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Abstract. We investigate the influence of diversity on the temporal regularity of spiking in a ring
of coupled model neurons. We find diversity-induced coherence in the spike events, with an optimal
amount of parametric heterogeneity at the nodal level yielding the greatest regularity in the spike
train. Further, we investigate the system under random spatial connections, where the links are both
dynamic and quenched, and in all the cases we observe marked diversity-induced coherence. We
quantitatively find the effect of coupling strength and random rewiring probability, on the optimal
coherence that can be achieved under diversity. Our results indicate that the largest coherence in the
spike events emerge when the coupling strength is high, and when the underlying connections are
mostly random and dynamically changing.
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1. Introduction

The constructiverole of noise in nonlinear dynamical systems, modellingphysical, chemical
and biological phenomena, has received sustained interest for the past two decades
[1–4]. Its role in signal detection and enhancement, as well as pattern formation is well
studied. While research in this field started with low-dimensional systems, the frontier of
research has now shifted to spatially extended systems [5]. For instance, array enhanced
stochastic resonance (AESR) has been observed, where the response of a locally cou-
pled array of identical oscillators to a periodic signal is enhanced under noise [6]. It
was also found that coherence could be induced purely by noise, in the absence of an
external signal, and this is termed as array enhanced coherence resonance (AECR) [7].
The constructive effects of noise are also investigated in complex networks [8], such as
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small-world [9] and scale-free networks [10] which are excellent for modelling interac-
tions among the units of complex biological and sociological systems. For small world
networks, stochastic resonance [11] and coherence resonance [12,13] were found due
to short-cuts between randomly chosen sites, and this dynamical ordering depended on
the coupling strength and rewiring probability. For scale-free networks, stochastic reso-
nance was found for a network of bistable oscillators, where a weak signal was found to
be amplified under noise [14]. Also, a scale-free network consisting of bistable over-
damped oscillators was studied, and stochastic resonance was observed arising from
the inherent degree-inhomogeneity of the network [15]. Further, noise and topology-
induced coherence in a two-dimensional map-based neuronal system has been recently
reported [16].

Naturally, the elements comprising an extended system may differ from each other [17].
So, many studies have been devoted to the constructive role of disparity in a characteristic
parameter of the unit system. For example, it is found that the spatiotemporal chaos in an
array of coupled pendulums can be tamed by an optimal magnitude of disorder, induced
by disparity in pendulum lengths [18], and a resonance-like behaviour is also found in
these systems. Tessone et al have found that different sources of diversity, such as those
represented by quenched disorder or noise, can induce a resonant collective behaviour in
an ensemble of coupled bistable or excitable systems [19]. This phenomenon is termed as
diversity-induced resonance. Thus, diversity can play a constructive role analogous to that
of the noise. In the context of neuronal systems, diversity-induced coherence resonance
was found for a one-dimensional ring of map-based neuron systems [20].

Now in various naturally occurring network topologies, the coupling between the nodes
in the network may change over time [21], especially in social and biological networks.
It is shown that the rapid switching of random links among chaotic maps enhances spa-
tiotemporal regularity of their dynamics [22–24]. The constructive effects of noise has
also been considered for these networks. For example, for diffusively-coupled FitzHugh–
Nagumo model neurons, coherence resonance is induced by rewiring [25]. Also, fast
random rewiring and strong connectivity are found to impair subthreshold signal detec-
tion in excitable networks [26]. In this paper, we aim to study the interplay of dynamic
random connections and diversity on coherent behaviour in an extended neuronal system.

Specifically, we consider a coupled ring of heterogeneous neurons, with some fraction
of dynamic or static random links. The static random links are invariant throughout the
evolution of the system, whereas the dynamic links are switched at time-scales comparable
to the nodal dynamics [22]. We shall investigate the effect of both types of random
connections on diversity-induced coherence in the firing patterns of the neurons.

Our principal questions are the following: do random links enhance diversity-induced
temporal coherence in neuronal networks? Is there any significant distinction in temporal
coherence for a network with dynamic (switched) random connections and one where
the random links are quenched (or static)? In this work we shall show that the greatest
diversity-induced coherence is achieved in a strongly coupled network with dynamic
random connections.

This paper is organized as follows. In §2, we shall describe the mathematical model,
as well as the order parameter for the system, which measures the temporal regularity in
spiking of model neurons in the network. The numerical results are presented in §3. In
the last section, we summarize and discuss our findings.
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2. Model of coupled neurons with diversity

We consider networks of diffusively-coupled elements with the nodal dynamics given by
a map, which was introduced by Rulkov [27]. This map captures all the essential features
of neuronal dynamics ranging from regular spiking to self-sustained chaotic bursting.
Temporal evolutions of these coupled elements are described by the following sets of
equations:

xn+1(i) = fα[xn(i), xn−1(i), yn(i) + βn(i)],
yn+1(i) = yn(i) − μ(xn(i) + 1) + μσ(i), (1)

where i(=1, . . . , N) is the site index, N is the total number of elements in the lattice
and n is the discrete time index. Also, xn(i) is a fast variable which represents mem-
brane potential and yn(i) is a slow variable due to the small value of the parameter μ

(μ = 0.001). Here βn(i) represents the external input and fα(x, x ′, y + β) is a piecewise
nonlinear function which is designed to shape spiking oscillations in fast subsystems. It
contains three intervals which can be described as follows:

f (x, x ′, y + β) =
⎧
⎨

⎩

[α/(1 − x)] + y for x ≤ 0 and x ′ ≤ 0,

α + y for 0 < x < α + y and x ′ ≤ 0,

−1 for x ≥ α + y and x ′ > 0.

The control parameters of the map are α and σ . In the absence of external input, i.e.,
for β = 0, the map generates spikes, if σ > σth = 2 − √

α, for α less than 4.0, or else
it stays in a silent state. For α > 4, there are bursts of spikes including both periodic
and chaotic bursting. In this work, the value of α is fixed and diversity in the lattice
is introduced through the parameter σ . The value of σ(i) for the site i is taken from a
Gaussian distribution with mean σ0 and variance D2. Thus, D measures the diversity in
the system. As usual, we study the excitable system in the parameter regime close to
a bifurcation point. So, through diversity the system can be pushed above or below the
threshold [19].

The external signal, or coupling term, for this network is

βn(i) = ε

2
[xn(ξ) + xn(η) − 2xn(i)], (2)

where ε is the strength of diffusive coupling. ξ = (i + 1) and η = (i − 1) for the
nearest-neighbour coupling (with periodic boundary conditions). For random connec-
tions, we consider the situation where a fraction, p, of randomly chosen sites in this
lattice are coupled to other random sites, instead of their nearest neighbours, i.e., ξ and
η are random sites. Clearly, the topology of the network can be changed by adjusting
rewiring probability parameter, p. For regular networks (nearest-neighbour coupling),
p = 0 and for completely random network, p = 1. Further, we consider two cases: (i)
static random connections, where the random links in the system are quenched and do not
change over time; (ii) dynamic random connections where the random links can switch at
the time-scale of the local map updates, namely the connectivity matrix changes at each
instant n.

The temporal coherence of firing of neurons in the networks is usually measured by
the distribution of the pulse interval, Sk(i) [28]. The pulse interval is defined as, Sk(i) =
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τk+1(i) − τk(i), where, τk(i) is the time of the kth spike in the ith neuron. The sharpness
of the distribution is given by

Z = 〈Sk(i)〉
√〈[Sk(i)]2〉 − [〈Sk(i)〉]2

(3)

with

〈[Sk(i)]n〉 =
∑N

i=1

∑ki

k=1[Sk(i)]n
∑N

i=1 ki

which is the ratio of the average and the standard deviations of interspike interval and is
a measure of coherence of spike events. Biologically, it is related to the timing precision
of information processing [28]. Larger values of Z imply a better temporal regularity of
spikes. Also, Z is considered to be zero if all the neurons are in the silent state.

3. Diversity-induced coherence

In this work we investigate the effect of quenched and dynamic random links on the
temporal regularity of spiking, under increasing diversity, in a network composed of inho-
mogeneous neurons. Now, the individual neurons will generate spikes if the value of the
parameter σ(i) is equal to or greater than the threshold value, σth = 2 − √

α. Here, the
parameter α of the nodal map is chosen to be 3.0, and so σth ∼ 0.268. With no loss of
generality, we consider a network of size N = 500, and in the network, σi of the con-
stituent neurons is randomly distributed about an average value σ0 with variance D2, with
σ0 = 0.25 < σth. As there are several neurons with σi < σth, an adequate level of diver-
sity D is necessary in order to enable the active elements in the network to induce spiking
behaviour in the subthreshold neurons.

In particular, we study the quantitative measure of temporal coherence Z, with respect
to the following important parameters: (a) measure of diversity, D, (b) coupling strength,
ε and (c) fraction of sites, p, with random (quenched or dynamic) links. Note that the
value of Z is obtained by averaging over 100 different initial conditions. For each ini-
tial condition, the first 105 iterations (transience) are discarded and the subsequent 105

iterations are used for calculating Z.
Representative cases of the temporal coherence of neuronal spikes for increasing diver-

sity D, are shown in figures 1–3. In all cases, it is clearly evident that temporal coherence
in spiking increases with diversity up to an optimal level of diversity D = Dopt, where one
attains the maximum coherence Zmax. After that, increasing diversity has a detrimental
effect on coherence, and increasing D decreases the value of Z. This indicates that a
moderate level of diversity is most conducive for temporal coherence in spike events.
This diversity-induced coherence holds true in all kinds of coupling topologies, ranging
from a one-dimensional ring to networks with varying fractions of quenched and dynamic
random links.

Also note that when coupling is weak, regular coupling yields the highest degree of
coherence. However, when coupling is strong, larger fraction of random links enhance
diversity-induced coherence. Additionally, dynamic random links yield significantly
higher levels of temporal coherence than quenched random connections. So, our results
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Figure 1. Temporal coherence Z vs. diversity D, for different values of coupling
strength ε. The black curve represents regular nearest-neighbour coupling (p = 0),
while the red and blue curves show results from networks with quenched and dynamic
random links, respectively, for (a) p = 1/N = 1/500 and (b) p = 0.9. The other
parameters are N = 500, α = 3.0 and σ0 = 0.25.

demonstrate that the largest coherence in the spike events emerge when the coupling
strength is high, and the underlying connections are mostly random and dynamically
changing.

Further, figure 2 shows that more diversity is needed for optimal coherence when cou-
pling is stronger. That is, Dopt is larger for larger coupling strength ε. On the other hand,
higher degree of randomness in connection entails that the diversity needed for maximal
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Figure 2. Temporal coherence Z vs. diversity D, for (a) quenched random links and
(b) dynamic random links, for different values of coupling strength ε. The rewiring
probability p = 0.5 for both cases, while the other parameters are N = 500, α = 3.0
and σ0 = 0.25.
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Figure 3. Temporal coherence Z vs. diversity D, for (a) quenched random links and
(b) dynamic random links, for different values of random rewiring probability p. Here,
the coupling strength, ε = 0.5 for both cases, and the other parameters are N = 500,
α = 3.0 and σ0 = 0.25.

coherence is smaller. This is evident from figure 3, which shows decreasing Dopt with
increasing p.

Now we investigate the value of Zmax, averaged over 102 realizations, for varying cou-
pling strengths ε and fraction of random links p. This quantitatively captures the trends
evident in figures 1–3.

The broad trend evident from figures 4 and 5 is that the maximal coherence that can be
induced by diversity increases with increasing coupling strength ε and increasing degree
of randomness in spatial connections. This implies that, for a given level of diversity, in
a lattice which has larger degree of random spatial connections, larger coupling strength
helps the spiking neurons to induce activity in the silent neurons, thereby enhancing tem-
poral coherence in the system. Furthermore, comparing the values of Zmax clearly shows
that dynamic links are significantly more conducive to temporal coherence than quenched
random links. Therefore, there is a marked increase in the temporal coherence of spikes
in strongly coupled systems, with large number of random links. Specifically, the optimal
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Figure 4. Maximum temporal coherence Zmax (see text) vs. coupling strength ε, for
(a) quenched random links and (b) dynamic random links. For p = 0 the regular
nearest-neighbour coupling is shown in both figures for reference. The other
parameters are N = 500, α = 3.0 and σ0 = 0.25.
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Figure 5. Maximum temporal coherence Zmax (see text) vs. random rewiring proba-
bility p, for different values of coupling strength ε, for (a) quenched random links and
(b) dynamic random links. The points for p = 0 represent the value of Zmax for each
ε in nearest-neighbour coupling and are included for reference. The other parameters
are N = 500, α = 3.0 and σ0 = 0.25.

coherence that can be achieved, i.e., Zmax, is quadrupled for dynamic links, compared to
quenched connections, for large p and ε.

Lastly, for quenched random links, the dependence of the maximum temporal coher-
ence on p, differs from the case of dynamic links for high p. The value of Zmax increases
to an optimal value (e.g., p ∼ 0.85 for ε = 0.9, as seen in figure 5a), and then decreases
as the value of p increases further. This non-monotonic dependence of Zmax indicates
that too many quenched random links actually hinder coherent spiking. This is unlike
dynamic links, where increasing the fraction of random links continues to aid coherence.

4. Summary

In conclusion, we investigated the influence of diversity on the temporal regularity of
spiking in a ring of coupled model neurons. We found diversity-induced coherence in
the spike events, with an optimal amount of parametric heterogeneity at the nodal level
yielding the greatest regularity in the spike train. Further, we investigated the system
under random spatial connections, where the links were both dynamic and quenched, and
in all cases we observed diversity-induced coherence. We quantitatively found the effect
of coupling strength and random rewiring probability, on the optimal coherence that could
be achieved under diversity. The results indicate that the largest coherence in the spike
events emerge when the coupling strength is high, and the underlying connections are
mostly random and dynamically changing. Future research directions include the study
of continuous time systems and other classes of dynamical networks, such as scale-free
networks. Investigations into these open and potentially important problems will shed
light on the generality of the phenomena presented here.
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