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Abstract. Dynamics of fractional-order memristor circuit system and its control are investigated
in this paper. With the help of stability theory of fractional-order systems, stability of its equilibrium
points is analysed. Then, the chaotic behaviours are validated using phase portraits, the Lyapunov
exponents and bifurcation diagrams with varying parameters. Furthermore, some conditions ensur-
ing Hopf bifurcation with varying fractional orders and parameters are determined, respectively.
By using a stabilization theorem proposed newly for a class of nonlinear systems, linear feedback
controller is designed to stabilize the fractional-order system and the corresponding stabilization
criterion is presented. Numerical simulations are given to illustrate and verify the effectiveness of
our analysis results.
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1. Introduction

In 1971, the existence of memristor, as the fourth fundamental circuit element included
along with the resistor, capacitor and inductor, was theoretically postulated by Chua [1]
and experimentally confirmed by the researchers of Hewlett-Packard (HP) who reported
on the first memristor device in 2008 [2]. From then on, memristor has attracted a lot of
attention, because of its potential applications in programmable logic, signal processing,
neural networks, control systems, reconfigurable computing, brain-computer interfaces,
RFID and so on [3–6].

At present, research on the memristor has become popular, and it mainly focusses on
two aspects. First, according to the HP laboratory study some scientists are making
attempts to find the most economical materials to produce devices with the memristor
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properties. Second, based on Chua’s ideas, the dynamical behaviour and application of
a system constructed by the memristor have been highlighted [1]. Recently, in electrical
and electronic engineering communities, the physical realization of various memristors,
the modelling, the analysis of basic memristor circuit and the design of memsistor-based
application circuit have attracted much attention. Due to the nonlinearity of the memristor
element, the memristor-based circuits can easily generate a chaotic signal and display a
complex and unpredictable behaviour [7]. For example, several nonlinear oscillators are
made from Chua’s oscillators by replacing Chua’s diodes with memristors [8]. A simple
circuit composed of a linear passive inductor, a linear passive capacitor and a nonlinear
active memristor has been proposed in [9]. Complex nonlinear behaviours including
chaos were considered in a simple network of memristor oscillators [10]. In 2010,
Muthuswamy provided a practical implementation of a memristor-based chaotic circuit
with cubic nonlinearities [11] by using discrete-component circuits mimicking ideal mem-
ristor features. Circuital implementations of memristor-based oscillators are given in refs
[12–14].

On the other hand, fractional calculus, an old mathematical topic, is now attracting
intensive research in nearly all kinds of fields, particularly in the field of information
[15–17]. The major merit of fractional calculus, different from integer calculus, lies in
the fact that it has memory and has proven to be a very suitable tool for describing
memory and hereditary properties of various materials and processes. Recently, study
on the dynamics of fractional-order differential systems has greatly attracted the interest
of many researchers. Numerous fractional-order chaotic systems have already been
introduced and their chaotic behaviours have been investigated in detail, such as the
fractional-order Chua’s circuit [18], fractional-order Duffing system [19], fractional-order
Chen system [20], fractional-order Lü system [21], fractional-order Liu system [22],
fractional-order financial system [23], fractional-order neural network [24] and so on. As
we know, the main feature of the memristor lies in its memory characteristic and nanome-
ter dimensions. Thus, introducing a fractional-order derivative into the memristor circuit
is an important advancement. Recently, Ivo Petrás̆ proposed fractional-order memristor-
based Chua’s circuit and investigated its numerical solution, simulation and stability [25].

However, contrary to integer-order systems, there exist less theoretical tools to study
dynamics of fractional systems. The Hopf bifurcation in integer-order systems can be
investigated in detail using normal form theory and centre manifold theorem, while simi-
lar tools have not yet been developed for fractional systems. So, detailed results about the
fractional Hopf bifurcation are few. Only through stability theory of equilibrium points
and numerical simulations, fractional Hopf bifurcation can be analysed.

In this paper, the fractional-order simple memristor circuit system is proposed. The
dynamics of the system including the stability of equilibrium points, chaos, bifurcations
with a variation of system parameters are studied. Besides, two new stability and stabi-
lization theorems for a class of fractional-order semilinear systems are proposed, based
on which, the control problem of the system is examined by using the feedback control
technique, and simulation results show that the system can be controlled by designing an
appropriate controller.

The rest of the paper is organized as follows. Some necessary definitions, lemmas and
models are given in §2. Main results are discussed in §3. Simulation results are presented
in §4.
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2. Preliminaries and model description

Fractional calculus is a generalization of integration and differentiation to a noninteger-
order integro-differential operator. It is being used progressively in various fields,such
as biophysics, non-linear dynamics, informatics, control engineering and so on. Some
definitions are available for fractional derivatives. The commonly used definitions are:
Grunwald–Letnikov (GL), Riemann–Liouville (RL) and Caputo (C). Caputo derivatives
have well-understood physical meanings, for it takes on the same form as those for
integer-order ones and Caputo derivative of a constant is equal to zero. Here definition of
Caputo derivative is adopted, which is described below.

DEFINITION 1 [26]
The fractional integral (RL integral) D−α

t0,t
with fractional-order α ∈ R+ of function x(t)

is defined as

D−α
t0,t

x(t) = 1

�(α)

∫ t

t0

(t − τ)α−1x(τ)dτ, (1)

where �(·) is the gamma function, �(τ) = ∫ ∞
0 t τ−1e−tdt .

DEFINITION 2 [26]
The Caputo derivative of fractional-order α of function x(t) is defined as follows:

CDα
t0,t

x(t) = D
−(n−α)
t0,t

dn

dtn
x(t)

= 1

�(n − α)

∫ t

t0

(t − τ)(n−α−1)x(n)(τ )dτ, (2)

where n − 1 ≤ α < n ∈ Z+.

In order to obtain the main results, the following lemma is presented first.
Let us consider the following three-dimensional fractional-order commensurate

system

⎧⎨
⎩

Dαx1 = f (x1, x2, x3),

Dαx2 = g(x1, x2, x3),

Dαx3 = h(x1, x2, x3).

(3)

Lemma 1 [22]. System (3) is asymptotically stable at the equilibrium points O if
| arg(λi(J ))| > απ/2, i = 1, 2, 3, for all eigenvalues λi of the Jacobian matrix J ,

J =
⎛
⎝ ∂f/∂x1 ∂f/∂x2 ∂f/∂x3

∂g/∂x1 ∂g/∂x2 ∂g/∂x3

∂h/∂x1 ∂h/∂x2 ∂h/∂x3

⎞
⎠ .
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Remark 1. The equilibrium point O of system (3) is unstable if fractional-order α satisfies
the following condition for at least one eigenvalue:

α >
2

π
arctan

|Im(λ)|
|Re(λ)| . (4)

By using the stability theory of fractional-order system and by choosing a proper bifur-
cation parameter, Hopf bifurcation of the system can be investigated. For this objective,
we first present the integer-order case.

Consider a three-dimensional ordinary differential equations as

ẋ(t) = f (x, μ), (5)

where x ∈ R3 is the stationary point and the critical value of the bifurcation parameter μ

is μ∗. The Hopf bifurcation conditions for integer-order system are described as follows:

(1) J (μ) = Dxf (0, μ) has one negative real root and a pair of complex conjugate
eigenvalues λ(μ) = β(μ) + iγ (μ), where β(μ) > 0;

(2) β(μ∗) = 0 and (dγ /dμ)|μ=μ∗ �= 0 (transversality condition).
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Figure 1. Phase portraits of chaotic attractors for system (6) with order α = 0.9:
(a) x1–x2 plane, (b) x1–x3 plane, (c) x2–x3 plane and (d) three-dimensional space.
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An autonomous circuit with two energy storage elements (a linear passive inductor and
linear passive capacitor) and a nonlinear active memristor has been proposed in [9]. Here,
fractional-order memristor-based system derived from [9] is considered.

⎧⎨
⎩

Dαx1 = x2,

Dαx2 = −bx1 + cx2 − dx2
3x2,

Dαx3 = −x2 − ax3 + x2x3,

(6)

where x1 is the voltage across the capacitor C, x2 is the current through the inductor L and
x3 is the internal state of our memristive system. Real parameters a, b, c, d > 0. When
a = 3/5, b = 1/3, c = 1/2 and d = 1/2 chaotic behaviour of system (6) is shown in
figure 1.

3. Chaotic behaviours

3.1 Stability analysis

By simple computation, it is easy to obtain that system (6) admits one equilibrium point
O(0, 0, 0, 0) and the Jacobian matrix J at the equilibrium point O(0, 0, 0, 0) is given
by

J =
⎛
⎝ 0 1 0

−b c 0
0 −1 −a

⎞
⎠ .
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Figure 2. The maximum Lyapunov exponent of fractional-order chaotic system (6)
with respect to the varying parameter α.
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Figure 3. Bifurcation diagram of fractional-order chaotic system (6) vs. order α.

Thus, the corresponding characteristic equation can be obtained:

f (λ) = (λ + a)(λ2 − cλ + b) = 0. (7)

If 4b − c2 < 0, the corresponding characteristic roots are

λ1 = −a < 0, λ2 = c

2
+ 1

2

√
c2 − 4b, λ3 = c

2
+ 1

2

√
c2 − 4b.
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Figure 4. The maximum Lyapunov exponent of fractional-order chaotic system (6)
with respect to the varying parameter c.
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Figure 5. Bifurcation diagram of fractional-order chaotic system (6) vs. parameter c.

It follows from Lemma 1 that equilibrium point O is unstable for order α > 0. If
4b−c2 > 0, the corresponding characteristic roots are

λ1 = −a < 0, λ2 = c

2
+ 1

2

√
4b − c2i, λ3 = c

2
− 1

2

√
4b − c2i.

According to Remark 1, equilibrium point O is unstable when fractional-order α > (2/π)

arctan (
√

4b − c2/c); it means that when α > (2/π) arctan (
√

4b − c2/c), system (6)
with the above parameters has the necessary conditions for exhibiting a chaotic
attractor. When a = 3/5, b = 1/3, c = 1/2, d = 1/2, and initial conditions are chosen
as (0.09, 0.1, 0.1), as can be seen from the largest Lyapunov exponent spectrum
with respect to the varying parameter α, shown in figure 2, it can be found that
system (6) exhibits chaotic behaviours if fractional-order α is greater than 0.71.
Further, the bifurcation diagrams of state variable x vs. the fractional-order α is shown
in figure 3. When α = 0.8, a = 3/5, b = 1/3, d = 1/2, the largest Lyapunov exponent
spectrum with respect to the varying parameter c is shown in figure 4. The bifurca-
tion diagrams of state variable x vs. the parameter c is described in figure 5. From
figures 3 and 5, we see that the system evolves into chaotic state by varying α

and c.

3.2 Hopf bifurcation analysis vs. the fractional-order α

According to Remark 1, the fractional-order α has remarkable influence on the stability of
fractional-order system. The fractional-order α can be chosen as the bifurcation param-
eter in fractional-order chaotic systems, which is different from integer-order systems.
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Here, by selecting the fractional-order α as the bifurcation parameter, Hopf bifurcation in
system (6) will be considered.

Theorem 1 (Existence of Hopf bifurcation). When bifurcation parameter α passes
through the critical value α∗ ∈ (0, 1), fractional-order system (6) undergoes a Hopf
bifurcation at the equilibrium point O(0, 0, 0, 0), if the following conditions hold:

(1) 4b − c2 > 0;
(2) m(α∗) = α∗π/2 − min|arg(λi)| (i = 1, 2, 3);
(3) (dm(α)/dα|α=α∗) �= 0 (transversality condition).

Proof. Define a function m(α) = απ/2 − min|arg(λi)|(i = 1, 2, 3) with respect to α.
Evidently, the equilibrium point is locally asymptotically stable if m(α) < 0 and the
equilibrium point is unstable if m(α) > 0. It follows from Remark 1 that the solution of
function m(α) is (2/π) arctan(

√
4b − c2/c). Condition (1) implies that the corresponding

characteristic eq. (7) of system (6) has one negative real root λ1 = −a and a pair of
complex conjugate root λ2,3 = (c/2) ± (1/2)

√
4b − c2i. Condition (c) ensures that the

sign of m(α) can change when the bifurcation parameter α passes through the critical
value α∗, i.e., the equilibrium point O(0, 0, 0, 0) is asymptotically stable for α ∈ (0, α∗)
and is unstable when α ∈ (α∗, 1). Hence, one can assert that Hopf bifurcation in system
(6) occurs at α = α∗.

Remark 2. It follows from the proof of Theorem 1 that the critical value of bifurcation
parameter

α∗ = 2

π
arctan

√
4b − c2

c
.

Next, the fractional-order α is fixed and the parameter c is considered as a control
parameter. A similar method is adopted to analyse the occurrence of Hopf bifurcation in
system (6). Hence, the following Theorem 2 is presented without proof.

3.3 Hopf bifurcation analysis vs. the parameter c

Theorem 2 (Existence of Hopf bifurcation). When bifurcation parameter c passes
through the critical value c∗, fractional-order system (6) undergoes the Hopf bifurcation
at the equilibrium point O(0, 0, 0, 0), if the following conditions hold:

(1) 4b − c2 > 0;
(2) m(c∗) = απ/2 − min|arg(λi(c

∗))| (i = 1, 2, 3);
(3) (dm(c)/dc)|c=c∗ �= 0 (transversality condition).

Remark 3. From the proof, one can obtain the critical value of bifurcation parameter

c∗ by απ/2 = arctan π
√

4b−c∗2

2c∗ , in this case transversality condition (dm(c)/dc)|c=c∗ =
1/

√
4b − c2 is satisfied.
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4. Chaos control

In this section, chaos control in system (3) will be discussed. First, two new stability
and stabilization theorems for a class of nonlinear fractional-order systems are proposed.
Consider the following fractional-order nonlinear system:

dαx(t)

dtα
= F(x(t)) = Ax(t) + s(x(t)), (8)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ Rn denote the state vector of the state system,

f : Rn → Rn define a nonlinear vector field in the n-dimensional vector space, fractional-
order α belongs to 0 < α < 1. A ∈ Rn×n is a constant matrix, Ax(t) and h(x(t)) denote
linear and nonlinear parts of F(x(t)).

In [27], we have discussed stability and stabilization of a fractional-order nonlinear
system (8) with order α : 1 < α < 2 and new sufficient conditions ensuring local
asymptotic stability and stabilization are proposed. In fact, the results obtained are also
established for the order 0 < α < 1.

Theorem 3. System (8) is locally asymptotically stable, if

(i) s(x(t)) satisfies s(0) = 0 and limx→0
‖s(x(t))‖
‖x(t)‖ = 0;

(ii) Re λ(A) < 0 and ω = − max{Re λ(A)} > (�(α))1/α .

Proof. The process of the proof is the same as in [24] and is therefore omitted here.

The fractional-order nonlinear system (8) with control input u(t) = Kx(t) is said to be
asymptotically stable if there exists a control gain matrix K with suitable dimension such
that the closed-loop system

dαx(t)

dtα
= Ax(t) + s(x(t)) + Kx(t) = (A + K)x(t) + s(x(t)), (9)

is asymptotically stable.
It follows from Theorem 3 that the following stabilization results are established

clearly.

Theorem 4. If feedback gain K is chosen such that the following conditions hold:

(i) s(x(t)) satisfies s(0) = 0 and limx→0
‖s(x(t))‖
‖x(t)‖ = 0;

(ii) Re λ(A + K) < 0 and ω = − max{Re λ(A + K)} > (�(α))1/α ,

then the controlled system (9) is locally asymptotically stable.

System (6) can be written in the form of (8), where

A =
⎛
⎝ 0 1 0

−b c 0
0 −1 −a

⎞
⎠ , s(x(t)) =

⎛
⎝ 0

−dx2x
2
3

x2x3

⎞
⎠ .
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It is obvious that s(x(t)) satisfies

lim
x→0

‖s(x(t))‖
‖x(t)‖ = lim

x→0

√
(dx2

3x2)2 + (x3x2)2

√
x2

1 + x2
2 + x2

3

≤ lim
x→0

√
(dx2

3x2)2 + (x3x2)2

√
x2

2

= lim
x→0

√
d2x4

3 + x2
3 = 0. (10)

Based on Theorem 4, the following theorem is presented to control chaos in system (6).

Theorem 5. If these exist linear feedback gains K such that

(i) Re λ(A + K) < 0;
(ii) ω = − max{Re λ(A + K)} > (�(α))1/α , then the controlled system (10) is locally

asymptotically stable.

Remark 4. Linear feedback control is especially attractive and has been successfully
applied to practical implementation, which was adopted to realize control and syn-
chronization of integer-order chaotic systems. Compared to sliding mode control and
nonlinear feedback control used for discussing fractional-order chaotic systems in the
existing literature, the linear control is economic and easy to implement.

5. Numerical simulations

In this section, to verify and demonstrate the effectiveness of the obtained results, some
numerical simulations are presented which are carried out by virtue of the Adams–
Bashforth–Moulton scheme in [28]. In the following simulations, parameters a =
3/5, b = 1/3, d = 1/2.

Case 1. Fractional-order α is selected as the bifurcation parameter.
By using Matlab software, one can obtain the roots of the characteristic eq. (7) of

system (6), λ1 = −0.6, λ2 = 0.2500 + 0.5204i, λ3 = 0.2500 + 0.5204i. It follows from
Remark 1 that the critical value of the bifurcation parameter

α∗ = 2

π
arctan

√
4b − c2

c
= 0.7149.

Apparently, the transversality condition is established for

dm(α)

dα

∣∣∣
α=α∗ = π

2
�= 0.
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Figure 6. Order α = 0.71: (a) phase portrait of fractional-order chaotic system (6);
(b) state trajectories of fractional-order chaotic system (6).

Based on Theorem 1, Hopf bifurcation occurs in system (6), when bifurcation parameter
α passes through the critical value 0.7149. The largest Lyapunov exponents (LE) close
to the critical value α∗ = 0.7149 are calculated (figure 2). When α∗ = 0.71, according
to Lemma 1, the equilibrium point O(0, 0, 0, 0) of system (6) is locally asymptotically
stable as shown in figures 6a and 6b. The equilibrium point losses its stability and Hopf
bifurcation occurs when α increases above α∗ = 0.7149. When α∗ = 0.72, a limit cycle
which attracts adjacent solutions appears as shown in figures 7a and 7b.

Case 2. c is selected as the bifurcation parameter.
Here, fractional-order α = 0.8 is fixed. Based on Remark 2, the critical bifurcation

parameter c∗ is determined by

απ/2 = arctan

√
4b − c∗2

c∗ and
dm(c)

dc

∣∣∣∣c=c∗ = 1√
4b − c2

�= 0
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Figure 7. Phase portrait of fractional-order chaotic system (6) with order α = 0.72:
(a) phase portrait in the x2–x3 plane; (b) phase portrait in space.
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Figure 8. Order c = 0.33: (a) phase portrait of fractional-order chaotic system (6);
(b) state trajectories of fractional-order chaotic system (6).
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Figure 9. Phase portrait of fractional-order chaotic system (6) with order c = 0.36:
(a) phase portrait in the x1–x2 plane; (b) phase portrait in space.

(i.e., the transversality condition holds). By some calculations, the critical value c∗ is
0.3568. Figure 4 displays the largest Lyapunov exponents (LE) around the critical value
c∗ = 0.3568. When c = 0.33, the equilibrium O(0, 0, 0, 0) of system (6) is locally
asymptotically stable as shown in figures 8a and 8b. The equilibrium losses its stability
and Hopf bifurcation occurs when c increases above 0.3568, and when c = 0.36, a limit
cycle which attracts adjacent solutions appears as shown in figures 9a and 9b.

Chaos control
In the simulation, feedback gain is selected as K = diag(−1.5,−2,−2), which

satisfies the conditions in Theorem 5, i.e.,

Re λ(A + K) = −2.5, −1.5 < 0

and

ω = − max{Re λ(A + K)} = 1.5 > 1.2093 = (�(0.8))1/0.8.

102 Pramana – J. Phys., Vol. 85, No. 1, July 2015



Control of fractional-order memristor-based system

0 5 10 15 20
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

time(s)

x 1,x
2,x

3

x
1

x
2

x
3

Figure 10. Stabilization of fractional-order chaotic system (6) with feedback gain
K = diag (−1.5, −2, −2).

Simulation result is depicted in figure 10, which shows that the zero solution of the
controlled system is asymptotically stable.

6. Conclusions

Chaos and stabilization of a new fractional-order simple chaotic memristor circuit sys-
tem has been addressed in this paper. Some basic properties of the system have been
investigated in terms of chaotic attractors, equilibria, Lyapunov exponent spectrum and
bifurcation diagram. Two Hopf bifurcation conditions are presented with different bifur-
cation parameters. A new stabilization criterion for a class of nonlinear fractional-order
system is given, based on which, linear feedback controller is designed to complete the
stabilization of the new fractional-order memristor circuit system.
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