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Abstract. In this study, we examine the intriguing connection between turbulence and equilibrium
statistical mechanics. There are several recent works which emphasize this connection. Thus in the
last few years, the first manifestations of the thermalization, predicted by T D Lee in 1952, was seen
and a theoretical understanding of this was developed through detailed studies of finite-dimensional,
Galerkin-truncated equations of hydrodynamics. Furthermore, the idea of the Galerkin truncation
can be generalized for studying turbulence in non-integer (fractal) dimensions to yield a new, critical
dimension with an equilibrium Gibbs state coinciding with a Kolmogorov spectrum. In this paper,
we discuss these very exciting and recent developments in turbulence as well as open problems for
the future.
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1. Introduction

Turbulent flows are ubiquitous and abound. However, a detailed, microscopic under-
standing of turbulence still remains elusive and is widely regarded as one of the most
challenging problems in classical physics [1–3]. Hence it is not surprising that scien-
tists working in different areas ranging from fluid dynamics [4–7], astrophysics [8–11],
geophysics [12,13], climate modelling [14], plasma physics [9–11,15,16], and statistical
physics [17–26] have been deeply interested in problems related to turbulence [26a].

Although the fundamental equation to describe the motion of an ideal fluid (no vis-
cosity) has been known for over two centuries due to the works of Leonhard Euler and
Jean-Baptiste le Rond D’Alembert [27], and subsequently extended, independently, by
Claude-Louis Navier and George Gabriel Stokes to include the effect of viscosity, we
still do not have a complete mastery of the mathematical properties of these solutions. In
particular, the question of finite-time singularities in the solutions to the Euler equation
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(in three dimensions) remains unanswered so far and its importance has been recog-
nized by the Clay Institute by listing it as one of its millennium unsolved problems in
mathematics [28].

Despite the mathematical complexity of the Euler or the Navier–Stokes equations, a
major breakthrough in the last century gave an impetus for physicists to investigate turbu-
lent flows seriously [28a]. This came in a set of remarkable papers by A N Kolmogorov
in 1941 [29] and the theoretical and phenomelogical framework laid out in these papers
came to be known, subsequently, as K41 in the literature. The Kolmogorov theory, or K41,
invoking dimensional arguments, scaling laws, and universality to tackle fully developed
turbulence, was crucial in providing a language accessible to theoretical, and in particular,
statistical physicists to understand the complexity of turbulent flows.

Let us first briefly review the ideas contained in K41 [29]. We begin with the incom-
pressible, viscous Navier–Stokes equations, at low Mach numbers, namely

∂u
∂t

+ (u·∇)u = −∇p + ν∇2u + f,

∇ · u = 0, (1)

where we have used units such that the density ρ = 1. The Eulerian velocity at the spatial
position r and time t is denoted u(r, t), ν is the kinematic viscosity, and f is an external
force to maintain a non-equilibrium statistically stationary state. By using the incompress-
ibility condition [1,4] it is often convenient to eliminate the pressure p via the Poisson
equation ∇2p = −∂ij (uiuj ). Frequently, flows are described by a non-dimensional
parameter, the Reynolds number Re ≡ LV/ν, where L and V are characteristic length
and velocity scales. Thus when Re is small, i.e., the typical velocity is small and the fluid
is highly viscous, the flow is laminar. However, as Re increases, the flow starts becom-
ing irregular, chaotic, and turbulent. Typically, this transition is accompanied by several
symmetry breakings [1].

In three-dimensional flows, in the absence of force and viscosity, there are three con-
served quantities, namely the momentum, the kinetic energy, and the helicity H ≡∫

drω · u/2 (ω ≡ ∇ × u is known as the vorticity) [29a]. A phenomenological under-
standing of three-dimensional, homogeneous, isotropic turbulence rests on the notion of
cascades: kinetic energy injected at a large scale L, often comparable to the system size
and known as the integral length scale, is transferred to smaller and smaller scales till it
reaches the scales ηd , where molecular viscosity becomes significant and energy is lost
as heat. Furthermore, in the statistical steady state, the energy dissipation rate per unit
volume ε, as Re → ∞, does not vanish but reaches a finite, positive value (dissipative
anomaly). For scales r , known as the inertial range, such that L � r � ηd , statisti-
cal properties are determined uniquely by only r and ε when Re → ∞. By using such
ideas of the cascade of energy from large to small scales and in the special case of fully
developed homogeneous, isotropic turbulence, K41 yields, via dimensional analysis, the
leading order behaviour of the energy spectrum E(k), i.e., the distribution of the kinetic
energy amongst the Fourier modes, as E(k) ∼ k−5/3. Subsequently, in a variety of numer-
ical simulations and experiments, Kolmogorov’s prediction for the leading order scaling
behaviour of the energy spectra (in the intermediate wavenumbers) have been verified
[29b].
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In this short study, we look at a slightly different approach to understand turbulent
flows. We begin by asking if there is a way to understand out-of-equilibrium, dissipative
turbulence by adapting tools from equilibrium statistical mechanics. A priori such an
approach would seem to have an inherent contradiction because although microscopically
it is possible to model a flow through a Hamiltonian formulation with stationary states
associated to an invariant Gibbs measure, at the macroscopic level self-consistency would
invariably result in dissipative hydrodynamics and irreversible energy loss. Curiously,
soon after Kolmogorov’s prediction, Hopf [31] and Lee [32] studied the incompressible
Euler equation (setting ν = 0 in the Navier–Stokes equation) as a finite-dimensional
system (by retaining only a finite number of Fourier modes via Galerkin truncation; see
below). For such a finite-dimensional system with no viscosity, it is possible to apply the
standard tools of equilibrium statistical mechanics. The long time solutions of this finite-
dimensional system show an equipartition of energy and the thermalized states display
energy spectra E(k) ∼ k2, very different from that predicted by Kolmogorov and seen in
experiments and simulations [31a].

Given this obvious contradiction, it is important to ask if thermalized states are
meaningful in the study of hydrodynamic turbulence? In this study, we explore the
intriguing interplay between equilibrium statistical mechanics and turbulence which have
attracted a lot of attention recently [33–37]. This paper is organized as follows. In the
following section we discuss thermalized states and the onset of thermalization in equa-
tions of hydrodynamics. In §3 we discuss the related problems of turbulence in fractal
dimensions and the existence of a critical dimension where the Kolmogorov solution
coincides with equilibrium solutions. Finally, we make some concluding remarks and
give possible future directions in this field.

2. Thermalization

As we have seen before, a straightforward extension of ideas of equilibrium statistical
mechanics to the Galerkin-truncated, three-dimensional (3D), incompressible Euler equa-
tion by Hopf [31] and Lee [32] leads to an equipartition energy spectrum E(k) ∼ k2 which
is very different from the spectrum observed in nature, experiments, and in direct numeri-
cal simulations (DNSs) [1] and which follow closely the celebrated Kolmogorov spectrum
E(k) ∼ k−5/3 [29]. This underlines the inherent difficulty in adapting methods of statis-
tical mechanics to problems in turbulence. However, in 1967, Kraichnan [38–40] (and
later extended by Frisch et al in [36]) achieved success by using tools from equilibrium
statistical mechanics to predict an inverse energy cascade in two-dimensional (2D) tur-
bulence. The first clear evidence of how the Galerkin-truncated Euler equations actually
thermalize was obtained by Cichowlas et al in [33] when they performed extremely high-
resolution direct numerical simulations of the 3D Euler equation, with only a finite num-
ber of Fourier modes, and obtained long-lasting transients with energy spectra E(k) ∼ k2

at the high wavenumber end. Interestingly, if kthreshold(t) is the wavenumber beyond
which the equipartition spectra are clearly visible, then in the early times this threshold
wavenumber is close to the largest mode of the system and with time it becomes smaller
and smaller. A second interesting result of this calculation was that at any given time,
for wavenumbers smaller than kthreshold(t), the energy spectra seemed to follow the K41
scaling, namely E(k) ∼ k−5/3 [40a].
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These results from 2005 (and predicted before in 1989 by Kraichnan and Chen [39])
lead us to ask how do systems thermalize? In this study, we explain the way truncated
systems thermalize by using the Galerkin-truncated, one-dimensional (ID) Burgers equa-
tion. The results and insights from the ID system can be extended to the incompressible
Euler equations in two [35] and three [41] dimensions.

The untruncated, inviscid Burgers equation for the velocity field u(x, t), with initial
condition u(x, 0) = u0(x) is written as

∂u

∂t
+ u

∂u

∂x
= 0, (2)

where the explicit dependence of the velocity field on the space variable x and time t

has been omitted for notational convenience. For any positive integer KG (the Galerkin
truncation wavenumber), it is possible to define the Galerkin projector P

KG
which sets to

zero all Fourier components with wavenumbers |k| > KG, i.e.,

PKGu(x) =
∑

|k|≤KG

eikx ûk. (3)

By making use of this projector, we can write the associated inviscid Galerkin-truncated
Burgers equation [42] for the truncated velocity field v(x, t) as

∂v

∂t
+ PKG

[

v
∂v

∂x

]

= 0, v0 = PKGu0. (4)

The solution of the inviscid Burgers equation, with smooth initial conditions such as
trigonometric polynomials, has a finite time (t�) blow-up of the velocity gradient when the
solution develops a cubic-root singularity or the preshock [43,44]. For times larger than
t�, the solution of the inviscid Burgers equation is obtained by adding a small dissipative
term ν∂2

xu and taking the limit ν → 0 to obtain the inviscid-limit solution with at least
one shock and dissipative anomaly. The solution to the Galerkin-truncated equation (4),
however, stays smooth and conserves energy at all times.

How does the system of the Galerkin truncated Burgers equation thermalize? In
order to examine this, we begin by performing a direct numerical simulation of (4)
by using standard pseudospectral methods and a fourth-order Runge–Kutta scheme for
time integration. We use the total number of collocation points N = 214 = 16384
points, an integration time step δt = 10−4, and the Galerkin-projection wavenum-
ber KG = 1000. We choose, without any loss of generality, an initial condition
v0 = sin(x + 0.2) + 1.3 sin(2x − 2.2) which has a t� ≈ 0.28 [44a]. In figure 1 we
show the time evolution of the solution, shown in blue, of (4). It is easy to observe that
although the solution to the truncated equation coincides with the smooth solution of the
inviscid limit for early times t < t� (see figure 1a). At times close to t�, a tiny, sym-
metric, localized monochromatic bulge appears which, as time evolves, collapses (due to,
e.g., Reynolds stresses) and eventually leads to a complete thermalization of the solution.
Thus this is a visual demonstration of how thermalization sets in, in truncated, inviscid
systems. The triggers for thermalization are localized, monochromatic (with the same
wavenumber as the truncation wavenumber) oscillations – called ‘tygers’ by Ray et al
in [35] – which are due to the resonant wave interactions between the fluid particles and
truncation waves generated via the convolution between the projection operator and the
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(a) (b)

(c) (d)

(e) (f)

Figure 1. Plots of the solution of the Galerkin-truncated Burgers equation v(x) vs.
x with initial conditions (t� ≈ 0.28) shown in (a) and at (b) t = 0.28, (c) t = 0.30,
(d) t = 0.35, (e) t = 0.50, and (f) t = 4.0 showing the onset of, via localized
symmetric oscillations in (b) and (c) and eventual thermalization (f). Note the location
of the localized oscillations around the spatial points whose velocity coincides, or is
in resonance, with that of the shock.

nonlinearity. Typically, these waves are generated by the small structures, such as shocks.
The first appearance of these bulges coincide with the time when singularities in the com-
plex space reach distance λG = 2π/KG from the real domain. Furthermore ‘tygers’ are
born at spatial points which have the same velocity as that of the generating small-scale
structure, in this case the shock, and where the local velocity gradient is positive [44b].
As time evolves, t ≥ t�, these bulges eventually collapse, grow and spread through the
entire domain. This, then, is the first demonstration of the thermalization predicted by
Lee [32] and whose signatures in spectral space were obtained in [33].

How easy is it to characterise the nature of this bulge which leads to eventual thermali-
zation in truncated systems? In figure 2a we examine this bulge carefully. In order to do
so, it is useful to subtract the solution to the inviscid, untruncated Burgers equation [44c]
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(a)

(b)

Figure 2. (a) The zoomed-in solution of the Galerkin-truncated Burgers equation, at
t = 1.05, with the inviscid solution subtracted out, around the stagnation point. The
initial condition for this simulation is v0 = sin x and KG = 700. A clear symmetric,
monochromatic bulge is seen. (b) Log–log plot of the amplitude a (solid red circles)
of the ‘tyger’ at t = t� as a function of KG. The thick black line shows the theoretical
prediction for the scaling a ∝ K

−2/3
G . Inset: The same but in a linear plot.

from the truncated solution as shown in figure 2a. The early symmetric tygers at t � t�
are characterized by an amplitude a and a full-width-half-maximum w, which depends
on the value of the truncation wavenumber KG. At t = t�, it is possible to obtain scaling
behaviour of both a and w in the following manner by using theoretical arguments [44d].
For the inviscid Burgers equation, the solution remains analytic for a finite time with at
least one singularity in the complex domain within a distance δ(t). For times t � t�,
δ(t)KG � 1 ensuring that truncation effects are exponentially small. Truncation effects
become important only at a time O(KG

−2/3) before t� when δ(t) comes within a distance
2π/KG of the real domain. Therefore at t�, the effect of truncation has been important
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only for an interval of time O(KG
−2/3). By using arguments of phase mixing, we can see

that coherent structures can happen only at spatial points where the fluid velocity differs
from the resonance velocity (the velocity of the shock) by an amount �v such that

�v � 2π

KG
−2/3KG

∝ K
−1/3
G . (5)

As at t�, the numerical and theoretical arguments suggest that the velocity v ≈ u ∝ x, the
width w of the bulge would scale as w ∝ K

−1/3
G . This result has been rigorously obtained

and confirmed by detailed numerical simulations in [35]. In figure 2b we show the scaling
behaviour of the ‘tyger’ amplitude vs. KG on a log–log scale (inset shows the same result
in a linear plot) which gives clear evidence that a ∝ K

−2/3
G . By using ideas of energy

conservation and the fact that the Galerkin-truncated equation does conserve energy, it is
possible to explain this scaling behaviour [35].

Although it has been possible to have a complete and rigorous understanding of the
onset of thermalization in the 1D truncated Burgers equation and insights into the higher-
dimensional truncated Euler equations (see, e.g., [35] for details), the complete process
of thermalization as seen in figure 1 is still far from obvious. In recent years, the issue of
thermalization in finite-dimensional equations of hydrodynamics, obeying a Liouville’s
theorem, has also been studied by several other researchers for various other systems.
These include truncated solutions of the Euler equations in two and three dimensions
[33,35,36,47–49], the Gross-Pitaevskii equation [50] and the magnetohydrodynamic [51]
equations. In a recent paper, it has been shown how weakly dissipative systems, under
suitable conditions, can also thermalize [37]. Furthermore, ideas of partial thermalization
have also been used to explain certain experimental and numerical results regarding the
mild non-monotonicity of the energy spectrum in 3D turbulence [34].

Despite these exciting results and ongoing studies on finite-dimensional systems, the
connection between thermalized states and real turbulence is moot. After all, experimental
observations are at variance with the idea of equipartition. It is in this context, to make
the connection between turbulence and statistical mechanics more precise, that the need
for studying the Navier–Stokes equation in fractal dimensions becomes important. We
discuss this in the following section.

3. Fractal turbulence

From the point of understanding real turbulent flows, it can be argued that thermalized
states can be crucial if in some special dimension the equipartition spectrum kD−1 coin-
cides with the physically relevant Kolmogorov spectrum k−5/3. Unfortunately, equating
the two spectra yields a special dimension D = −2/3. However, fortunately, it turns out
that there is a way of obtaining a critical dimension Dc by using similar arguments of
equipartition in the following way. Consider the 2D Navier–Stokes equation which has,
as noted before, an additional conserved quantity in enstrophy  = 〈 1

2ω2〉. The presence
of the second conserved quantity leads to a dual cascade – an inverse cascade of energy
from small to large scales and a forward cascade of enstrophy from large to small scales
– in 2D flows and an energy spectrum which scales as k−5/3 at wavenumbers smaller than
those of the energy injection and k−(3+α) for larger wavenumbers [38,51a,52]. Thus, at
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dimensions which have the additional conserved quantity of enstrophy, it is possible to
obtain an enstrophy equipartition spectrum kD−3 (by using the fact that the vorticity is the
curl of the velocity field) and then relate it to the Kolmogorov spectrum. This yields the
critical dimension Dc = 4/3 [48], where the Kolmogorov spectrum coincides with the
(enstrophy) equilibrium spectrum. But, is it possible to obtain such a critical dimension
numerically? Frisch et al [36] demonstrate that it is possible to do this through the method
of fractal Fourier decimation.

Consider the 2D, forced, incompressible Navier–Stokes equation which conserves the
kinetic energy and enstrophy. As we consider 2π periodic solutions, it is possible to
expand the velocity field in Fourier space. On this 2D Fourier (kx, ky) lattice the number
of grid points within a circle of a large radius K would grow as ∼K2. Now if we were
to remove some of the modes in a way such that the number of remaining modes within
a circle grows as KD (with D < 2), then we would obtain an effective Fourier fractal
dimension D. Mathematically, this can be done by defining the following decimation
operator PD on the Fourier series of the velocity field:

PDu =
∑

k∈Z2

eik·xθkûk, (6)

where θk are numbers randomly and independently chosen with the constraints

θk =
{

1 with probability hk

0 with probability 1 − hk , k ≡ |k| .

θk = θ−k Hermitian symmetry preserving. (7)

Figure 3. A cartoon representation of a fractal lattice for dimension D = 1.55 in the
(kx, ky) plane. The blue circle indicates that the number of points within a circle of
radius K would grow as KD . The points in black are the modes which are decimated
and the ones in red are the surviving modes (see text).
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If we further choose

hk = C(k/k0)
D−2 , 0 < D ≤ 2, 0 < C ≤ 1 , (8)

we obtain D-dimensional dynamics (k0 is a reference wavenumber). We choose C =
k0 = 1. Fractal decimation thus produces a quenched fractal lattice which, on average,
retains KD active modes within a circle of radius K (see figure 3).

We can now use this projector to rewrite the Navier–Stokes equation in any fractal
dimension D < 2 which preserves, because of the nature of the self-adjoint projector, the
invariants of the 2D Navier–Stokes equation [36], as

∂v
∂t

+ PD[v · ∇v] = PD∇2v + PDf (9)

with the initial condition v0 ≡ v(t = 0) = PDu0. Additionally, the above equation
can be projected via Galerkin truncation to a finite-dimensional space thus allowing the
use of ideas developed in the previous section of thermalization. In particular, it was
found in [36], by using state-of-the-art direct numerical simulation that starting from the
2D Navier–Stokes equation, the (Fourier) dimension can be continuously reduced, still
preserving the Kolmogorov spectrum k−5/3 for low wavenumbers, till it approaches the
critical dimension Dc = 4/3. As we approach Dc, the flux of the solution vanishes (lin-
early) and eventually at the critical dimension the Kolmogorov spectrum coincides with
the equilibrium Gibbs state with the same spectrum. This is indeed a remarkable result
because it shows that there are special dimensions where conventional equilibrium statis-
tical physics and turbulence theories are complimentary [52a]. We discuss the implication
of this result in the last section [52b].

4. Open questions and conclusions

In theoretical physics there has been a long and successful history of extending the dimen-
sion from experimentally realizable integer dimensions to fractional ones, such as in 4−ε

expansion in critical phenomena [54], to allow us to understand physical processes better.
Similar attempts in turbulencehad failed in the past because for D < 2, closure-type models
lead to negative values of E(k) for certain wavenumbers and hence become unphysical
[55]. The fractal decimation method, outlined in the text, makes a probabilistic realization
of turbulence in dimensions D < 2 possible and it also allows writing down closure equa-
tions of the eddy-damped-quasi-normal-Markovian (EDQNM) variety [55,56] by making
velocity variances probabilistic. Such an approach is extremely exciting because as we
have seen at the critical dimension, the equilibrium fluxless spectrum coincides with the
observed spectrum. This allows standard tools of equilibrium statistical physics to be
used to understand, e.g., the problem of turbulence in two dimension such as in soap
films. Indeed, it has been noted [36] that the equilibrium Gibbsian distribution for the
two-dimensional truncated, inviscid Navier–Stokes equation is very close to the energy
spectrum in two-dimensional turbulence. It is still an open question, e.g., if this formal
similarity can be exploited to understand the temporal multiscale nature of true turbulence
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via relaxation time-scales in the equilibrium problem obtained through velocity
correlation functions. Another significant and unresolved question in turbulent flows is
intermittency [1]. Indeed, operators such as the Galerkin projector or the decimation oper-
ator make the original equations of motion non-local and destroy the Lagrangian structure
of the equations of hydrodynamics without changing the invariants or the symmetries of
the equations. This fact allows the possibility of a better understanding of the source of
intermittency in three-dimensional, isotropic and homogeneous turbulence. Thermalized,
fluxless solutions, which are close to the Kolmogorov solutions, also suggest possibili-
ties of perturbation techniques around the critical dimension which may be extendable
to physically relevant dimensions of soap film experiments. There is another reason for
studying truncated systems. Spectral and pseudospectral methods are widely used as
being the most precise method for solving equations such as the Navier–Stokes and the
Euler equations [57]. Thus, in order to obtain numerical evidence for or against finite-time
blow up, i.e., whether δ(x) → 0 in a finite time, such techniques are used to calculate
the velocity field and thence the width of the analyticity strip [58,59]. This approach
has not yielded convincing arguments because the equations thermalize quickly at the
high-k end of the spectrum leading to inaccurate and often impossible estimations of the
temporal behaviour of δ(x) beyond very short times [59]. Understanding how thermal-
ization sets in, in truncated system will lead to a better estimate of the temporal behaviour
of δ(x), eventually resulting in a strong conjecture for the finite-time blow up problem
[28].
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