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Abstract. In this paper, we studied the propagation of elastic longitudinal waves in quasi-one-
dimensional (1D) finite phononic crystal with conical section, and derived expressions of frequency-
response functions. It is found that, contrary to the 1D phononic crystal with a constant section,
the value of attenuation inside the band gaps decreases quickly when cross-sectional area increases,
and the initial frequency also decreases, but the cut-off frequency increases, thus the width of the
band gap increases. The effects of lattice constant and the filling fraction on the band gap are also
analysed, and the change trends of the initial frequency and cut-off frequency are consistent with
those of constant section. It is shown that the results using this method are in good agreement with
the results analysed by the finite element software, ANSYS. We hope that the results will be helpful
in practical applications of phononic crystals.
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1. Introduction

In recent years, the propagation of classical waves in disordered systems in many fields,
such as electron waves in solids, optical waves in dielectric mediums and acoustic waves
in elastic mediums, has been studied widely. The propagation of optical waves in peri-
odic dielectric composite materials, known as photonic crystals, was first presented by
Yablonovitch [1] and John [2]. By analogy with the photonic crystals, the propagation
of elastic/acoustic waves in periodic structures made of materials with different elastic
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properties has received a great deal of attention. The artificially made periodic elas-
tic/acoustic structures are called phononic crystals (PCs), and the PCs exhibit phononic
band gap (PBG) as the photonic crystal, i.e. the sound and vibrations in the band gap
are forbidden [3–24]. There are two common methods to generate PBG, namely, Bragg
scattering and local resonances. For Bragg scattering, the first-frequency band gap is the
order of wave speed of the medium divided by the lattice constant. So, in order to obtain
a low-frequency band gap, it is necessary to use high density/low modulus materials or
large size structures [4,5]. For local resonances, band gaps can be obtained at much lower
frequencies than those by Bragg scattering. However, heavy resonators are needed to
obtain wide band gaps [6].

Several computational methods, such as transfer-matrix (TM) method [10–12], plane-
wave expansion (PWE) method [13,14], finite difference time domain (FDTD) method
[15,16], multiple scattering theory (MST) [17,18] and finite element (FEM) method [19],
have been used to predict the elastic/acoustic band structures. Discrete models are also
used to calculate the band structure of PCs, such as mass-spring structures and lumped
mass (LM) method [20–24]. For the TM method, the analytical expression of the band
gaps can be derived. However, the detailed derivation process and the expressions are
simple for the 1D binary PC, and it will become very tedious for a 1D PC with multi-
components and multimaterials. The disadvantage of the TM method is that it is difficult
to solve the band gaps of the 2D and 3D PCs. As the continuous system is treated as
discrete models in the LM method, the increment of the number of components in a unit
cell cannot complicate the method futher. The method is also suitable for the 2D and 3D
PCs. Compared to the PWE method, the LM method converges faster and its convergence
is not affected by the difference in the elastic constants. Specifically, in the calculation of
band gaps with small differences in elastic constants, the convergence of LM method is
similar to that of PWE method. However, in the calculation of band gaps with large dif-
ferences in the elastic constants, the LM method exhibits better convergence and higher
accuracy. Although the convergence of the MST method is better than the LM method,
some dispersion curves can be calculated by LM method, which is not possible by MST
method. Another advantage is that the LM method does not have any restrictions regard-
ing the shape of the unit cell of PC, which means the LM method is more widely used for
PC with complicated profiles [21–24].

For the finite periodic PCs, the frequency band gap is usually calculated from
frequency-response function (FRF) or transmission coefficients. The width of the band
gap and the minimum FRF value of the signal inside the band gap are used to evaluate
the performance of vibration isolation. The frequency band gap is usually affected by
the lattice constant, the filling fraction (the fraction of one material in all) and the mate-
rial parameters (density and modulus); and the value of attenuation inside the gaps will
decrease quickly when the number of unit cells increases, i.e. the minimum FRF value
is affected by the number of unit cells. The PC can be used in noise control, vibration
shield, acoustic lens and elastic/acoustic filters. For example, it can be used in the design
of acoustic diode to achieve unidirectional propagation of acoustic energy flux [24,25].

As we know, when the acoustic waves propagate through a 1D waveguide with vari-
able cross-section, the vibration velocity of a particle and sound pressure will be changed
with the cross-section. When the elastic/acoustic waves propagate through periodic struc-
tures with variable cross-sections, whether the frequency band gaps and the attenuation
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performance will be changed is the question we would like to answer in this paper. After
comparing the advantages and disadvantages of the methods mentioned above, the LM
method is selected in this paper. We analysed a longitudinal wave propagated through
a quasi-1D finite PC with conical cross-section. Unlike in the finite PC with constant
section, the initial frequency, the cut-off frequency and the width of the band gap will
vary with the ratio of the cross-sectional area of the input and output terminals.

2. The characteristic of longitudinal wave: The lumped mass model of the quasi-1D
finite PC with conical cross-section

In the LM method, the continuous PC is divided into a finite number of particles con-
nected by linear elastic springs. So, the finite 1D PC is simplified to many particle–spring
vibrators with finite degrees of freedom, the more is the number of degrees of freedom,
the closer it is to the real PC and the higher is the accuracy of the calculation [20–24]. A
binary system with N unit cells which consists of alternating A and B layers is shown in
figure 1a. The cells are arranged in the direction of elastic wave propagation, and due to
the variable shapes, the cells are not strictly of identical repetitive units. So the structure
considered in this paper is called quasi-1D PC. In the figure, a, b, l, L and n are the radii
of the left (or input) terminal and right (or output) terminal, the lattice constant, the total

Figure 1. (a) A finite PC consisting of materials A and B and (b) a unit cell is divided
into the particle–spring vibrators with n degrees of freedom (j = 1, 2, . . . , n, p =
0, 1, . . . , N − 1.

Pramana – J. Phys., Vol. 83, No. 6, December 2014 1005



Zhiqiang Fu et al

length of the structure and the number of particles in each cell, respectively. When a force
is applied along the axial direction (x direction), a longitudinal wave will be produced. We
assume that the longitudinal wave propagated in the structure is a plane-wave, and the
vibration of any particle on the same plane has equal amplitude and phase, i.e. the
propagation of the longitudinal wave in the structure can be simplified to a 1D problem.

Figure 1b shows a cell with n springs and particles connected in series, the stiffness
is knp+1 ∼ k(p+1)n, the mass is mnp+1 ∼ m(p+1)n and the length of arbitrary adjacent
simplified units is dnp+1 ∼ d(p+1)n. Figure 2 shows a simplified unit, the point O is
the gravity centre, rnp+j+1/2 is the radius at the gravity centre position, αnp+j is a ratio
corresponding to the length dnp+j . In each simplified unit, there is only one material, the
particle is located in the gravity centre, and on both sides of the particle, there are two
springs with different stiffnesses. According to the knowledge of geometry, for every
simplified unit, we have

r
np+j

= a +
∑np+j−1

1 dnp+j

L
(b − a) and r1 = a, rnN+1 = b, (1)

rnp+j+1/2 =
(

r3
np+j + r3

np+j+1

2

)1/3

, (2)

α
np+j

= rnp+j+1/2 − rnp+j

rnp+j+1 − rnp+j

, j = 1, 2, . . . , n, p = 0, 1, . . . , N − 1. (3)

For a simplified unit with one constant section, α
np+j

= 1/2.
The mass of each particle is

mnp+j = 1

3
πρsdnp+j (r

2
np+j + r2

np+j+1 + rnp+j rnp+j+1), (4)

Figure 2. Geometrical diagram of a simplified unit (j = 1, 2, . . . , n, p =
0, 1, . . . , N − 1.
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where ρs (s = A, B) is the volume density. For a half simplified unit, the stress along
the longitudinal direction is proportional to the strain along the same direction, and the
relationships obtained are

Fx(1)

Snp+j

= Es

�x1

αnp+j dnp+j

, (5a)

Fx(2)

Snp+j

= Es

�x2

(1 − αnp+j )dnp+j

, (5b)

where Es (s = A, B) is the Young’s modulus, Fx(1) and Fx(2) are the applied forces on
the left and right along the x direction. Snp+j is the cross-sectional area at the gravity
centre of every simplified unit, and it is defined as Snp+j = πr2

np+j+1/2,�x1 and �x2 are
the displacement produced by the forces along the x direction for the left half simplified
unit and the right half simplified unit, respectively. The compressive stiffness on both
sides of the particles can be defined as follows:

cnp+j (1) = Fx(1)

�x1
= EsSnp+j

αnp+j dnp+j

, (6a)

cnp+j (2) = Fx(2)

�x2
= EsSnp+j

(1 − αnp+j )dnp+j

. (6b)

The springs between the adjacent particles can be considered as that in series mechan-
ically, i.e. the spring knp+j is composed of cnp+j (2) and cnp+j+1(1) in series. If the
adjacent simplified units are made of the same materials;

knp+j = cnp+j (2) · cnp+j+1(1)

cnp+j (2) + cnp+j+1(1)

= Es · Snp+j · Snp+j+1

Snp+j · αnp+j+1dnp+j+1 + Snp+j+1(1 − αnp+j )dnp+j

, s = A, B,

(7)

if the adjacent simplified units are made of different materials, and the left material is A,
the right material is B;

knp+j = EA · EB · Snp+j · Snp+j+1

EA · Snp+j · αnp+j+1dnp+j+1 + EB · Snp+j+1(1 − αnp+j )dnp+j

,

(8a)

otherwise, the left material is B, the right material is A.

knp+j = EA · EB · Snp+j · Snp+j+1

EB · Snp+j · αnp+j+1dnp+j+1 + EA · Snp+j+1(1 − αnp+j )dnp+j

.

(8b)

For a cell, which contains various materials, it can also be simplified to the particle–spring
vibrators in an analogous method.
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In this paper, the lengths of arbitrary adjacent simplified units are supposed to be equal
to each other, i.e. d = d1 = d2 = · · · dnp+j · · · = dnN, and d = L/(nN). For np + j

particles, the motion equations

mnp+j

d2xnp+j

dt2
= knp+j (xnp+j+1 − xnp+j ) − knp+j−1(xnp+j − xnp+j−1), (9)

where xnp+j is the displacement. Discretizing the time t, the differential equation (9) can
be transformed into different equations:

xnp+j [(i + 1)�t] = �t2

mnp+j

{knp+j [xnp+j+1(i�t) − xnp+j (i�t)]

−knp+j−1[xnp+j (i�t) − xnp+j−1(i�t)]}
−xnp+j [(i − 1)�t] + 2xnp+j (i�t),

np + j = 2, 3, . . . , nN − 1, (10a)

xnN [(i + 1)�t] = − �t2

mnN

knN−1[xnN(i�t) − xnN−1(i�t)]

−xnN [(i − 1)�t] + 2xnN(i�t), np + j = nN, (10b)

where i is an integer and �t is the discrete time interval. A periodic initial displacement
A0 cos(ωt) (where A0 is the displacement amplitude and ω is the angular frequency) is
subjected to the input terminal x1, then the output displacement xnN at every time can be
obtained using eq. (10). Finally, comparing xnN with the original displacement x1, the
FRF of the particle–spring structure can be obtained as FRF = 20 lg (xnN/x1).

3. Theoretical results – the effect of geometrical parameters on the band gap

As a comparison between 1D finite PC with constant section and conical section, we
considered a binary periodic system of A – PMMA (polymethyl methacrylate) and B –
duralumin layers. The model of the structure with N cell is shown in figure 1a, and the
corresponding discrete particle–spring model of a cell is shown in figure 1b. The structure
is subjected to a periodic displacement loading A0 cos(ωt) at the input terminal.

Figure 3 displays the FRF curves with different ratios of cross-sectional area, β of the
input and output ends

(
β = Sout/Sinput = (b/a)2

)
. In the calculation, the lattice constant

l = 40 mm, the periodic number N = 5, the number of particles in each cell n = 20,

and the filling fraction η = lA/l = 0.5, where lA is the length of the material A in a
cell; for β = 9 and β = 1, a = 2 mm, however, for β = 0.11, b = 2 mm. The
material parameters employed in the calculations were ρAl = 2790 kg/m3, EAl = 7.15×
1010 Pa, ρpmma = 1142 kg/m3, Epmma = 0.2 × 1010 Pa. In the analysis, the frequencies
corresponding to FRF = 0 on two sides of the band gap are, respectively, defined as the
initial frequency and the cut-off frequency. From figure 3, it can be seen that there are two
band gaps in the frequency range 0–70 kHz for each curve. When the ratio of the cross-
sectional area of the input and output terminals increases, the attenuation of the signal
inside both the first band gap and second band gap will decrease quickly. For β = 9, the
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Figure 3. FRF curves for the 1D finite binary PC with ratios of different cross-
sectional area, β.

attenuation of the FRF curve decreases the fastest; the initial frequency of the first band
gap at point A2 is lower than at points A1 and A3, and the cut-off frequency of the first
band gap at point B2 is higher than at points B1 and B3. (In the later parts of this paper, the
initial frequency and the cut-off frequency also belong to the first band gap.) In the figure,
the minimum FRF value of the curve β = 9 is −32 dB, and for the curve β = 1, the
minimum FRF value is −22 dB, i.e. the minimum FRF value of the curve increases as β

increases. As we know, when β increases, the mass of the structure also increases. So, the
reduced transmission levels can be also explained as the increase in mass of the structure.

Figure 4 shows the relationship between the frequencies (initial frequency and cut-off
frequency) and the ratio of cross-sectional area, β. We can see that the initial frequency
decreases as the ratio β increases while the cut-off frequency increases with the ratio β. In
other words, the width of the band gap increases with the ratio β. The leaps of the curves
that appear in figure 4, is due to the increase in β. The FRF value of the peaks will be less
than zero, and the frequencies will change suddenly. For example, in figure 3, there are
two peaks inside the first band gap for the curve β = 9. From figures 3 and 4, we can see
that the attenuation performance can be improved and the width of the band gap can be
expanded by increasing the cross-sectional area of the output end. These properties may
be helpful in the manufacture of vibration shield and elastic filters.

As we know, the PBG of a 1D PC with constant section are usually affected by the
filling fraction and the lattice constant. Figure 5 displays the relationships between the
frequencies (initial frequency and cut-off frequency) and the lattice constants. The solid
lines represent the PC with conical section and the dotted lines represent the PC with
constant section. It can be seen that the initial frequencies and the cut-off frequencies
decrease as the lattice constant increases, and the width of the first band gap decreases
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Figure 4. Relationship between the frequencies (initial frequency and cut-off fre-
quency) and the cross-sectional area ratio, β.

as well. Figure 6 demonstrates the relationships between the frequencies and the filling
fractions. We can see that the initial frequencies decrease as the filling fraction increases,
and the cut-off frequencies increase first and decrease later as the filling fraction increases.
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Figure 5. The relationship between the lattice constants and the frequencies. The
solid lines represent the frequencies of the PC with conical section (β = 9) and the
dotted lines represent those with constant section (β = 1), respectively. Here, the
parameters are: N = 5, n = 20, η = 0.5 and a = 2 mm.
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Figure 7. FRF curves simulated by the finite element software, ANSYS.
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Table 1. Theoretical and simulated frequencies and minimum FRF value.

β fA (kHz) fB (kHz) f ′
A (kHz) f ′

B (kHz) F (dB) F′ (dB)

0.11 12.81 31.97 12.51 32.81 −13 −61
1 12.21 32.28 12.21 32.98 −22 −70
9 10.55 33.43 10.57 33.91 −32 −80

When the filling fraction η is ∼0.15, the cut-off frequency and the width of the first
band gap reach their maximum. In figures 5 and 6, we can see, for the finite PC with
constant section, compared with the curves of conical section, that the initial frequency is
higher and the cut-off frequency is slightly lower, and the width of the band gap is slightly
narrower. However, the trend of change in frequencies are consistent with each other.

4. Comparison of theoretics and simulation

ANSYS is a commonly used finite element software, and its multiphysics module can be
used to solve the multidisciplinary and multiphysics coupling problems, such as structure,
mechanics, thermology, hydrodynamics, eletromagnetics and the coupling problem of
two or more physical fields. In order to validate the theoretical analysis in this paper, those
phononic crystals, which are calculated in figure 3, are simulated by the finite element
software ANSYS, and the results are shown in figure 7. The initial frequencies and cut-
off frequencies are listed in table 1, where fA, fB correspond to frequencies of points A1,
A2, A3, B1, B2, B3 in figure 3; f ′

A, f ′
B correspond to the frequencies of points A1′, A2′,

A3′, B1′, B2′, B3′ in figure 7; and F and F′ are the minimum FRF values of the first band
gap calculated by the method followed in this paper and the software ANSYS. When we
compare, figure 7 with figure 3, the curves exhibit well-consistent change with each other.
It can be seen from table 1 that the initial frequencies and cut-off frequencies using our
method are in good agreement with those simulated by finite-element method. Although,
differences of the minimum FRF values exist, the law that minimum FRF value increases
with the area ratio β is still applicable.

5. Conclusions

In this paper, we studied the propagation of elastic longitudinal wave in quasi-1D finite
PC with conical section, and derived the expressions of FRF. As we know, for finite PC,
the common method to improve the attenuation performance, is to increase the number of
unit cells. By analysing the FRF curves, we found that the transmission levels within the
band gaps will decrease quickly, when the cross-sectional area of the output end increases.
So, the attenuation performance can also be improved by increasing the cross-sectional
area. At the same time, the band gaps of finite PC with conical section are wider than
those with constant section. The effects of the lattice constant and filling fraction on the
width of the band gap were also investigated, and the results showed that the change in the
initial and cut-off frequencies are consistent with those of the constant section. Finally,
the FRF curves of the finite PCs with conical section were also simulated by the finite
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element software, ANSYS. It was shown that the results using this method are in good
agreement with those analysed by finite element method. The method used in this paper
is also appropriate to the finite PC with other variable cross-sections. We hope that this
study will help in practical applications of PC.
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