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Abstract. After a brief review of the history of viscosity from classical to quantal fluids, a dis-
cussion of how the shear viscosity η of a finite hot nucleus is calculated directly from the width
and energy of the giant dipole resonance (GDR) of the nucleus is given in this paper. The ratio η/s

with s being the entropy volume density, is extracted from the experimental systematic of GDR in
copper, tin and lead isotopes at finite temperature T . These empirical results are compared with the
results predicted by several independent models, as well as with almost model-independent esti-
mations. Based on these results, it is concluded that the ratio η/s in medium and heavy nuclei
decreases with increasing T to reach (1.3−4)×h̄/(4πkB) at T = 5 MeV, which is almost the same
as that obtained for quark-gluon plasma at T > 170 MeV.
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1. Introduction

The recent observations of the charged particle elliptic flow and jet quenching in ultra-
relativistic Au–Au and Pb–Pb collisions at the Relativistic Heavy Ion Collider (RHIC)
at Brookhaven National Laboratory (BNL) [1] and Large Hadron Collider (LHC) at
CERN [2] have been the key experimental discoveries in the creation and study of quark-
gluon plasma (QGP). The analysis of the data obtained from the hot and dense system
produced in these experiments revealed that the strongly interacting matter formed in
these collisions is a nearly perfect fluid with extremely low specific viscosity (the ratio
η/s where η is the shear viscosity and s is entropy volume density). In the verification of
the condition for applying hydrodynamics to nuclear system, it turned out that the quan-
tum mechanical uncertainty principle requires a finite viscosity for any thermal fluid. In
this respect, one of the most fascinating theoretical findings has been the conjecture by
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Kovtun, Son and Starinets (KSS) that the specific viscosity η/s is bound below for all
fluids, i.e., the value η/s = 1/(4πkB) is the universal lower bound (the KSS bound or
KSS unit) [3]. The QGP fluid produced at RHIC has η/s � (1.5–2.5) KSS units. Given
this conjectured universality, there has been an increasing interest in calculating η/s in
different systems.

For finite nuclei, the first calculations by Auerbach and Shlomo within the Fermi liquid
drop model (FLDM) estimated η/s within (4–19) and (2.5–12.5) times the KSS bound for
heavy and light nuclei, respectively [4]. Given the large uncertainty in such estimations,
it has been proposed to calculate the shear viscosity η, the entropy density s, and the
ratio η/s directly from the most recent and accurate experimental systematics of the giant
dipole resonance’s (GDR) widths in hot nuclei. These results will be presented in this
paper after a brief review of the study of viscosity in classical fluids and QGP.

2. A brief history of viscosity

The word ‘viscosity’ is derived from the Latin word ‘viscum album’ meaning mistletoe,
whose berries have a sticky juice which was used in ancient times for trapping small
animals or birds. Viscosity is the resistance of a fluid, which is being deformed by a
stress. In other words, it is the ‘thickness’ or internal friction of a fluid. In this sense,
water is thin and honey is thick.

Matter consists of three primary states: solid, liquid, and gas. In a solid the intermolec-
ular attractions keep its molecules in fixed spatial relationships, whereas in a liquid these
attractions keep molecules in proximity, but not in fixed relationships. Molecules of a gas
are separated and intermolecular attractions have little effect on their respective motion.
Plasma is a gas of charged particles. Amongst these three states of matter, liquid and gas
are fluids, i.e., they continually deform (flow) under an applied shear stress. The resis-
tance of a fluid to the applied shear stress is called shear (dynamic) viscosity. If the shear
stress of magnitude F is applied to a layer of fluid with area A, the shear viscosity η of
the fluid is defined as the proportional factor, which relates F to the gradient ∂u/∂y of
the local fluid velocity u in the direction perpendicular to u, i.e., F/A = η∂u/∂y. The
unit of η is poise (P), named after Jean Léonard Marie Poiseuille (1797–1869), French
physician and physiologist, who studied non-turbulent flow of liquids through pipes, such
as blood flow in capillaries and veins: 1 P = 0.1 Pa s = 1 g/(cm s), 1 cP = 1 mPa s
= 0.001 Pa s. The values of viscosity are different for various substances: 0.02 cP for air
at 18◦C, 1 cP for water at 20◦C, 2000–10000 cP for honey, 23×1010 cP for pitch at 20◦C,
(1–3)×1012 cP for an atomic nucleus at absolute zero temperature (−273.15◦C), or in the
order of 1014 cP for lead glass at 500◦C and QGP at 4 × 1012◦

C.
In 1860, James Clerk Maxwell (1831–1879) showed that viscosity of a gas, which

he called the ordinary coefficient of internal friction, can be obtained by density ρ of
molecules (e.g., 1.3 g/l for air), mean free path l̄ (65 nm for air), and average velocity
v̄ of molecules (250 m/s for air), i.e., η = 1/3ρl̄v̄ [5]. Because the mean free path
is inversely proportional to the density, i.e., a decrease of pressure by 1/2 reduces the
density by 1/2 but increases the mean free path by 2, Maxwell concluded that viscosity
of a gas is independent of its pressure (or density), a conclusion which he could hardly
believe. This conclusion was known as Maxwell’s law. Maxwell also found that viscosity
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of a gas increases with temperature T . This conclusion also went against the common
sense based on experience with liquids at that time. He decided to test these predictions
himself. Finally, the results obtained in 1886 by Maxwell the experimentalist confirmed
the predictions by Maxwell the theorist, which show viscosity of air η = 0.01878(1 +
aT ) cP at pressure between 0.017 and 1 atm.

In contrast with gas, ‘viscosity of a liquid is a very tough nut to crack’, as has been
commented by E M Purcell (1912–1997). It cannot be related to the mean free path
because of the strong attractions between its molecules. For a liquid flowing through
tubes, the following Poiseuille’s law holds:

η = πr4P t

8V L
, (1)

where t is the elapsed time in which a liquid of volume V under the hydrostatic pressure
P travels a distance L through a tube of radius r .

A significant contribution in fluid dynamics was made by Navier and Stokes with the
Navier–Stokes equation, which describes the fluid motion in space,

ρ

(
∂v
∂t

+ v ∇ v
)

= −∇p + η∇2 v + f , (2)

where the left-hand side, which is the density multiplied by the sum of unsteady acceler-
ation ∂v/∂t and convective acceleration v∇v, defines the inertial force per unit volume,
and the right-hand side includes the divergence of stress, which consists of the pressure
gradient −∇p, shear stress η∇2 v, and other forces f. In the world of very small Reynolds
numbers Re = ρvd/η with d being the characteristic dimension of the object, v its relative
velocity in the fluid, ρ density of the fluid, i.e., for very large viscosity η (for microorgan-
ism, sperm, lava, paint, viscous polymer, etc.), the inertial forces are negligible and the
flows obey the Stokes equation (Stokes law).

Two notable experiments were carried out to determine the viscosity of pitch. The
first one begun in 1930 at University of Queensland (Australia), which won the Guinness
record as the longest continuously running laboratory experiment and 2005’s Ig Nobel
prize. Between 1930 and November 2000 eight drops have fallen, making an approxi-
mated average of 1 drop every 9 years. The second experiment started at Trinity College
in Dublin (UK) 14 years later, where a pitch drop was successfully filmed for the first
time on July 11, 2013 [6]. The viscosity of pitch was found to be 230 billions times that
of water.

3. Universal lower bound conjecture for shear viscosity

According to Maxwell’s and Poiseuille’s laws, viscosity of a fluid can be infinite, such as
that of an ideal gas, but cannot be zero. Purcell has noticed, in the Chemical Rubber Hand-
book, that ‘there is almost no liquid with viscosity much lower than that of water.’ He
pointed out that viscosities have a big range, but they seem to ‘stop at the same place’ [7].
So, viscosity of liquids can be very large as that of pitch, but it cannot be too small. This
leads to the search for the lower bound of viscosity.

In 1936, by assuming that the frequency of molecule collisions in liquids is kBT/h,
Henry Eyring (1901–1981) found that η � hρ exp[E/(RT )], where E is the activation
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Gibbs energy of flow required to remove molecules within the fluid from their energeti-
cally most favourable state to the activated state, h is the Planck’s constant, and R is the
gas constant. This relation shows that at infinite T , viscosity goes to hρ. Obviously, the
meaningful quantity is η/n rather than η. However, because the particle number is not
conserved for relativistic fluids, it is better to consider η/s, where s is the entropy volume
density. From the Maxwell’s law and the uncertainty relation, one finds ρv̄l̄ ≥ h̄ so that
η/s ≥ h̄/kB because s ∼ ρkB. But this cannot be taken as the lower bound for η/s

because the kinetic theory is not reliable in the quantum regime η/s ∼ h̄/kB. Therefore,
other methods are needed to determine the minimum ratio of η/s.

In 2005, by using string theory, Kovtun, Son and Starinets conjectured that the value

η/s = h̄/(4πkB) = 5.24 × 10−23 MeV s (3)

is the universal lower bound for all fluids [3]. This is called the KSS limit. The physical
meaning of this lower bound conjecture comes from the wave–particle duality, according
to which a particle is also a wave with the De Broglie’s wavelength λ = h̄/p. The KSS
conjecture means that the shortest mean free path of a particle is its wavelength, otherwise
a particle does not have enough time to exist as ‘a particle’. The KSS conjecture (3) is
fundamental in the sense that its right-hand side is model-independent, contains only
fundamental physical constants, and connects three branches of physics, namely fluid
dynamics, thermodynamics, and quantum mechanics.

No experimental evidence of a fluid that violates this conjecture has ever been found
so far. All known fluids in nature have the ratio η/s above the KSS bound. For example,
the ratio η/s is found to be around 380 KSS units for water at 1 bar pressure and 25◦C,
and 9 KSS for liquid helium including the superfluid one. The recent experimental data
from RHIC (Brookhaven National Laboratory) and LHC (CERN) have revealed that the
matter formed in ultrarelativistic heavy-ion Au–Au collisions with

√
sNN = 200 GeV at

T > Tc ∼ 175 MeV and Pb–Pb collisions with
√

sNN = 5.4 TeV is a nearly perfect liquid
with an extremely ‘low’ specific viscosity, i.e., η/s � 1.5–2.5 KSS.

4. Shear viscosity of hot nuclei

From the concept of collective theories, one of the fundamental explanations for the giant
resonance damping is the friction term (or viscosity) of the neutron and proton fluids. By
using the Green–Kubo’s relation, in [8] an exact expression of shear viscosity η(T ) has
been derived at finite T in terms of the GDR parameters at zero and finite T as

η(T ) = η(0)
�(T )

�(0)

EGDR(0)2 + [�(0)/2]2

EGDR(T )2 + [�(T )/2]2
. (4)

There exists a wealth of experimental data for GDR width �(T ) and energy EGDR(T )

in medium and heavy nuclei [9]. The damping of hot GDR has also been studied theoret-
ically in the last three decades. These results can be used in eq. (4) to predict the value
of shear viscosity η(T ) provided η(0) is known. In [10], the two-body viscosity was
employed under the assumption of a rigid nuclear boundary to fit the data of isovector and
isoscalar giant resonances at T = 0. A value η(0) � 1u � 0.016 TP (terapoise) has been
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found, where u = 10−23 MeV s fm−3. The analysis of nuclear fission data based on the
two-body collisions [11] gives η(0) in the range of (0.6–1.2)u or (0.01–0.02) TP. In this
paper, the value η(0) = 1u, extracted in [10], is adopted as a parameter in combination
with the lower and upper bounds, equal to 0.6u and 1.2u, respectively, obtained in [11]
and applied here as error bars. As for the GDR width and energy, the phonon damping
model (PDM) [12,13] is employed, whose predictions are compared with those obtained
by using the experimental data [14–21] and other theoretical models such as the adiabatic
model (AM) [22], phenomenological thermal shape fluctuation model (pTSFM) [23], and
Fermi liquid drop model (FLDM) [4].

4.1 Phonon damping model

The PDM employs a model Hamiltonian, which consists of an independent single-
particle (quasiparticle) field, GDR phonon field, and the coupling between them. The
Woods–Saxon potentials for spherical nuclei at T = 0 are used to obtain single-
particle energies. These single-particle spectra span a large space from around −40 MeV
upto around 17–20 MeV. They are kept unchanged with T based on the results of the
temperature-dependent self-consistent Hartree–Fock calculations, which showed that the
single-particle energies are not sensitive to the variation of T upto T ∼ 5–6 MeV in
medium and heavy nuclei. The GDR width �(T ) is given as the sum of the quantal
width, �Q, and thermal width, �T:

�(T ) = �Q + �T. (5)

In the presence of superfluid pairing, the quantal and thermal widths are given as [13]

�Q = 2πF 2
1

∑
ph

[u(+)
ph ]2(1 − np − nh)δ[EGDR(T ) − Ep − Eh], (6)

�T = 2πF 2
2

∑
s>s ′

[v(−)
ss ′ ]2(ns ′ − ns)δ[EGDR(T ) − Es + Es ′ ], (7)

where (ss ′) stands for (pp′) and (hh′) with p and h denoting the orbital angular momenta
jp and jh for particles and holes, respectively. Functions u

(+)
ph and v

(−)
ss ′ are combinations of

the Bogoliubov coefficients uj , vj , namely u
(+)
ph = upvh + vpuh and v

(−)
ss ′ = usus ′ − vsvs ′ .

The quantal width is caused by coupling of the GDR vibration (phonon) to non-collective
ph configurations with the factors (1 − np − nh), whereas the thermal width arises due to
coupling of the GDR phonon to pp and hh configurations including the factors (ns − ns ′)

with (s, s ′) = (h, h′) or (p, p′). The quasiparticle occupation number nj has the shape
of a Fermi-Dirac (FD) distribution nFD

j = [exp(Ej/T ) + 1]−1, smoothed with a Breit–
Wigner kernel, whose width is equal to the quasiparticle damping with the quasiparticle
energy Ej = √

(εj − λ)2 + 
(T )2. Here εj , λ, and 
(T ) are the (neutron or proton)
single-particle energy, chemical potential, and pairing gap, respectively. When the quasi-
particle damping is small, as usually is the case for GDR in medium and heavy nuclei,
the Breit–Wigner-like kernel can be replaced with the δ-function so that the quasiparti-
cle occupation number nj can be approximated with the Fermi–Dirac (FD) distribution
nj � nFD

j of non-interacting quasiparticles. The PDM predicts a slight decrease of the
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quantal width (in agreement with the finding that the Landau and spreading widths of
GDR do not change much with T ), and a strong increase of the thermal width with
increasing T , as well as a saturation of the total width at T ≥ 4–5 MeV in tin and lead
isotopes [12] in agreement with experimental systematics [16–21].

For the open-shell nuclei, in the presence of strong thermal fluctuations, the pairing
gap 
(T ) of a finite nucleus does not collapse at the critical temperature Tc, correspond-
ing to the superfluid–normal phase transition predicted by the BCS theory for infinite
systems, but decreases monotonically as T increases [24–26]. The effect due to thermal
fluctuations of quasiparticle numbers, which smooths out the superfluid–normal phase
transition, is taken into account by using 
(T ) obtained as the solution of the modified
BCS (MBCS) equations [25]. The use of the MBCS thermal pairing gap 
(T ) for 120Sn
leads to a nearly constant GDR width or even a slightly decreasing one at T ≤ 1 MeV [13]
in agreement with the data of [19].

Within the PDM, the GDR strength function is calculated in terms of the GDR
spectral intensity Jq(ω) = −2Im[GR(ω)]/[exp(ω/T ) − 1] with GR(ω) being the
retarded Green function associated with the GDR. Its final form reads as Jq(ω) =
f BW(ω, ω′

q, 2γq)[eω/T −1]−1 with ω′
q = ωq +Pq(ω), where ωq is the unperturbed phonon

energy, Pq(ω) is the polarization operator arised due to coupling of GDR phonon to ph,
pp and hh configurations. The GDR energy is defined as the solution of the equation
ω − ωq − Pq(ω) = 0 at which one obtains �(T ) = 2γq in eq. (5).

4.2 Entropy density

The entropy density (entropy per volume V ) is calculated as

s = S

V
= ρ

S

A
(8)

with the nuclear density ρ = 0.16 fm−3. The entropy S at temperature T is calculated by
integrating the Clausius definition of entropy as

S =
∫ T

0

1

τ

∂E
∂τ

dτ, (9)

where E is the total energy of the system at temperature τ , which is evaluated microscop-
ically within the PDM or macroscopically by using the Fermi gas formula, E = E0 +aT 2,
within the FLDM.

By taking the thermal average of the PDM Hamiltonian and applying eq. (9), it follows
that

S = SF + SB, (10)

where SF and SB are the entropies of the quasiparticle and phonon fields, respectively.
The entropy Sα (α = F, B) is given in units of Boltzmann constant kB as

SPDM
α = −

∑
j

Nj [pj ln pj ± (1 ∓ pj ) ln(1 ∓ pj )] , (11)
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where pj = nj are the quasiparticle occupation numbers (α = F) or phonon occupation
numbers pj = νj (α = B), the upper (lower) sign is for quasiparticles (phonons), Nj =
2j + 1 and 1 for α = F and B, respectively. For α = F, the index j denotes the single-
particle energy level, corresponding to the orbital angular momentum j , whereas for α =
B, it corresponds to that of GDR phonon. As the quasiparticle (single-particle) damping
is negligible for heavy nuclei, it is neglected in the present calculations of entropy SF for
the sake of simplicity, assuming nj = nFD

j . Regarding the phonon occupation number
for the GDR, it is approximated with the Bose–Einstein distribution νGDR � νB

GDR =
[exp(EGDR/T ) − 1]−1 in the present calculations. This gives the upper bound for the
entropy, hence the lowest bound for the ratio η/s, estimated within the PDM. Indeed, for
the GDR (q = GDR), the phonon occupation number νq is given by the Bose–Einstein
distribution νB

GDR = [exp(EGDR/T ) − 1]−1 smoothed with a Breit–Wigner kernel, whose
width is equal to the GDR width, i.e., νGDR < νB

GDR. Given EGDR � T , it turns out,
however, that SB 
 SF so that in all the cases considered, one has S � SF. E.g., for
120Sn with EGDR � 15.5 MeV and FWHM around 14 MeV at T = 5 MeV [12], one finds
νB

GDR � 0.009, which gives a negligible value 0.051 for SB as compared to SF � 109 (in
units of kB).

In figures 1a–1c the GDR widths predicted by the PDM, AM, pTSFM, and FLDM
are shown as functions of temperature T in comparison with the experimental systemat-
ics [14–21], which are also recorded in [9]. The PDM predictions agree very well with the
experimental systematics for all the three nuclei 63Cu, 120Sn, and 208Pb. The AM fails to
describe the GDR width at low T for 120Sn because thermal pairing was not included in the
AM calculations, while it slightly overestimates the width for 208Pb (the AM prediction
for GDR width for 63Cu is not available). The predictions by the pTSFM is qualitatively
similar to those by the AM, although to achieve this agreement the pTSFM needs to use
�(0) = 5 MeV for 63Cu and 3.8 MeV for 120Sn, i.e., substantially smaller than the exper-
imental values of around 7 and 4.9 MeV for 63Cu and 120Sn, respectively. This model
also produces the width saturation similar to that predicted by the PDM, although for
63Cu the width obtained within the pTSFM at T > 3 MeV is noticeably smaller than
that predicted by the PDM. The widths obtained within the FLDM fit the data fairy well
upto T � 2.5 MeV. However, they do not saturate at high T , but increases sharply with
T , and break down at Tc < 4 MeV. At T > 2.5 MeV the dependence on η(0) starts to
show up in the FLDM results for the GDR widths, which are 18.3, 17.5, and 17 MeV for
η0 ≡ η(0) = 0.6, 1.0, and 1.2u, respectively, for 63Cu at T = 3 MeV. The corresponding
differences between the widths obtained by using these values of η(0) for 120Sn and 208Pb
are slightly smaller. The values of the critical temperature Tc, starting from which the
FLDM width becomes imaginary, are 3.58, 3.72, 3.83 MeV by using η(0) = 0.6u, 1.0u,
and 1.2u, respectively, for 63Cu. For 120Sn the corresponding values for Tc are 3.77, 3.94,
and 4.1 MeV, whereas for 208Pb they are 3.42, 3.54, and 3.65 MeV, respectively. At these
values of Tc, the ratio η(Tc)/η(0) is smaller than 3.5.

4.3 Entropy

In figures 1d–1f the entropies obtained by using the microscopic expressions (10) and
(11) and the empirical ones extracted from the Fermi-gas formula by using the empirical
values for the level-density parameter a are compared. The microscopic entropy includes
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Figure 1. FWHM of GDR as functions of T for 63Cu (a), 120Sn (b), and 208Pb (c) in
comparison with the experimental systematics for copper (Cu59 [14] and Cu63 [15]),
tin (by Bracco et al [16], Enders et al [17], Baumann et al [18], Heckmann et al [19],
and Kelly et al [20]), and lead (Pb208 [18] and Pb200 [21]) regions. The notations
for the theoretical curves are given in (a) and (b). The corresponding entropies as
functions of T are shown in (d)–(f).

pairing for open shell nuclei. For 63Cu, although pairing is not included in the calculation
of the GDR width, the finite-temperature BCS pairing with blocking by the odd proton
is taken into account for the entropy to ensure its vanishing value at low T (compare the
thick dotted line obtained by including the BCS pairing and the thin dotted line obtained
without pairing in figure 1d). For 120Sn, the MBCS theory [25] is required to reproduce
the GDR width depletion at T ≤ 1 MeV in the nucleus due to the non-vanishing thermal
pairing gap above the temperature of the BCS superfluid–normal phase transition (thick
solid line in figure 1b). So the MBCS thermal pairing gap is also included in the cal-
culation of the entropy. For the closed-shell nucleus 208Pb, the quasiparticle entropy SF

in eq. (11) becomes the single-particle entropy because of the absence of pairing. The
good agreement between the results of microscopic calculations and the empirical extrac-
tion indicates that the level-density parameter for 63Cu within the temperature interval
0.7 < T < 2.5 MeV can be considered to be temperature-independent and equal to
a = 63/8.8 � 7.16 MeV−1, whereas for 120Sn and 208Pb the level-density parameter
varies significantly with T [18]. The Fermi-gas entropy SFG = 2aT with a constant level-
density parameter a fits best the microscopic and empirical results with A/a = 8.8 MeV
for 63Cu and 11 MeV for 120Sn and 208Pb.
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The predictions for the shear viscosity η and the ratio η/s by several theoretical mod-
els, namely the PDM, pTSFM, AM, and FLDM for 63Cu, 120Sn, and 208Pb are plotted
as functions of T in figure 2 in comparison with the empirical results. The latter are
extracted from the experimental systematics for GDR widths and energies in tin and lead
regions [9] by using eq. (4). It is seen in figure 2 that the predictions by the PDM
have the best overall agreement with the empirical results. It produces an increase of
η(T ) with T upto 3–3.5 MeV and a saturation of η(T ) within (2–3)u at higher T (with
η(0) = 1u, u = 10−23 MeV s fm−3). The ratio η/s decreases sharply with increasing T

upto T ∼ 1.5 MeV, starting from which the decrease gradually slows down to reach 2–3
KSS units at T = 5 MeV. The FLDM has a similar trend as that of the PDM upto T ∼ 2–
3 MeV, but at higher T (T > 3 MeV for 120Sn or 2 MeV for 208Pb) it produces an increase
of both η and η/s with T . At T = 5 MeV, the FLDM model predicts the ratio η/s within
(3.7–6.5) KSS units, which are roughly 1.5–2 times larger than the PDM predictions. The
AM and pTSFM show similar trend for η and η/s. However, in order to obtain such sim-
ilarity, η(0) in the pTSFM calculations has to be reduced to 0.72u instead of 1u. They
overestimate η at T < 1.5 MeV.

A model-independent estimation for the high-T limit of the ratio η/s can also be
inferred directly from eq. (4). Assuming that, at the highest Tmax � 5–6 MeV where
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Figure 2. Shear viscosity η(T ) (a–c) and ratio η/s (d–f) as functions of T for nuclei
in copper (a, d), tin (b, e), and lead (c, f) regions. The thick solid lines and gray
areas are the PDM predictions for 63Cu (a, d), 120Sn (b, e), and 208Pb (c, f) by using
η(0) = 1u and 0.6u ≤ η(0) ≤ 1.2u, respectively, with u = 10−23 MeV s fm−3.
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the GDR can still exist, the GDR width �(T ) cannot exceed �max � 3�(0) �
0.9EGDR(0) [10], and EGDR(T ) � EGDR(0), from eq. (4) one obtains ηmax � 2.551×η(0).
By noticing that, SF → 2� ln 2 at T → ∞ because nj → 1/2, where � = ∑

j (j + 1/2)

for the spherical single-particle basis or sum of all doubly-degenerate levels for the
deformed basis and that the particle-number conservation requires A = � because all
single-particle occupation numbers are equal to 1/2, one obtains the high-T limit of
entropy density smax = 2ρ ln 2 � 0.222(kB). Dividing ηmax by smax yields high-T limit (or
lowest bound) for η/s in finite nuclei, i.e., (η/s)min � 2.2+0.4

−0.9 KSS units, where the empir-
ical values for η(0) = 1.0+0.2

−0.4 u are used [10,11]. Based on these results, one can conclude
that the values of η/s for medium and heavy nuclei at T = 5 MeV are in between 1.3 and
4.0 KSS units, which are about 3–5 times smaller (and of much less uncertainty) than the
values between 4 and 19 KSS units predicted by the FLDM for heavy nuclei [4], where
the same lower value η(0) = 0.6u was used.

5. Conclusions

In the present paper, a brief review of the study of viscosity in physics is given with the
latest developments in QGP and hot nuclei, where the ratio η/s has been estimated. The
KSS conjecture of the lower bound limit for η/s has prompted the attempts of predicting
the values of this ratio for various substances including atomic nuclei.

For hot nuclei, by using the Kubo relation and the fluctuation–dissipation theorem, the
shear viscosity η and the ratio η/s have been extracted from the experimental systematics
for the GDR widths in copper, tin and lead regions at T �= 0, and compared with the
theoretical predictions by four independent theoretical models. The calculations adopt
the value η(0) = 1.0+0.2

−0.4 × u (u = 10−23 MeV s fm−3) as a parameter, which has been
extracted by fitting the giant resonances at T = 0 [10] and fission data [11]. The analysis
of numerical calculations show that the shear viscosity η increases between 0.5u and
2.5u with increasing T from 0.5 upto T � 3–3.5 MeV for η(0) = 1u. At higher T the
PDM, AM, and pTSFM predict saturation, or at least a very slow increase of η, whereas
the FLDM shows a continuous strong increase of η, with T . At T = 5 MeV, the PDM
estimates η between 1.3u and 3.5u.

All theoretical models predict a decrease of the ratio η/s with increasing T upto T �
2.5 MeV. At higher T , the PDM, AM, and pTSFM show a continuous decrease of η/s,
whereas the FLDM predicts an increase of η/s, with increasing T . The PDM fits best
the empirical values for η/s extracted at 0.7 ≤ T ≤ 3.2 MeV for all the three nuclei,
63Cu, 120Sn, and 208Pb. At T = 5 MeV, the values of η/s predicted by the PDM reach
3+0.63

−1.2 , 2.8+0.5
−1.1, and 3.3+0.7

−1.3 KSS units for 63Cu, 120Sn, and 208Pb, respectively. Combining
these results with the model-independent estimation for the high-T limit of η/s, which is
2.2+0.4

−0.9 KSS units, one can conclude that the value of η/s for medium and heavy nuclei at
T = 5 MeV is between 1.3 and 4.0 KSS units, which is about 3–5 times smaller (and of
much less uncertainty) than the value between 4 and 19 KSS units predicted by the FLDM
for heavy nuclei, where the same lower value η(0) = 0.6u was used. By using the same
upper value η(0) = 2.5u as in [4], instead of η(0) = 1.2u, the interval for η/s becomes
1.3–8.3 KSS units, whose uncertainty of 7 KSS units is still smaller than that predicted
by the FLDM (15 KSS units). This estimation also indicates that nucleons inside a hot
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nucleus at T = 5 MeV has nearly the same ratio η/s as that of QGP, around 1.5–2.5 KSS
units, at T > 170 MeV discovered at RHIC and LHC.
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