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Abstract. Using the fluid hydrodynamic equations of positive and negative ions, as well as
q-nonextensive electron density distribution, an extended Korteweg–de Vries (EKdV) equation
describing a small but finite amplitude dust ion-acoustic waves (DIAWs) is derived. Extended
homogeneous balance method is used to obtain a new class of solutions of the EKdV equation. The
effects of different physical parameters on the propagating nonlinear structures and their relevance
to particle acceleration in space plasma are reported.
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1. Introduction

Negative ion plasma is the plasma which contains both negative and positive ion species
in addition to electrons. This type of plasma has great importance in various fields of
plasma science and technology. The existence of a considerable number of negative ions
in the Earth’s ionosphere [1] and cometary comae [2] is well known. Positive–negative
ion plasmas are found in plasma processing reactors [3,4], neutral beam sources [5], and
low-temperature laboratory experiments [6,7]. Furthermore, negative ions are found in
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the upper region of Titan atmosphere [8,9]. These particles may act as organic building
blocks for even more complicated molecules. In this kind of plasma, the electron number
density decreases according to the charge neutrality, i.e., ne = n+ − n−, where ne, n+,
and n− are the electron, positive and negative ion densities, respectively. This results in a
decrease in the shielding effect of the electrons. So, most of the phenomena are actually
affected by the negative ions themselves, as well as by the lack of electrons [7]. Under
specific laboratory conditions, the presence of nanodust clusters could change the plasma
behaviour. These clusters could be considered as immobile or mobile charged nanodust
grains. The presence of immobile nanodust grains changes the general properties of the
propagated linear and nonlinear waves that are produced by the positive ions [10].

It is well known that different nonlinear equations are widely employed to describe
many complex phenomena in science, e.g., fluid mechanics, plasma physics, optical fibres,
solid-state physics, geophysics, etc. Various techniques such as inverse scattering method
[11], bilinear transformation [12], tanh-function method [13], extended tanh method
[14], sine–cosine method [15], F-expansion method [16], general expansion method [17],
G′/G method [18,19], homogeneous balance (HB) [20], etc. were used to obtain the solu-
tions of these nonlinear equations. The HB method is a direct and an effective algebraic
method to determine the exact travelling wave solutions. Interestingly, the homoge-
neous balance (HB) method was extended to investigate other kinds of exact solutions
[21,22] in addition to solitary solutions. Fan [23] described two new applications of the
homogeneous balance method and explored for Backlund transformation and similarity
reduction of nonlinear partial differential equations. Fan showed that there is a definite
correlation among the HB, the Weiss–Tabor–Carnevale (WTC), and the Clarkson–
Kruskal (CK) methods. The aim of this work is to use the HB method to solve the
evolution equation describing the present model namely, the extended Korteweg–de Vries
(EKdV) equation, and obtain a class of appropriate solutions to describe the possible
nonlinear waves in negative ion plasma.

This paper is organized as follows: In §2, we present the governing equations for the
positive–negative ion plasmas. In §3, the reductive perturbation method is employed to
derive the EKdV equation describing the system. The HB method is applied to obtain
possible solutions of the EKdV equation. Discussion and numerical results are presented
in §4. Finally, the results are summarized in §5.

2. Basic equations and formulation of the problem

We consider a one-dimensional, collisionless, unmagnetized plasma consisting of positive
ions, negative ions, electrons, and stationary (positive/negative) charged dust impurities.
The description of such plasma is governed by the fluid equations

∂n+
∂t

+ ∂

∂x
(n+u+) = 0, (1)

m+n+
(

∂

∂t
+ u+

∂

∂x

)
u+ + ∂P+

∂x
+ eZ+n+

∂φ

∂x
= 0, (2)
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for positive ions,

∂n−
∂t

+ ∂

∂x
(n−u−) = 0, (3)

m−n−
(

∂

∂t
+ u−

∂

∂x

)
u− + ∂P−

∂x
− eZ−n−

∂φ

∂x
= 0, (4)

for negative ions, and

ne = n(0)
e

[
1 + (q − 1)

eφ

kBTe

](q+1)/2(q−1)

, (5)

for electrons.
Here n+,−,e is the positive ion/negative ion/electron number density, u+,− is the

positive/negative ion fluid velocity, m+,− is the positive/negative ion mass, φ is the elec-
trostatic wave potential and e is the magnitude of the electron charge. The ion pressure
is assumed to be adiabatic and is expressed by Ps = n(0)

s kBTsn
3
s (s = +,−), kB is the

Boltzmann constant, Ts and Te are the positive (negative) ions, and electron temperatures,
n

(0)
e,+,− is the equilibrium density for the electrons, positive ions, and negative ions.
The system of equations is closed with the Poisson equation

∂2φ

∂x2
= 4πe(Z+n+ − Z−n− − ne + ρZdnd), (6)

where nd is the dust number density, Zd is the dust charge number, and the symbol ρ = ±
is used for positively or negatively charged dust impurities. In equilibrium, the neutrality
condition of the plasma is satisfied, viz., Z+n

(0)
+ − Z−n

(0)
− − n(0)

e + ρZdnd = 0.
The normalized set of the above dynamic equations can be written as

∂n̄+
∂t̄

+ ∂(n̄+ū+)

∂x̄
= 0 , (7)

∂ū+
∂t̄

+ ū+
∂ū+
∂x̄

+ σ+n̄+
∂n̄+
∂x̄

+ ∂φ̄

∂x̄
= 0, (8)

for the positive ions,

∂n̄−
∂t̄

+ ∂(n̄−ū−)

∂x̄
= 0, (9)

∂ū−
∂t̄

+ ū−
∂ū−
∂x̄

+ σ−Q−n̄−
∂n̄−
∂x̄

− Q−�−
∂φ̄

∂x̄
= 0, (10)

for the negative ions, and

ne = [
1 + (q − 1)φ̄

](q+1)/2(q−1)
, (11)

for electrons, and finally the Poisson’s equation

∂2φ̄

∂x̄2
= n̄+ − α�−n̄− − γ�+n̄e + ρβ. (12)
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Here, Q− = m+/m− is the mass ratio, σ+,− = 3T+,−/Te, �− = Z−/Z+, and �+ =
1/Z+.

Now, the neutrality condition is given by

1 = α�− + γ�+ − ρβ, (13)

where α = n
(0)
− /n

(0)
+ , γ = n(0)

e /n
(0)
+ , and β = Zdnd/Z+n

(0)
+ .

In eqs (7)–(12), the densities for the positive ions, negative ions, and electrons are nor-
malized with their equilibrium densities. The velocities of the positive ions and negative
ions are normalized by the ion-acoustic speed of the positive ions, Csi = (kBTe/m+)1/2

and the potential φ is normalized by kBTe/e. The space and time are normalized by the
positive ion Debye length λDi = (kBTe/4πn

(0)
+ e2Z2+)1/2 and the positive ion plasma period

ω−1
pi = (4πn

(0)
+ e2Z2+/m+)−1/2, respectively. The upper bar in eqs (7)–(12) will be omitted

henceforth.

3. Derivation of the evolution equation

Now, we derive a dynamical equation for the nonlinear propagation of the dust ion-
acoustic waves (DIAWs) using eqs (7)–(12). We employ the reductive perturbation
technique, and accordingly we introduce the stretching space-time coordinates

ξ = ε(x − λt) and τ = ε3t, (14)

where ε is a smallness parameter (0 < ε � 1) measuring the strength of nonlinearity and
λ is the wave propagation speed. Furthermore, the dependent variables are expanded as a
power series in ε around their corresponding equilibrium values as

� = �(0) +
∞∑

n=1

εn�(n), (15)

where

� = {n+, n−, ne, u+, u−, φ}T (16)

and

�(0) = {1, 1, 1, 0, 0, 0}T . (17)

Substituting eqs (14)–(17) in eqs (7)–(12) allows us to develop equations in various
powers of ε. The lowest-order equations of ε read as

n(1)
e = q + 1

2
φ(1), n

(1)
− = −Q−�−

(λ2 − σ−Q−)
φ(1), u

(1)
− = −λQ−�−

(λ2 − σ−Q−)
φ(1)

(18)

and

n
(1)
+ = 1

(λ2 − σ+)
φ(1), u

(1)
+ = λ

(λ2 − σ+)
φ(1) . (19)

The Poisson equation then provides the compatibility condition

1

(λ2 − σ+)
+ αQ−�2−

(λ2 − σ−Q−)
− γ�+

q + 1

2
= 0. (20)
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To the next order in ε, we obtain a set of equations in the second-order perturbed
quantities which can be solved using eqs (18) and (19) to give the second-order perturbed
quantities as follows:

n
(2)
+ = 1

(λ2 − σ+)

[
φ(2) + (3λ2 + σ+)

2(λ2 − σ+)2
φ(1)2

]
, (21)

u
(2)
+ = λ

(λ2 − σ+)

[
φ(2) + 1

2

(
(3λ2 + σ+)

(λ2 − σ+)2
− 2

(λ2 − σ+)

)
φ(1)2

]
, (22)

n
(2)
− = Q−�−

(λ2 − σ−Q−)

[
−φ(2) + Q−�−(3λ2 + σ−Q−)

2(λ2 − σ−Q−)2
φ(1)2

]
, (23)

u
(2)
− = λQ−�−

(λ2 − σ−Q−)

[
−φ(2) + Q−�−

2

(
(3λ2 + σ−Q−)

(λ2 − σ−Q−)2
− 2

(λ2 − σ−Q−)

)
φ(1)2

]
,

(24)

n(2)
e = q + 1

2
φ(2) + (3 + 2q − q2)

8
φ(1)2 , (25)

while Poisson equation gives

[
1

(λ2 − σ+)
+ αQ−�2−

(λ2 − σ−Q−)
− γ�+

q + 1

2

]
φ(2) + Bφ(1)2 = 0, (26)

where

B = 1

2

[
(3λ2 + σ+)

(λ2 − σ+)3
− αQ2−�3−(3λ2 + σ−Q−)

(λ2 − σ−Q−)3
− γ�+(3 + 2q − q2)

8

]
.

(27)

The coefficient of φ(2) is zero due to the condition (20) and φ(1) �= 0, and therefore, B

should be at least of the order of ε and now Bφ(1)2 becomes of the order of ε3; so it should
be included in the next order of Poisson equation. If we consider the next order in ε, we
obtain a set of equations in the third-order perturbed quantities, which can be solved with
the help of eqs (18)–(25) to give

∂n
(3)
+

∂ξ
= 2λ

(λ2 − σ+)2

∂φ(1)

∂τ
+ (3λ2 + σ+)

(λ2 − σ+)3

∂(φ(1)φ(2))

∂ξ

+ 3

(λ2 − σ+)5

[
λ2(λ2 + 3σ+) + 1

2
(λ2 + σ+)(3λ2 + σ+)

]
φ(1)2 ∂φ(1)

∂ξ

+ 1

(λ2 − σ+)

∂φ(3)

∂ξ
, (28)
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∂n
(3)
−

∂ξ
= −2λQ−�−

(λ2 − σ−Q−)2

∂φ(1)

∂τ
+ Q2

−�2
−

(3λ2 + σ−Q−)

(λ2 − σ−Q−)3

∂(φ(1)φ(2))

∂ξ

− 3Q3−�3−
(λ2−σ−Q−)5

[
λ2(λ2+3σ−Q−)+ 1

2
(λ2+σ−Q−)(3λ2+σ−Q−)

]

×φ(1)2 ∂φ(1)

∂ξ
− Q−�−

(λ2 − σ−Q−)

∂φ(3)

∂ξ
, (29)

∂n(3)
e

∂ξ
= q + 1

2

∂φ(3)

∂ξ
+ (3 + 2q − q2)

4

∂(φ(1)φ(2))

∂ξ

+ 1

16
(q − 3)(q + 1)(3q − 5)φ(1)2 ∂φ(1)

∂ξ
. (30)

The Poisson equation of this order yields

∂2φ(1)

∂ξ 2
=

(
n

(3)
+ − n

(2)
+

)
− α�−

(
n

(3)
− − n

(2)
−

)
− γ�+

(
n(3)

e − n(2)
e

)
. (31)

Differentiating eq. (31) and using eqs (21), (23), (25), (28)–(30), we obtain the EKdV
equation

∂u

∂τ
+ ABu

∂u

∂ξ
+ ACu

2 ∂u

∂ξ
+ 1

2
A

∂3u

∂ξ 3
= 0, (32)

where φ(1) is replaced by u for simplicity. The coefficients A and C are given as

A = −1

λ

[
1

(λ2 − σ+)2
+ αQ−�2−

(λ2 − σ−Q−)2

]−1

, (33)

C = − 3

2(λ2 − σ+)5

[
λ2(λ2 + 3σ+) + 1

2
(λ2 + σ+)(3λ2 + σ+)

]

− 3αQ3−�4−
2(λ2 − σ−Q−)5

[
λ2(λ2 + 3σ−Q−) + 1

2
(λ2 + σ−Q−)(3λ2 + σ−Q−)

]

+γ�+
16

(q − 3)(q + 1)(3q − 5). (34)

It is known that if one solves the basic set of fluid eqs (7)–(12) exactly to obtain the
energy equation including the Sagdeev potential, then the obtained evolution equation
describes the large/finite amplitude wave. When the Sagdeev potential is expanded for
small but finite amplitude limit, we obtain the same result as predicted by the reductive
perturbation theory. The tricky point here is to make the expansion carefully to obtain
the same coefficients. So, considering B has small value is just a bridge to maintain the
large-amplitude limit with the small-amplitude limit that is covered by the perturbation
theory. There are many papers to prove this point (e.g., [24] and [25]).
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4. Use the HB method to solve the EKdV equation

Consider the EKdV eq. (32) in the form

∂u

∂τ
+ �u

∂u

∂ξ
+ �u

2 ∂u

∂ξ
+ �

∂3u

∂ξ 3
= 0, (35)

where � = AB, � = AC, and � = A/2. We seek for the special solution of eq. (35),
the travelling wave solution, in the form

u(ξ, τ ) = u(ζ ), ζ = ξ − ϑ τ, (36)

where ϑ is a constant to be determined later. Using the transformation (36) in eq. (35),
eq. (35) reduces to a nonlinear ordinary differential equation (ODE) which will be solved
later. The next crucial step is to express the solution of eq. (35) in the form

u(ζ ) =
n∑

i=0

aiω
i +

n∑
i=1

bi [1 + ω]−i (37)

and

ω′ = k + Mω + Pω2, (38)

where ai and bi are constants, while k, M , and P are parameters to be determined later,
ω = ω(ζ ) and ω′ = dω/dζ . To determine the parameter n, it is necessary to create a
balance between the highest-order linear term and the nonlinear terms. Substituting (37)
and (38) in the relevant ODE form of eq. (35) yields a system of ODEs with respect to
a0, ai , bi , k, M , P , and ϑ (where i = 1, ..., m), because all the coefficients of ωj (where
j = 0, 1, ...) have to vanish. Using Mathematica, one can determine a0, ai , bi , k, M , P ,
and ϑ .

It is noted that eq. (38) has a form of Riccati equation, which can be solved using the
HB method as follows:

Case I. When P = 1 and M = 0, the Riccati eq. (38) has the following solutions:

ω =
{ −√−k tanh[√−kζ ], with k < 0,

−√−k coth[√−kζ ], with k < 0,
(39)

ω = − 1

ζ
, with k = 0, (40)

and

ω =
{ √

k tan[√kζ ], with k > 0,

−√
k cot[√kζ ], with k > 0.

(41)

As coth- and cot-type solutions appear in pairs with tanh- and tan-type solutions,
respectively, they are omitted in this paper.

Case II. Let ω = ∑m
i=0 Ai tanhi (p1ζ ). Balancing ω′ with ω2 leads to

ω = A0 + A1 tanh(p1ζ ). (42)
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Substituting eq. (42) in (38), we have the following solution of eq. (38):

ω = − p1

2P
tanh

(p1

2
ζ
)

− M

2P
, with Pk = M2 − p2

1

4
. (43)

Similarly, let ω = ∑m
i=0 Ai cothi (p1ζ ), then we obtain the following solution:

ω = − p1

2P
coth

(p1

2
ζ
)

− M

2P
,

with Pk = (M2 − p2
1)/4, where k, M , p1, and P are constants.

Case III. We suppose that the Riccati eq. (38) has the following solutions of the form

ω = A0 +
m∑

i=0

(Aif
i + Bif

i−1g), (44)

with

f = 1

cosh ζ + r
and g = sinh ζ

cosh ζ + r
. (45)

Substituting eqs (44) and (45) in (38), we have the following solution of eq. (38):

ω = − 1

2P

(
M + sinh (ζ ) + √

r2 − 1

cosh (ζ ) + r

)
, with Pk = M2 − 1

4
, (46)

where r is the arbitrary constant. It should be noticed that solution (46), as r = 1,
degenerates to

ω = − 1

2P

[
M + tanh

(
ζ

2

)]
. (47)

Case IV. We suppose that the Riccati eq. (38) has the following solutions of the form

ω = A0 +
m∑

i=0

sinhi−1(Ai sinh � + Bi cosh �), (48)

where d�/dζ = sinh � or d�/dζ = cosh �. Balancing ω′ with ω2 leads to m = 1

ω = A0 + A1 sinh � + B1 cosh �, (49)

when d�/dζ = sinh �, we substitute (49) and d�/dζ = sinh � into (38) and set the
coefficient of sinhi � coshj �, i = 0, 1, 2, j = 0, 1 to zero and on solving the obtained set
of algebraic equations we get

A0 = −M

2P
, A1 = 0, B1 = 1

P
, (50)

where k = (M2 − 4)/4P and

A0 = −M

2P
, A1 = ±

√
1

2P
, B1 = 1

P
, (51)
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where k = (M2 − 1)/4P . When d�/dζ = sinh � we have

sinh � = −cosechζ, cosh � = − coth ζ. (52)

From (50)–(52), we obtain

ω = −M + 2 coth ζ

2P
, (53)

for k = (M2 − 4)/4P and

ω = −M ± cosechζ + coth ζ

2P
, (54)

for k = (M2 − 1)/4P .

On introducing different classes of solutions of the EKdV eq. (35), we determine the
direct solutions of eq. (35) with clear details of the used methodology. We shall use the
transformation u(x, t) = U(ζ ), ζ = x −ϑt in eq. (35). Therefore, eq. (35) reduces to the
following ODE:

−ϑU ′ + �UU ′ + �U 2U ′ + �U ′′′ = 0. (55)

Integrating eq. (55) twice with respect to ζ , we get

−λU + �

2
U 2 + �

3
U 3 + �U ′′ = 0. (56)

Using eq. (37) and balancing U ′′ with U 3 yields n = 1. Therefore, we are looking for the
solution of the form

U = a0 + b0 + a1ω + b1(1 + ω)−1. (57)

Substituting eqs (57) and (38) in eq. (56), we get a polynomial equation ω. Hence, equating
the coefficient of ωj (j = 0, 1, 2, ...) to zero and solving the obtained system of overde-
termined algebraic equation using the symbolic manipulation package Mathematica,
results in three sets of equations:

The first set is represented by

M = 0, � �= 0, a0 = − �

2�
, a1 = i

√
6P

√
�√

�
, b1 = 0,

� �= 0, ϑ = �a0

3
, P� �= 0, k = 2ϑ − �a0

4P�
, (58)

the second set is represented by

a0 =
√

3
2M

√
�

√
�

, M �= 0, a1 = 2Pa0

M
,

b1 = 0, P� �= 0, k = �M2 + 2ϑ

4P�
, (59)
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and the third set is represented by

M = 2P, a0 =
√

6P
√

�√
�

, k �= 0, a1 = a0,

b1 =
√

6
√−�k2 + 2P�k − P 2�√

�
,

ϑ = −2�P 2 + 2k�P + �a0b1. (60)

For the first set (58), when P = 1 we get the solutions satisfying Case I. Therefore, for
k > 0 the solution of the EKdV eq. (35) will be

u1(x, t) =
i
√

�

√
�2

��
tan

(
ζ

√
�2
��

2
√

6

)

2
√

�
− �

2�
(61)

and

u2(x, t) =
i
√

�

√
�2

��
cot

(
ζ

√
�2
��

2
√

6

)

2
√

�
− �

2�
, (62)

while for k < 0

u3(x, t) = − �

2�
−

i
√

�

√
− �2

��
tanh

(
ζ

√
− �2

��

2
√

6

)

2
√

�
, (63)

u4(x, t) = − �

2�
−

i
√

�

√
�2

��
coth

(
ζ

√
− �2

��

2
√

6

)

2
√

�
, (64)

and for k = 0

u5(x, t) = �ζ + 2i
√

6��

2ζ�
. (65)

For the second set (59), we apply the compatibility condition for the solutions satisfying
Cases II, III, and IV as

Pk = M2 − p2
1

4
. (66)

Substituting P and k from (59), in eq. (66) and solving for p1, we obtain

p1 =
i

√
−�2

�√
3�

or p1 =
−i

√
−�2

�√
3�

. (67)

Therefore, the solution of eq. (35) will be

u6(x, t) = − i
√

6�p1 tanh(ζp1)√
�

(68)
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and

u7(x, t) = − i
√

6�p1 coth (ζp1)√
�

. (69)

In the same manner, Case III gives the solution

u8(x, t) = −
i

√
3
2�

(
sinh(ζ ) + √

r2 − 1
)

√
�(r + cosh(ζ ))

, (70)

with the condition p1 = 1.
For Case IV, the solution form is

u9(x, t) =
i

√
3
2

√
�cosech

(
ζ

2

) (
cosh

(
ζ

2

) + 2M sinh
(

ζ

2

))
√

�
, (71)

with the same condition p1 = 1, and

u10(x, t) = − i
√

6
√

� coth(ζ )√
�

, (72)

with the condition p1 = 2.
Hence, for the solutions satisfying Cases II–IV, we have the compatibility condition

Pk = M2 − p2
1

4
.

Therefore, substituting for P and k, from (60) and solving for p1, it is found that

p1 = √
2

√
2P 2� − 2kP�

�
or p1 = −√

2

√
2P 2� − 2kP�

�
. (73)

The solution of eq. (55) will be

u11(x, t) = −√
6
√−(k − P)2�P 2 − √

�a0 (P − p1 (P + tanh(ζp1)))
2

P
√

� (p1 (P + tanh(ζp1)) − P)
(74)

and

u12(x, t) = −√
6
√−(k − P)2�P 2 − √

�a0 (P − (P + coth (ζp1)) p1)
2

P
√

� ((P + coth (ζp1)) p1 − P)
,

(75)

where a0 is given by eq. (60), with the relative conditions. Similarly, Case III results in
the solution

u13(x, t)

=
−8

√
6P 2

√−(k−P)2�(r+cosh(ζ ))2−√
�

(
2r2+cosh(2ζ )+ 4

√
r2−1 sinh(ζ )−3

)
a0

4P
√

�(r + cosh(ζ ))
(

sinh(ζ ) + √
r2 − 1

) ,

(76)
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with the condition p1 = 1.
For Case IV, the solution can be written in the form

u14(x, t) = 4
√

6
√−(k − P)2�P 2 + a0

√
�

[
4P + coth

(
ζ

2

)]2

2P
√

� [4P + coth(ζ ) + cosech(ζ )]
, (77)

with the same condition p1 = 1, and

u15(x, t) = −√
6
√−(k − P)2� tanh(ζ )P 2 − a0

√
� coth(ζ )

P
√

�
, (78)

with the condition p1 = 2.

4.1 Numerical analysis and discussion

We have considered a collisionless, unmagnetized plasma consisting of q-nonextensive
electrons, positive ions, negative ions, as well as charged immobile dust grains. To
investigate the nonlinear dynamics of the DIAWs, the reductive perturbation technique
is employed to obtain an EKdV equation. The latter is solved using an extended homo-
geneous balance method. The extended homogeneous balance method gives different
classes of solutions of the EKdV equation. These solutions include many types like
rational, periodical, shock solutions, etc. For example, solution (65) represents the
rational-type solutions, which may be helpful to explain the creation of very high energy
in the plasma system. Because the rational solution is a discrete joint union of manifolds,
particle systems describe the motion of a pole of the evolution equation. Solutions (61)
and (62) are examples exhibiting the sinusoidal-type periodical solutions, which develop

Figure 1. Three-dimensional profile of the periodic solution (eq. (61)) for α = 0.6,
β = 0.1, and q = 0.7.
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a singularity at a finite point, i.e., for any fixed t = t0 there exists a value of ζ0 at which
these solutions blow up (see figure 1). Note that these excitations never reach zero, except
in a very specific combination of parameter values. The prediction for a potential exci-
tation blow-up indicates that an instability in the system may occur due to the effect of
nonlinearity. In simple terms, the balance between dispersion and nonlinearity may be dis-
turbed by variations of plasma quantities (e.g., temperature, pressure, density, etc.). This
might locally destroy the localized excitation stability leading to an amplitude increase to
very high values; as this represents an increase in the electric potential, it might lead to
an acceleration of the moving particles. It is important to note that eq. (69) is a form of
explosive/blow-up solutions as depicted in figure 2.

Another different nonlinear wave that could be of interest is represented by solution
(63), which represent the shock waves. Equation (63) can be written as

u(ζ ) = 1

2
φm

[
1 − tanh

(
2ζ

W

)]
, (79)

where φm and W are the amplitude and width of the shocks, respectively, and are given
by

φm = −B

C
and W = 2

√−12/C

|φm| . (80)

It is clear from eq. (80) that to have shock waves, C should acquire negative values;
i.e., C < 0. The Earth’s ionosphere plasma (H+, H−) will be used as an example to
numerically investigate the nonlinear coefficient C and negative dust grains are consid-
ered. The numerical analysis in figure 3 defines the possible regions of negative C that
is represented by green zone, while for white zone, C is greater than zero. Hence, our
numerical analysis of the shock wave profile is limited within the blue region.

Figure 2. Three-dimensional profile of the explosive/blow-up pulse (eq. (69)) for the
same parameters as in figure 1.
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Figure 3. The contour plot of the coefficient C with α and β for negative dust
particles, where q = 0.6, σ+ = σ− = 0.5, and Q = 0.03.

Now, we shall study the variation of the shock wave profile against q, σ1, σ2, α, and β

as depicted in figures 4–6. Figure 4 shows that the increase of the nonextensive param-
eter q would lead to an enhancement in the shock amplitude. Actually, increasing the
shock amplitude increases the potential difference and accelerates the particles to high

20 10 0 10 20

0.015

0.010

0.005

0.000

Figure 4. The shock wave profile for different values of q where q = 0.6 (——),
0.8 (· · · ·), 0.97 (- - - - -). Here, α = 0.5, β = 0.1, σ+ = σ− = 0.5, and
Q = 0.03.
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Figure 5. The shock wave profile for different values of σ+ and σ− where σ+ =
σ− = 0.5 (—–), σ+ = 0.6, = 0.5 (· · · ·), σ+ = 0.5, = 0.6 (- - - - -). Here, α = 0.5,
β = 0.1, q = 0.6, and Q = 0.03.
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Figure 6. The shock wave profile for different values of α and β where α = 0.5,
β = 0.1 (—–), α = 0.6, β = 0.1 (· · · ·), α = 0.5, β = 0.2 (- - - - -). Here,
σ+ = σ− = 0.5, q = 0.6, and Q = 0.03.

velocity. However, for higher q values near to unity the system behaves like Maxwellian.
Therefore, when the system nears either the Maxwellian state or the equilibrium state, the
particles accelerates more.

Figure 5 clearly shows that the increase in positive ion-to-electron temperature ratio
would make the shock amplitude taller but the negative ion-to-electron temperature ratio
makes the shock amplitude shorter. On the other hand, the ion temperature accelerates
the particles due to the generation of high potential shock waves.

It is obvious from figure 6 that the excess of negative-to-positive ion density ratio and
the negative dust-to-positive ion density ratio would lead to an increase in the shock ampli-
tude, but the former is more effective than the latter. In other words, the increase of
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negative ions in the plasma system creates high potential difference due to their dynam-
ics, while the negative stationary dust has less influence. Of course, the dynamics of the
charged particles has a significant effect even if it has less mass than the stationary dust.
The latter usually plays a role in neutralizing the background but does not play an effective
role in wave dynamics.

5. Summary

In this paper, we have studied the nonlinear propagation of dust ion-acoustic waves in
dusty plasmas, where a background of stationary dust was considered. We have derived
the EKdV equation describing the system. Using homogeneous balance method we
obtained a new class of solutions of the EKdV equation. These solutions include dif-
ferent rational solutions and shock wave solution. We have used the present model to
investigate the behaviour of nonlinear structures in the Earth’s ionosphere plasma envi-
ronment. Numerical analysis of the solutions revealed that the profile of the nonlinear
pulses suffer amplitude and width modifications due to the enhancement of the dust par-
ticle density, negative ion density, and nonextensive electron parameter. Furthermore, the
necessary condition for the propagation of shock waves is examined.
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