d

dx

p

c2ρ

)
x=0

< 0. (35)

(6) Velocity of sound should be less than that of light throughout the model and should
be decreasing towards the surface, i.e.

(
d

dx

(
dp

dρ

))
x=0

< 0. (36)

(7) The central red shift Z0 and the surface red shift Za must be positive, finite, and
bounded i.e.

Z0 = [(eν/2 − 1)]r=0 > 0 and Za = [(eλ(a)/2 − 1)] > 0. (37)

(8) The solution should be free from physical and geometric singularities.
(9) At r = a our models must meet the Reissner–Nordstrom exterior solution

ds2 = (1 − 2M/r + e2/r2)dt2 − (1 − 2M/r + e2/r2)−1dr2

− r2(dθ2 + sin2 θdφ2). (38)

This requires the continuity of the total charge q = r2E, eλ, and eν across the
boundary. Therefore,

e−λ(a) = 1 − 2M/a + e2/a2, (39)

e−ν(a) = y2
(r=a) = 1 − 2M/a + e2/a2, (40)

q(a) = e. (41)
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Case 1. 0 ≤ α < 1

For 0 ≤ α < 1, at r = 0, we have

[
κc2ρ

C1

]
r=0

= 6 − �0

C1
− 8π

κ − 8π

[
−2

√
1 − αc2

c1
− 2 + �0

C1

]
> 0, (42)

[
κp

C1

]
r=0

= κ

κ − 8π

[
−2

√
1 − αc2

c1
− 2 + �0

C1

]
> 0. (43)

Also,

pr=0

c2ρr=0
< 1. (44)

Equations (42)–(44) give limits for c2/c1, which appear to be

0.2�0

C1
√

1 − α
− 4.0√

1 − α
<

c2

c1
<

0.9�0

C1
√

1 − α
− 6.7√

1 − α
, for � = �0+8πp,

(45)

where C1 > 0. On the boundary on setting xr = C1a
2 = x̃ where a is the radius of sphere

we get the value c2/c1.

c2

c1
= sin(

√
1 − α log

√
1 − x̃) − F1 cos(

√
1 − α log

√
1 − x̃)

cos(
√

1 − α log
√

1 − x̃) + F1 sin(
√

1 − α log
√

1 − x̃)
, (46)

where

F1 = (4 − (2 + α)x̃)

4(1 − α)
√

1 − x̃
+ �0

2C1(1 − α)
√

1 − x̃
, (47)

ρ and p are monotonically decreasing from the centre towards the boundary. The velocity
of sound at the centre is given by

[
dp

c2dρ

]
r=0

=
[

κ
κ−8π

(
3α
2 + 2c2

√
1−α

c1
− (1 − α) c2

2

c1
2

)]
[

−α
2 − 5 − 8π

κ−8π

(
3α
2 + 2c2

√
1−α

c1
− (1 − α) c2

2

c1
2

)] < 1, (48)

for all values of 0 < α ≤ 1 and c2/c1. The pressure–density ratio

[
d

dx

(
p

c2ρ

)]
x=0

= 2C1
κ

κ − 8π

⎛
⎜⎝

⎡
⎢⎣

c2
c1

√
1 − α(2 − α)(

6 − �0
C1

− κ
κ−8π

(−2 c2
c1

√
1 − α − 2 + �0

C1
)
)2

⎤
⎥⎦

Pramana – J. Phys., Vol. 86, No. 4, April 2016 795



Tooba Feroze and Ghazala Nazeer

+
10 − 6B2

c2
1
(1 − α) + 8α(

6 − �0
C1

− κ
κ−8π

(−2 c2
c1

√
1 − α − 2 + �0

C1
)
)2

+
⎡
⎢⎣

�0
C1

(
c2

2

c1
2 (1 − α) − c2

c1

√
1 − α

)
(
−�0

C1
− κ

κ−8π

(
−2 c2

c1

√
1 − α − 2 + �0

C1

))2

⎤
⎥⎦

⎞
⎟⎠ < 0, (49)

for all values of 0 ≤ α < 1 and c2/c1. So pressure–density ratio is maximum at the
centre.

The gravitational redshift is given by

Z = 1

c1 cos β + c2 sin β
− 1. (50)

At r = 0 its value is

(Z)r=0 = 1 − c1

c1
. (51)

As gravitational redshift should be positive and must be finite, at the centre the arbitrary
constant c1 lies between zero and one, i.e. 0 < c1 < 1 . After differentiating eq. (50) with
respect to x, we get[

d2Z

dr2

]
r=0

= C1
c2

c1

√
1 − α

c1
< 0, (52)

for all values of 0 ≤ α < 1. The expression on the right-hand side is negative indicating
that the gravitational redshift is maximum at the centre and monotonically decreases in
the outward direction.

Case 2. α = 1

For the second model, ρ is finite at r = 0. ρ and p are monotonically decreasing from
the centre towards the boundary. The inequalities, i.e. pr=0 > 0, ρr=0 > 0 and

pr=0

c2ρr=0
< 1 (53)

yield

−0.08�0

4C1
− 0.9 <

c3

c4
<

�0

4C1
− 1

2
. (54)

For this model, boundary conditions yield

c3

c4
= −C1[4 − 3x̃] − 2�0

8C1(1 − x̃) + [C1(4 − 3x̃) − 2�0] log(1 − x̃)
. (55)

Also the velocity of sound at the centre is given by

[
dp

c2dρ

]
r=0

=
[(

3
2 + 4c3

c4
− 4c3

2

c4
2

)]
[

−11
2 − 8π

κ−8π

(
3
2 + 4c3

c4
− 4c3

2

c4
2

)] < 1, (56)
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for α = 1 and for all values of c3/c4.

[
d

dx

(
p

c2ρ

)]
x=0

= 2C1

(
2c3
c4

− 24c3
2

c4
2 − 2

)

6 − �0
C1

− 8π
κ−8π

[
− 4c3

c4
− 2 + �0

C1

]

+
(

4c3
2�0

C1c4
2 − 4c3�0

C1c4
− 25�0

2C1

)

6 − �0
C1

− 8π
κ−8π

[
− 4c3

c4
− 2 + �0

C1

] < 0, (57)

for all values of c3/c4. So pressure–density ratio is maximum at the centre. Gravitational
redshift is given by

Z = 1

c3 log(1 − x) + c4
− 1 (58)

and

(Z)r=0 = 1 − c4

c4
. (59)

We have 0 < c4 < 1 because gravitational redshift should be positive and must be finite
at the centre. By differentiating eq. (58) with respect to x, we get

[
dZ

dx

]
r=0

= c3

c4

C1

c4
< 0. (60)

The expression on the right-hand side is negative indicating that the gravitational redshift
is maximum at the centre and monotonically decreases in the outward direction.

Case 3. α > 1

Here the conditions pr=0 > 0, ρr=0 > 0 and the condition given by eq. (53) gives

0.2�0

C1
√

α − 1
− 4√

α − 1
<

c6

c5
<

0.9�0

C1
√

α − 1
− 6.7√

α − 1
. (61)

Boundary conditions imply

c6

c5
= sinh(

√
α − 1 log

√
1 − x̃) − F2 cosh(

√
α − 1 log

√
1 − x̃)

F2 sinh(
√

α − 1 log
√

1 − x̃) − cosh(
√

α − 1 log
√

1 − x̃)
, (62)

where

F2 = ((2 + α)x̃ − 4)

4
√

(α − 1)(1 − x̃)
+ �0

2C1(1 − x̃)
√

α − 1
. (63)

(dρ/dr)<0 and (dρ/dr)<0 show that ρ and p are monotonically decreasing. Also the
velocity of sound at the centre appears to be
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[
dp

c2dρ

]
x=0

=
[

κ
κ−8π

(
3α
2 + 2c6

√
α−1

c5
− (α − 1) c6

2

c5
2

)]
[

−α
2 − 5 − 8π

κ−8π

(
3α
2 + 2c6

√
α−1

c5
− (α − 1) c6

2

c5
2

)] , (64)

where sound satisfies the inequality

0 <

[
dp

c2dρ

]
r=0

< 1,

for all values of α > 1 and c6/c5.

[
d

dx

(
p

c2ρ

)]
x=0

= 2C1
κ

κ − 8π

⎡
⎢⎣8α−10 +

√
α − 1 c6

c5
(2 − α) − 6 c6

2

c5
2 (1 − α)(

6 − �0
C1

− κ
κ−8π

(−2 c5
c6

√
α − 1 − 2 + �0

C1
)
)2

⎤
⎥⎦

+ 2C1
κ

κ − 8π

⎡
⎢⎣

�0
C1

(
c6

2

c2
5
(1 − α) − c6

c5

√
α − 1

)
(
−�0

C1
− κ

κ−8π

(
−2 c6

c5

√
α − 1 − 2 + �0

C1

))2

⎤
⎥⎦ . (65)

The expression on the right-hand side is negative for all values of α > 1 and c6/c5. Here
pressure–density ratio is maximum at the centre. Gravitational redshift is given by

Z = 1

c5 cosh β + c6 sinh β
− 1 (66)

and

(Z)x=0 = 1 − c5

c5
. (67)

We have 0 < c5 < 1 because gravitational redshift should be positive and finite at the
centre. While differentiating eq. (66) with respect to x, we get

[
dZ

dx

]
x=0

= C1
c6

c5

√
1 − α

c5
< 0, (68)

for all values of α > 1. The expression on the right-hand side is negative indicating that
the gravitational redshift is maximum at the centre and monotonically decreases in the
outward direction.

The expression for mass is written as follows:

m(a) = ax̃

2

[
2 − x̃ + αx̃

2

]
, (69)

for all values of α such that e−λ = 1 − 2M/a + e2/a2, where M = m(a) and Y 2
(r=a) =

1 − 2M/a + e2/a2 gives
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c1 = (1 − x̃)

cos(
√

1 − α log
√

1 − x̃) + (c2/c1) sin(
√

1 − α log
√

1 − x̃)
, (70)

c3 = (1 − x̃)

1 + (c3/c4) log(1 − x̃)
, (71)

c5 = (1 − x̃)

cosh(
√

α − 1 log
√

1 − x̃) − (c6/c5) sinh(
√

α − 1 log
√

1 − x̃)
. (72)

5. Conclusion

We have discussed solutions of the Einstein–Maxwell field equations of the charged fluid
spheres having static spherically symmetric metric. By considering some substitutions,
new classes of solutions of the field equations are found. Density, pressure, density gra-
dient, pressure gradient and some other pressure–density relations are calculated. Two
specific values of the cosmological term, �, are chosen to get new solutions. The con-
ditions for well-behaved and regular models are discussed in detail in §4. Properties of
solutions and boundary conditions are checked for all the cases in detail. � is related to
pressure, and therefore, contributes to the effective gravitational mass of the astrophysical
system.

All the solutions presented by Maurya and Gupta in ref. [1] can be recovered as par-
ticular cases of the solutions obtained in our paper by taking � = 0. It is noted that the
effect of � on pressure and density is that pressure increases and density decreases for
increasing values of �. It is also noted that the cosmological term also has effects on the
bounds/limits for the ratio of constants involved in the solutions.
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