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Oscillating solitons in nonlinear optics
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Abstract. Oscillating solitons are obtained in nonlinear optics. Analytical study of the variable-
coefficient nonlinear Schrödinger equation, which is used to describe the soliton propagation in
those systems, is carried out using the Hirota’s bilinear method. The bilinear forms and analytic
soliton solutions are derived, and the relevant properties and features of oscillating solitons are
illustrated. Oscillating solitons are controlled by the reciprocal of the group velocity and Kerr
nonlinearity. Results of this paper will be valuable to the study of dispersion-managed optical
communication system and mode-locked fibre lasers.
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1. Introduction

The concept of solitons is one of the fundamental unifying ideas in modern physics and
mathematics [1]. The soliton theory can be applied to diverse branches of physics such
as plasmas physics, fluid dynamics, nonlinear optics, Bose–Einstein condensates (BECs),
and nuclear physics [2–9]. The study of solitons in those physical systems reveals some
exciting problems from both fundamental and application points of view [10–20].

In nonlinear optics, solitons are the focus of intense research interest due to their
potential applications in telecommunication and ultrafast signal processing systems [21].
Solitons can be regarded as the balance between group velocity dispersion (GVD) and
nonlinear effects [22]. They have various applications in pulse amplification, optical
switch and pulse compression [23], and some studies on solitons have been carried out
both theoretically and experimentally [24–28]. General analytic soliton solutions have
been investigated [24], and nonlinear optics models giving rise to the appearance of soli-
tons in a narrow sense have been considered [25]. Gazeau [26] was concerned with the
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evolution of solitons driven by random polarization mode dispersion. Under some para-
metric conditions, Choudhuri and Porsezian [27] have solved the higher-order nonlinear
Schrödinger (NLS) equation with non-Kerr nonlinearity, and the interaction dynamics of
solitons was reconsidered in [28].

In BECs, solitons can be viewed as fundamental nonlinear excitations [29]. Recently,
with various methods, bright, dark and gap matter–wave solitons in BECs have been
created [30]. These solitons have attracted much theoretical and experimental interests
[31–34]. Some matter–wave solitons in a system of three-component Gross–Pitaevskii
equation arising from the context of spinor BECs with time-modulated external poten-
tial and scattering lengths are presented in [31]. A family of non-autonomous soliton
solutions of BECs with the time-dependent scattering length in an expulsive parabolic
potential was obtained in [32]. Becker et al [33] studied the dynamics of apparent soliton
stripes in elongated BECs experimentally and theoretically. Kanna et al [34] studied the
dynamics of non-autonomous solitons in two- and three-component BECs.

In this paper, we shall study the properties and features of oscillating solitons in non-
linear optics, which can be described by the following variable-coefficient NLS (vcNLS)
equation [21]:

i
∂u

∂z
+ i β1(z)

∂u

∂t
+ β2(z)

∂2u

∂t2
+ γ (z)|u|2u = 0, (1)

where u(z, t) is the temporal envelope of solitons, z is the longitudinal coordinate and t

is the time in the moving coordinate system. β1(z) is the reciprocal of the group velocity,
β2(z) represents the GVD coefficient and γ (z) is the nonlinearity coefficient. Equation (1)
can reduce to the standard vcNLS equation while β1(z) = 0, and some studies on the
standard vcNLS equation has been made.

However, eq. (1) has not been investigated due to the existence of β1(z). With the help
of the Hirota’s bilinear method, analytic soliton solutions for eq. (1) will be obtained. The
relevant properties and features of oscillating solitons will be illustrated. The influence of
β1(z) will be analysed for the first time.

This paper is structured as follows. In §2, analytic soliton solutions for eq. (1) will be
presented. In §3, the properties and features of oscillating solitons will be disucssed, and
the influence of β1(z) will be analysed. Finally, our conclusions will be presented in §4.

2. Analytic soliton solutions for eq. (1)

At first, the dependent variable transformation can be introduced as [35–38]

u(z, t) = g(z, t)

f (z, t)
, (2)

where g(z, t) is a complex differentiable function and f (z, t) is a real one. With symbolic
computation, the bilinear forms for eq. (1) are obtained as

iDz g · f + iβ1(z)Dt g · f + β2(z)D
2
t g · f = 0, (3)

β2(z)D
2
t f · f − γ (z)gg∗ = 0, (4)
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where the asterisk denotes the complex conjugate. Dz and Dt [39] are the Hirota’s bilinear
operators, and are defined by

Dm
z Dn

t (a · b) =
(

∂

∂z
− ∂

∂z′

)m (
∂

∂t
− ∂

∂t ′

)n

a(z, t) b(z′, t ′)
∣∣∣∣
z′=z, t ′=t

. (5)

With the following power series expansions for g(z, t) and f (z, t):

g(z, t) = εg1(z, t) + ε3g3(z, t) + ε5g5(z, t) + · · · , (6)

f (z, t) = 1 + ε2f2(z, t) + ε4f4(z, t) + ε6f6(z, t) + · · · , (7)

where ε is a formal expansion parameter, bilinear forms (3) and (4) can be solved. Substi-
tuting expressions (6) and (7) into bilinear forms (3) and (4) and equating coefficients of
the same powers of ε to zero, yield recursion relations for gn(z, t)s and fn(z, t)s. Then,
the analytic soliton solutions for eq. (1) can be derived.

To get the analytic soliton solutions for eq. (1), we assume

g(z, t) = g1(z, t), f (z, t) = 1 + f2(z, t), (8)

where

g1(z, t)=eθ1 , θ1 = [a11(z) + i a12(z)] z + (b11 + i b12)t + k11 + i k12, (9)

with b11, b12, k11 and k12 are real constants. a11(z) and a12(z) are the differentiable func-
tions to be determined. With g1(z, t), and collecting the coefficient of ε in eq. (3), we
obtain the constraints on a11(z) and a12(z) as

a11(z) = 1

z

∫
[−b11β1(z) − 2b11b12β2(z)] dz,

a12(z) = 1

z

∫ [
b2

11β2(z) − b12β1(z) − b2
12β2(z)

]
dz.

Substituting g1(z, t) into eq. (4), and collecting the coefficient of ε2, we get

f2(z, t) = Meθ1+θ∗
1 (10)

where

M = γ (z)

8b2
11β2(z)

, β2(z) = c γ (z),

and c is an arbitrary constant.
Without loss of generality, we set ε = 1, and can write the analytic soliton solutions as

u(z, t) = g(z, t)

f (z, t)
= g1(z, t)

1 + f2(z, t)

= 1√
M

ei[a12(z)z+b12t+k12]sech

[
a11(z)z + b11t + k11 + 1

2
lnM

]
. (11)
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3. Discussion

In figure 1, oscillating solitons are exhibited in nonlinear optics. In this case, nonlinearity
is assumed to be constant; γ (z) = 0.01 in figure 1. When β1(z) = 2 exp(−0.5z) +
sin(2z) as in figure 1a, the solitons are stable at first, and then exhibit periodic soliton
propagation. We can adjust the soliton propagation status in comparison with figure 1a.
By changing β1(z) the stable solitons can be changed to oscillating solitons when β1(z) =
2 exp(−0.5z2) (see figure 1b).

If nonlinearity γ (z) is also taken as a function in figure 1b, the periodic and oscillation
state of solitons can be changed. When γ (z) = sin(z), the periodicity of soliton increases,
and the oscillation of solitons is enhanced (figure 2a). Increasing the coefficient of γ (z)

results in the decrease of the periodic and oscillation state of solitons, which can be seen
in figure 2b with γ (z) = 1.5 sin(2z).

By changing the values of β1(z) and γ (z), we get different propagation status of soli-
tons in figure 3. For β1(z) and γ (z), if we transform the function type, the change of
the phase shift is opposite. Moreover, when β1(z) and γ (z) are linear combinations of

Figure 1. Solitons in nonlinear optics. The parameters are c = 1, k11 = −1, k12 = 2,
b11 = 1, b12 = −1, γ (z) = 0.01 with (a) β1(z) = 2 exp(−0.5z) + sin(2z),
(b) β1(z) = 2 exp(−0.5z2) + sin(2z).

Figure 2. Solitons in nonlinear optics with the same parameters as given in
figure 1, but with (a) β1(z) = 2 exp(−0.5z2) + sin(2z), γ (z) = sin(z), (b) β1(z) =
2 exp(−0.5z2) + sin(2z), γ (z) = 1.5 sin(2z).
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Figure 3. Solitons in nonlinear optics with the same parameters as given in figure 1,
but with (a) β1(z) = 1.5 sin(2z), γ (z) = exp(−0.5z2), (b) β1(z) = 1.5 sin(2z) +
cos(z), γ (z) = 1.5 cos(2z) + sin(z).

trigonometric functions with different periods, the periodic propagation status of solitons
is disrupted as shown in figure 3b. Soliton oscillations are sometimes weakened, and
sometimes exacerbated. Thus, the soliton propagation status can be controlled with β1(z)

and γ (z) in nonlinear optics.

4. Conclusions

In this paper, oscillating solitons in nonlinear optics were obtained. The vcNLS equation
(see eq. (1)), which can be used to describe the soliton propagation, was investigated analyt-
ically. The bilinear forms (3) and (4) were derived, and the analytic soliton solutions (11)
were obtained. According to solutions (11), the oscillating solitons were exhibited with
different values of β1(z) and γ (z) (see figures 1–3), and the influences of β1(z) and γ (z)

were analysed. The results have shown that the status of the soliton propagation can be
controlled with β1(z) and γ (z) in nonlinear optics. Results of this paper might be of
potential use in the design of the dispersion-managed optical communication system and
mode-locked fibre lasers.
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