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Abstract. This paper presents the exact solutions for the fractional Korteweg–de Vries equations
and the coupled Korteweg–de Vries equations with time-fractional derivatives using the functional
variable method. The fractional derivatives are described in the modified Riemann–Liouville deriva-
tive sense. It is demonstrated that the calculations involved in the functional variable method
are extremely simple and straightforward and this method is very effective for handling nonlinear
fractional equations.
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1. Introduction

The physical and engineering processes have been modelled by means of fractional
calculus, which are found to be best described by fractional differential equations. Unfor-
tunately, in many cases, the standard mathematical models of integer-order derivatives,
including nonlinear models, do not work adequately. Fractional calculus has played a
very important role in various fields such as economics, chemistry, notably control the-
ory, electricity, mechanics, ground water problems, biology and signal image processing.
Earlier, the investigation of travelling-wave solutions for nonlinear equations had a very
effective role in the study of nonlinear physical phenomena. A wide range of physics phe-
nomena has been described by means of the Korteweg–de Vries (KdV) equation which
has been used to model the evolution and interaction of nonlinear waves.

The evolution of the Korteweg–de Vries equation, which has been a long process,
started about 80 years ago, began with the experiments of Scott Russell in 1834 [1],
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the investigations of Boussinesq and Rayleigh around 1870 [2–5], and finally culminated
with the paper by Korteweg and De Vries in 1895 [6]. It was derived as an evolu-
tion equation governing a one-dimensional, small-amplitude, long-surface gravity wave
propagating in a shallow channel of water.

Subsequently, the KdV equation has thrived in other physical contexts as ion-acoustic
waves, plasma physics, collision-free hydromagnetic waves, lattice dynamics, stratified
internal waves, etc. [7]. The KdV model has been used to explain certain theoretical
physics phenomena in the quantum mechanics domain. It is used as a model for shock
wave formation, solitons, turbulence, boundary layer behaviour, and mass transport in
fluid dynamics, aerodynamics, and continuum mechanics.

Now consider the general Korteweg–de Vries equation of the form

ut + (p + 1)(p + 2)upux + uxxx = g(x, t), (1)

where g(x, t) is a given function and p = 1, 2, ... with u, ux, uxx → 0 as |x| → ∞. If
p = 0, p = 1, and p = 2, eq. (1) becomes linearized KdV, nonlinear KdV, and modified
KdV equations, respectively. The nonlinear KdV equation has been the focus of recent
studies for finding exact solutions in [8–10] as well as numerical solutions in [11–13].

Recently, there has been much interest in fractional diffusion equations. These equa-
tions arise in continuous-time random walks, modelling of anomalous diffusive and
sub-diffusive systems, unification of diffusion and wave propagation phenomenon, and
simplification of the results [14]. The nature of the diffusion is characterized by a mean-
square displacement of the form

〈r2(t)〉 ∼ tα. (2)

For anomalous subdiffusion α < 1 and for anomalous superdiffusion α > 1, whereas in
standard diffusion α = 1. For applications on both types of anomalous diffusions, one
can refer to [15,16].

In this work, the exact solutions of the nonlinear KdV equation with time- and space-
fractional derivatives are considered which is of the following form:

∂αu

∂tα
+ εu

∂βu

∂xβ
+ v

∂3u

∂x3
= 0, t > 0, (3)

where ε and v are parameters and α and β are parameters describing the order of the
fractional time- and space-derivatives, respectively. The function u(x, t) is assumed to be
a causal function of time and space, i.e., vanishing for t < 0 and x < 0. When α = 1
and β = 1, the fractional equation reduces to the classical nonlinear KdV equation. Hirota
and Satsuma proposed a coupled KdV equation, which describes the interactions of two
long waves with different dispersion relations [17]. If one of the long waves never affects
the other, the latter obeys the ordinary KdV equation. However, the behaviour of the
KdV solitons accepts the influence of the existence of the former. Solutions show that
the former determines the velocity of the KdV soliton. The coupled KdV equations with
time-fractional derivatives are given as

∂αu

∂tα
+ 6au

∂u

∂x
− 2bv

∂v

∂x
+ a

∂3u

∂x3
= 0, 0 < α ≤ 1,

∂βv

∂tβ
+ 3bu

∂v

∂x
+ b

∂3v

∂x3
= 0, 0 < β ≤ 1, (4)
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where a and b are constants, α and β are parameters describing the order of the time-
fractional derivatives of u(x; t) and v(x; t), respectively. The functions u(x; t) and v(x; t)

are assumed to be causal functions of time and space, i.e., vanishing for t < 0 and x < 0.
When α = β = 1, the above system reduces to the classical coupled KdV equations.

Many effective analytic methods such as the Adomian decomposition method [18,19],
homotopy perturbation method [20–22], variational iteration method [23], fractional
subequation method [24], Lagrange characteristic method [25], first integral method
[26–29], and so on [30–32], have been developed to derive approximate or exact solu-
tions of fractional ordinary differential equations, integral equations, and fractional partial
differential equations.

A direct and effective method to solve nonlinear partial differential equations was first
proposed by Zerarka [33]. Soon after, this method became popular among the other
researchers and was developed by many in [34–36].

The aim of this paper is to show the ability of this powerful method for finding exact
solutions of the fractional KdV equations and coupled KdV equations.

The rest of this paper is organized as follows. In §2, the functional variable method
is briefly described. In §3, the functional variable method is applied for finding exact
solutions of the fractional KdV equations and coupled KdV equations.

2. The modified Riemann–Liouville derivative and the functional variable method

The modified Riemann–Liouville derivative was defined by Jumarie [37,38] as

Da
xf (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1

� (−α)

∫ x

0
(x − ξ)−α−1

[
f(ξ) − f(0)

]
dξ, α < 0,

1

� (−α)

d

dx

∫ x

0
(x − ξ)−α

[
f(ξ) − f(0)

]
dξ, α < 0 < 1,

(
f (n) (x)

)(α−n)
, n ≤ α ≤ n + 1, n ≥ 1,

(5)

Here �(·) is the gamma function and f : R → R, x → f(x) denote a continuous (but not
necessarily differentiable) function.

One of the properties of the fractional-modified Riemann–Liouville derivative can be
stated as follows:

Dα
x xγ = �(1 + γ )

�(1 + γ − α)
xγ−α, γ > 0, (6)

Dα
x (u(x)v(x)) = v(x)Dα

x u (x) + u(x)Dα
x v (x) , (7)

Dα
x

[
f(u(x))

] = f ′
u(u)Dα

x u (x) = Dα
x f(u)

(
u′

x

)α
. (8)

For other properties, refer to [26,39].
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Let us present the features of the functional variable method. For a given time-fractional
differential equation that it is written in several independent variables { t, x, y, z, ...} and
a dependent variable u as

D
(
u,Dα

t u, ux, uy, uz,D
2α
t u, uxy, uyz, uxz, ...

) = 0, (9)

where the subscripts denote partial derivatives.
First, the variable transformation is introduced

ξ = l1x + l2y + l3z + · · · − λtα

�(1 + α)
, (10)

where li and λ are constants to be determined later to find the travelling wave solution of
eq. (9), so that

u(t, x, y, z, ...) = U(ξ). (11)

On using this transformation eq. (9) can be reduced to an ordinary differential equation
(ODE)

Q
(
U,Uξ , Uξξ , Uξξξ , . . .

) = 0, (12)

where Q is a polynomial in u and its total derivatives.
Then we make a transformation in which the unknown function U(ξ) is considered as

a functional variable in the form

Uξ = F(u) , (13)

and some successive derivatives of U are

Uξξ = 1

2

(
F 2

)′
,

Uξξξ = 1

2

(
F 2

)′′ √
F 2,

Uξξξξ = 1

2

[(
F 2

)′′′′
F 2 + (

F 2
)′′ (

F 2
)′]

, (14)

where ′ stands for d/dU .
Substituting (14) in (12), the ODE (12) can be reduced in terms of u, f , and its

derivatives as

R
(
U,F, F ′, F ′′, F ′′′, . . .

) = 0. (15)
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Equation (15) is particularly important because it admits analytical solutions for a large
class of nonlinear wave-type equations. After integration, eq. (15) provides the expression
for F , and this together with eq. (13) give relevant solutions to the original problem. In
order to illustrate how the method works, we examine some examples treated by other
approaches. This is discussed in the following section.

3. Applications

In this section, two cases of fractional KdV equations and coupled-KdV equations are
studied using of the functional variable method.

Example 3.1. The KdV equation has an important role to play in nonlinear physics and
it has been used in a number of other physical contexts. Now, consider the time-fractional
KdV equation

Dα
t u + 6uux + uxxx = 0, 0 < α ≤ 1, t > 0, (16)

where α is a parameter describing the order of the fractional time derivative, t is the
time, and x is the space coordinate in the direction of propagation. Now, on applying the
transformation

u(x, t) = U(ξ), ξ = lx − λtα

�(1 + α)
, (17)

to eq. (16) and integrating the resulting equation once, we get the ODE

l3U ′′ − λU + 3lU 2 = 0

or

Uξξ = λ

l3
U − 3

l2
U 2. (18)

Then we use the transformation

Uξ = F(U). (19)

Using the above transformation in eq. (16) leads to

1

2

(
F 2 (U)

) ′ = λ

l3
U − 3

l2
U 2 (20)

or

F 2(U) = λ

l3
U 2 − 2

l2
U 3. (21)

According to eq. (14), we get from eq. (21), the expression for the function F(U) which
reads as

F(U) = ±
√

λ

l3
U

√

1 − 2l

λ
U. (22)

After applying the change of variables

Z = 2l

λ
U, (23)
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and using the relation (11), eq. (22) gives the following solution:

U(ξ) = λ

2l
sech2

(
1

2

√
λ

l3
ξ

)

. (24)

Obviously, by setting eq. (24) in eq. (17) the hyperbolic solutions of the time-fractional
KdV equation is obtained as

u1(x, t) = λ

2l
sech2

(
1

2

√
λ

l3

(

lx − λtα

�(1 + α)

))

, (25)

u2(x, t) = − λ

2l
csch2

(
1

2

√
λ

l3

(

lx − λtα

�(1 + α)

))

. (26)

For λ/l3 < 0, the periodic solutions can be obtained as follows:

u3(x, t) = λ

2l
sec2

(
1

2

√

− λ

l3

(

lx − λtα

�(1 + α)

))

, (27)

u4(x, t) = λ

2l
csc2

(
1

2

√

− λ

l3

(

lx − λtα

�(1 + α)

))

. (28)

Example 3.2. Consider the following space and time-fractional KdV equation:

Dα
t u + uDβ

x + uxxx = 0. (29)

For solving this equation first, we introduce the following transformation:

u(x, t) = U(ξ), ξ = kxβ

�(1 + β)
− λtα

�(1 + α)
. (30)

Substituting (30) in eq. (29) we get the ODE

−λU ′ + kUU ′ + k3U ′′′ = 0. (31)

After one integration, we get

−λU + kU 2

2
+ k3U ′′ = 0. (32)

We use the transformation

Uξ = F(U). (33)

So eq. (32) can be converted to

1

2

(
F 2(U)

)′ = λ

k3
U − 1

2k2
U 2. (34)

Then the expression for the function F(U) is obtained as

F(U) = ±
√

λ

k3
U

√

1 − k

3λ
U. (35)
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For solving the above equation, the following change of variable is applied:

Z = k

3λ
U. (36)

Using the relation (13), eq. (35) has the following solution:

U(ξ) = 3λ

k
sech2

(
1

2

√
λ

k3
ξ

)

. (37)

When λ/k3 > 0, we can easily get the hyperbolic as follows:

u1(x, t) = 3λ

k
sech2

(
1

2

√
λ

k3

(
kxβ

�(1 + β)
− λtα

�(1 + α)

))

, (38)

u2(x, t) = −3λ

k
csch2

(
1

2

√
λ

k3

(
kxβ

�(1 + β)
− λtα

�(1 + α)

))

. (39)

If λ/k3 < 0, it is evident that solutions (38) and (39) can reduce to periodic solutions as
follows:

u3(x, t) = 3λ

k
sec2

(
1

2

√

− λ

k3

(
kxβ

�(1 + β)
− λtα

�(1 + α)

))

, (40)

u4(x, t) = 3λ

k
csc2

(
1

2

√

− λ

k3

(
kxβ

�(1 + β)
− λtα

�(1 + α)

))

. (41)

Example 3.3. In this section, the coupled KdV equations are solved with time-fractional
derivatives of the form

∂αu

∂tα
+ 6au

∂u

∂x
− 2bv

∂v

∂x
+ a

∂3u

∂x3
= 0, 0 < α ≤ 1,

∂βv

∂tβ
+ 3bu

∂v

∂x
+ b

∂3v

∂x3
= 0, 0 < β ≤ 1. (42)

In order to obtain solutions of eq. (42), the following transformations are introduced:

v(x, t) = 1

l
U(ξ), u(x, t) = U(ξ), ξ = x− λ1t

α

�(1 + α)
− λ2t

β

�(1 + β)
. (43)

Substituting (43) in eq. (42), the equation can be converted to the ODE

(

−λ1 − λ2

l

)

U ′ +
(

6a + 3b

l
− 2b

l2

)

UU ′ +
(

a + b

l

)

U ′′′ = 0. (44)

After one integration, we get

(

−λ1 − λ2

l

)

U +
(

6a + 3b

l
− 2b

l2

)
U 2

2
+

(

a + b

l

)

U ′′ = 0. (45)
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Then we use the transformation

Uξ = F(U). (46)

So, eq. (45) will convert to

1

2

(
F 2 (U)

)′ = lλ1 + λ2

al + b
U − 6al2 + 3bl − 2b

2l(al + b)
U 2. (47)

Thus, we get from eq. (47) the expression for the function F(U) which reads as

F(U) = ±
√

lλ1 + λ2

al + b
U

√

1 − 6al2 + 3bl − 2b

3l (lλ1 + λ2)
U. (48)

The solutions of eq. (48) can be obtained as

U(ξ) = 3l (lλ1 + λ2)

6al2 + 3bl − 2b
sech2

(
1

2

√
lλ1 + λ2

al + b
ξ

)

. (49)

For (lλ1 + λ2)/(al + b) > 0, we get the following hyperbolic solutions:

u1(x, t) = 3l (lλ1 + λ2)

6al2 + 3bl − 2b

× sech2

(
1

2

√
lλ1 + λ2

al + b

(

x − λ1t
α

�(1 + α)
− λ2t

β

� (1 + β)

))

, (50)

v1(x, t) = 1

l

(
3l (lλ1 + λ2)

6al2 + 3bl − 2b

)

× sech2

(
1

2

√
lλ1 + λ2

al + b

(

x − λ1t
α

�(1 + α)
− λ2t

β

� (1 + β)

))

, (51)

and

u2(x, t) = − 3l (lλ1 + λ2)

6al2 + 3bl − 2b

×csch2

(
1

2

√
lλ1 + λ2

al + b

(

x − λ1t
α

�(1 + α)
− λ2t

β

� (1 + β)

))

, (52)

v2(x, t) = −1

l

(
3l (lλ1 + λ2)

6al2 + 3bl − 2b

)

× csch2

(
1

2

√
lλ1 + λ2

al + b

(

x − λ1t
α

�(1 + α)
− λ2t

β

� (1 + β)

))

. (53)
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For (lλ1 + λ2)/(al + b) < 0, we get the following periodic solutions:

u3(x, t) = 3l (lλ1 + λ2)

6al2 + 3bl − 2b

× sec2

(
1

2

√

− lλ1 + λ2

al + b

(

x − λ1t
α

�(1 + α)
− λ2t

β

� (1 + β)

))

, (54)

v3(x, t) = 1

l

(
3l (lλ1 + λ2)

6al2 + 3bl − 2b

)

× sec2

(
1

2

√

− lλ1 + λ2

al + b

(

x − λ1t
α

�(1 + α)
− λ2t

β

� (1 + β)

))

, (55)

and

u4(x, t) = 3l (lλ1 + λ2)

6al2 + 3bl − 2b

× csc2

(
1

2

√

− lλ1 + λ2

al + b

(

x − λ1t
α

�(1 + α)
− λ2t

β

� (1 + β)

))

, (56)

v4(x, t) = 1

l

(
3l (lλ1 + λ2)

6al2 + 3bl − 2b

)

× csc2

(
1

2

√

− lλ1 + λ2

al + b

(

x − λ1t
α

�(1 + α)
− λ2t

β

� (1 + β)

))

. (57)

4. Conclusions

In this paper, the functional variable method and the modified Riemann–Liouville deriva-
tive are presented for solving the fractional KdV and the coupled KdV equations. It is
predicted that the obtained solutions in this paper will be useful for further investigating
the complicated nonlinear physical phenomena. This method introduces a promising tool
for solving many fractional partial differential equations and it is also a reliable technique
to handle nonlinear fractional differential equation. The calculations of functional vari-
able method are very simple and straightforward. Thus, we deduce that this method can
be applied to solve many systems of nonlinear fractional partial differential equations.
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