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Abstract. An immiscible multicomponent lattice Boltzmann model is developed for fluids with
high relaxation time ratios, which is based on the model proposed by Shan and Chen (SC). In
the SC model, an interaction potential between particles is incorporated into the discrete lattice
Boltzmann equation through the equilibrium velocity. Compared to the SC model, external forces
in our model are discretized directly into the discrete lattice Boltzmann equation, as proposed by
Guo et al. We develop it into a new multicomponent lattice Boltzmann (LB) model which has the
ability to simulate immiscible multicomponent fluids with relaxation time ratio as large as 29.0 and
to reduce ‘spurious velocity’. In this work, the improved model is validated and studied using the
central bubble case and the rising bubble case. It finds good applications in both static and dynamic
cases for multicomponent simulations with different relaxation time ratios.
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1. Introduction

Multicomponent systems are part of many natural physical processes, especially gas–
liquid systems and they are widely used in industry for various purposes. For example, gas
is released into liquid phase to form small bubbles in boling-water reactors for cooling the
fusion core, in bubble column reactors for chemical reactions, and in boilers for producing
steam [1].

During the past decade, the lattice Boltzmann equation (LBE) method [2,3] has
emerged as a new promising method of computational fluid dynamics (CFD). This
method was developed from a discretized fluid model known as the lattice gas automata
(LGA) [4,5]. Since Rothman and Keller introduced the first LGA model for simulation
of two immiscible fluids, several lattice Boltzmann (LB) models have been constructed
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for simulating immiscible fluids, such as the interaction potential approach [6], the free
engery approach [7] and so on.

The model proposed by Shan and Chen (SC) is one of the most popular models for
multicomponent simulations [8,9]. In the SC model, an interaction potential between par-
ticles is incorporated into the discrete lattice Boltzmann equation through the equilibrium
velocity. Thus, the SC forces can cause components separation, when the interaction
strength is properly adjusted [6,10]. However, when it comes to simulations for multi-
component immiscible fluids with relaxation time ratios larger than 1.0, the SC model is
not useful because the magnitude of the ‘spurious velocity’ is too large at the interface,
which causes the SC model to be unstable during the evolution. But in physical and chem-
ical applications, mixed fluids are very common and they are usually of different values
of relaxation time and the relaxation time ratios of the components could vary in a wide
range.

In this work, we present an improved LB model for immiscible multicomponent fluids
with relaxation time ratios much larger than 1.0. In §2, we briefly review the LBE method,
the SC forcing term and then we introduce the improved LB model in detail. In §3, we first
conduct a static numerical simulation to verify the improved LB model according to the
Laplace’s law and next, we compare the static features of SC model and the improved LB
model including the maximum relaxation time ratio and the ‘spurious velocity’ through
the central bubble case. Then, we perform a series of simulations to validate the dynamic
applicability of the improved LB model through the single bubble rising case. In §4,
we reach a conclusion about the improved LB model and describe its future application,
according to the simulation results.

2. LBE method

The discrete lattice Boltzmann equation using the BGK collision term without the forcing
term for multicomponent flows can be described as follows [11]:

f σ
α (x + eαδt , t + δt )− f σ

α(x, t) = − 1

τ σ

[
f σ
α (x, t)− f eq,σ

α (x, t)
]
, (1)

where f σ
α is the distribution function of the σ th component for particles along the αth

direction and f
eq,σ
α is its corresponding equilibrium distribution function, eα is the particle

velocity in the αth direction, δt is the time step and τσ is the single relaxation time of the
σ th component.

In this work, we would like to use the D2Q9 model which has nine directions of
velocities on the two-dimensional square lattice.

The discrete velocities of the D2Q9 model are given as follows [12]:

eα =
⎧
⎨

⎩

(0, 0) , α = 0,
c
(
cos

[
(α − 1) π/2

]
, sin

[
(α − 1) π/2

])
, α = 1, 2, 3, 4,√

2c
(
cos

[
(2α − 1) π/4

]
, sin

[
(2α − 1) π/4

])
, α = 5, 6, 7, 8.

(2)
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Based on the frame definitions of the D2Q9 model, the equilibrium function for the
multicomponent flows can be introduced as follows:

f eq,σ
α = ωαρ

σ

[

1 + eα · ueq,σ

c2
s

+ (eα · ueq,σ )2

2c4
s

− (ueq,σ )2

2c2
s

]

, (3)

where ωα is the weighing factor, ρσ = ∑
α f

σ
α is the local mass density, cs = 1/

√
3 is the

lattice sound speed and ueq,α is the equilibrium velocity of the σ th component.
The weighing factor ωα is given as follows:

ωα =
⎧
⎨

⎩

4/9, α = 0,
1/9, α = 1, 2, 3, 4,
1/36, α = 5, 6, 7, 8.

(4)

In the absence of interparticle forces, all components are ideal gases [13]. Thus, all of
the equilibrium velocities ueq,σ are equal to a common velocity, u′. To conserve the total
momentum of particles of all components, the common velocity is given as

u′ =
∑

σ
ρσuσ /τ σ

∑

σ
ρσ /τσ

, (5)

where ρσuσ =
∑

α
f σ
α eα is the momentum of the σ th component.

2.1 SC forcing term

To segregate an immiscible fluid system into different components, Shan and Chen [6]
introduced a long-range force between particles of component σ at site x and particles of
component σ̄ at site x′. It is given below [13]:

Fσ(x) = −ψσ(x)
∑

x′

∑

σ̄

Gσ σ̄

(
x, x′)ψσ̄

(
x′) (

x′ − x
)
, (6)

where ψσ(x) is the ‘effective mass’ of the σ th component at site x and it is defined as a
function of the local mass density ρσ and Gσσ̄

(
x, x′) is the Green’s function.

Due to the interparticle force, an extra momentum change to the σ th component is
added to the momentum change caused by collision with others. Thus, the momentum is
adjusted for each component as [13]

ρσueq,σ = ρσu′ + τ σFσ . (7)

Using eqs (5) and (7), the total momentum of the fluid mixture is given below:

ρu =
∑

σ

ρσuσ + 1

2

∑

σ

Fσ , (8)

where ρ = ∑
σ ρ

σ is the total mass density of the fluid.
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2.2 The improved LB model

Compared to the SC model, the discrete forcing term of the improved LB model is
directly incorporated into the discrete lattice Boltzmann equation [14]. Thus, the equation
is developed for multicomponent flow as follows:

f σ
α (x + eαδt , t + δt )− f σ

α(x, t) = δtF
σ
α − 1

τ σ

[
f σ
α (x, t)− f eq,σ

α (x, t)
]
, (9)

where Fσ
α is the discrete forcing term of the σ th component and it is defined for

multicomponent fluid as follows [14]:

Fσ
α =

(
1 − 1

2τ σ

)
ωα

[
eα − ueq

c2
s

+ (eα · ueq)

c4
s

eα

]
· Fσ , (10)

where Fσ is the external force and ueq is the equilibrium velocity of the fluid mixture.
According to the discete LBE with discrete forcing term above, the local mass density

of the σ th component and its corresponding momentum are given as follows:

ρσ =
∑

α

f σ
α , (11)

ρσuσ =
∑

α

f σ
α eα + δt

2
Fσ. (12)

We can see that the momentum of the σ th component in eq. (12) consists of the momen-
tum change caused by the external forces, due to the discrete forcing term in eq. (9). In
the SC model, the momentum of the σ th component is defined in eq. (5), in the absence
of interparticle forces.

To calculate the discrete forcing term in eq. (10) and the equilibrium distribution func-
tion for multicomponent flows, we need to aquire the equilibrium velocity of the fluid
mixture. It is given as follows:

ueq =
∑

σ ρ
σuσ /τ σ

∑
σ ρ

σ /τσ
. (13)

The improved LB model directly add the forcing term to the discrete lattice Boltzmann
equation, rather than the SC model which introduces the external force effects to the
equation through the equilibrium velocity of each component, ueq,σ . Thus, you would
notice that in eq. (10), we use the equilibrium velocity, ueq to calculate the discrete forcing
term, rather than the equilibrium velocity of each component, ueq,σ .

The equilibrium function of the σ th component is given below, and the velocity is also
replaced by the equilibrium velocity of the fluid mixture, ueq :

f eq,σ
α = ωαρ

σ

[

1 + eα · ueq

c2
s

+ (eα · ueq )2

2c4
s

− (ueq )2

2c2
s

]

. (14)

Using eqs. (11) and (12), the total momentum of the fluid mixture is given as follows:

ρu =
∑

σ

ρσuσ , (15)

where ρ = ∑
σ ρ

σ is the total mass density of the fluid.
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3. Numerical simulation results

In SC’s original paper, the external force in eq. (6) is derived by using the interparticle
forces of the nearest-neighbour sites. In this work, we adopt the external force which
is extended to include other neighbour sites [15]. Therefore, it is given in the following
form:

Fσ(x) = −c0ψ
σ(x)

∑

σ̄

gσ σ̄∇ψσ̄ (x), (16)

where c0 is a constant and c0 = 6.0 is given for the D2Q9 model.
Under the definition of Fσ in eq. (16), p is the pressure given as function of all the

densities of all the components by the following equation of state of the system [13,15]:

p = ρc2
s +

c0

2

∑

σ σ̄

gσ σ̄ψ
σ∇ψσ̄ , (17)

where ρ = ∑
σ ρ

σ is the total mass density of the fluid.
To calculate the gradient term in eq. (16), we could use the nearest sites or both the

nearest and next-nearest sites, which is shown in figure 1.
As we know, the stability can be improved at a higher isometry via more neighbouring

points. So, we plot the velocity distributions of the two methods in figure 2 to compare
the ‘spurious velocity’ using the central bubble model.

‘Spurious velocity’ [16–18] is known as a small but finite-amplitude circulating flow
near the interface of a stationary bubble. It causes instability of the LB models in the
evolution of the numerical simulations.

In this case, we assume that the conditions of the two methods are the same.
Figure 2 shows the velocity distribution at each lattice site of the two methods. We can

see that the largest velocity occurs at the interface of the central bubble, which is known
as the ‘spurious velocity’. It is obvious that the ‘spurious velocity’ of the method using
the nearest sites is much larger than the other one.

Therefore, we use both the nearest and next-nearest sites to calculate the gradient term
in eq. (16), which gives a six-point scheme for two dimension. It is introduced as follows
[15]:

∂ψ (i, j )

∂x
= c1

[
ψ(i + 1, j)− ψ(i − 1, j)

]

+c2
[
ψ (i + 1, j + 1)− ψ (i − 1, j + 1)

+ ψ (i − 1, j + 1)− ψ (i − 1, j − 1)
]
, (18)

(a) (b)

Figure 1. The sites used in the calculation of the gradient term. (a) Nearest sites and
(b) nearest and next-nearest sites.
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(a)

(b)

Figure 2. Velocity distribution at each lattice site of the two methods. (a) Nearest
sites and (b) nearest and next-nearest sites.

∂ψ(i, j)

∂y
= c1

[
ψ(i, j + 1)− ψ(i, j + 1)

]

+c2
[
ψ(i + 1, j + 1)− ψ(i + 1, j − 1)+ ψ(i − 1, j + 1)

−ψ(i − 1, j − 1)
]
, (19)

where c1 and c2 are weighing coefficients for the nearest and next-nearest sites,
respectively, and c1 = 4c2 = 1/3 is given for the D2Q9 model.

To validate the improved LB model introduced above, we perform several numerical
simulations using the central bubble case and the single bubble rising case, respectively.

3.1 Static cases

The case of central bubble which we use, contains two kinds of immiscible fluid com-
ponents. One is a circular bubble located at the centre of a domain containing the other
component initially.We suggest that the subscripts 1 and 2 refer to the bubble in the centre
and the domain around the bubble, respectively. And we apply periodic boundary to all
the numerical simulations in the case of central bubble.
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3.1.1 Laplace’s law. According to the Laplace’s law, the pressure difference and the
surface tension are given for the two-dimensional circular bubble as follows:

p1 − p2 = σ

R
, (20)

where p1 and p2 are the pressures of the first and second component defined above,
respectively, σ is the surface tension and R is the radius of the circular bubble in the
centre.

In this case, the radius of the central bubble ranges from 25 to 40 lattice sites and the
domain around contains 100 × 100 lattice sites. We perform three groups of numerical
simulations when the values of relaxation time ratio τ1/τ2 are 1, 5 and 25, respectively.

Figure 3 shows the relation between the pressure difference p1 − p2 and the reciprocal
of radius R at different relaxation time ratios, τ1/τ2. The dots represent the statistics we
obtain from the numerical simulations and the lines are the least-square fit lines we use to
approximate the statistics. Thus, the slope means the surface tension of each group.

We can see that the lines match the statistics well and the results agree with the
Laplace’s law within the accuracy of our measurement. It suggests that the improved
LB model we introduce is an available LB model for immiscible multicomponent fluids
simulation.

3.1.2 Comparison between SC and the improved LB model. To show the advantages of
the improved LB model over SC model in multicomponent flow simulations, we conduct
two kinds of numerical simulations between the two models. In the following simulations,
we set the radius of the circular bubble as R = 40 lattice sites and the domain contains
100 × 100 lattice sites as well.

Figure 3. Verification of Laplace’s law for the improved LB model at different
relaxation time ratios, τ1/τ2.
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First, we perform a simulation to compare the maximum relaxation time ratio that the
two models can simulate at the same condition. We assume that the relaxation time of the
second component τ2 in the two models is the same in this simulation.

Figure 4 shows the comparison of the maximum relaxation time ratio (τ1/τ2)max that
the two models can simulate, when they are of the same relaxation time τ2.

Because of the limitation of the SC model, we can see from figure 4 that the relaxation
time τ2 has a narrow range from just 0.93 to 1.60. The maximum relaxation time ratio
(τ1/τ2)max is only about 3.0 for the SC model, whereas the improved LB model is capable
of simulations for much larger relaxation time ratio at the same τ2. We can see from
figure 4 that the maximum relaxation time ratio (τ1/τ2)max of the improved LB model is
above 20.0 for τ2 from 0.93 to 1.60.

Next, we conduct another group of simulations to compare the ‘spurious velocity’ of
the two models.

Figure 5 shows the velocity distribution at each lattice site of the two models. In this
case, the relaxation time ratio τ1/τ2 is set as 1.0. We can see that the ‘spurious velocity’
of the SC model is much larger than that of the improved LB model.

Figure 6 shows the comparison of the magnitude of the ‘spurious velocity’ between the
two models at different relaxation time, τ2.

Due to the limitations of the SC model, we still restrict the relaxation time τ2 from 0.93
to 1.60. We can see from figure 6 that the magnitude of ‘spurious velocity’ in the improved
LB model is approximately 10−3 and in the SC model it is around 10−1. Therefore, the
improved LB model is obviously more stable than the SC model, because of the drastically
reduced value of ‘spurious velocity’.

Above all, we find that the improved LB model is an available multicomponent LB
model, according to the Laplace’s law. It is much more stable in numerical simulations
than the SC model, because of the decrease in the ‘spurious velocity’. Therefore, the
improved LB model we suggest is capable and stable for immiscible multicomponent
fluid simulations under static cases.

Figure 4. Comparison between the SC and the improved LB model for the maximum
relaxation time ratio (τ1/τ2)max at the same value of the relaxation time τ2.
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(a)

(b)

Figure 5. Velocity distribution at each lattice site of (a) the improved LB model and
(b) the SC model.

Figure 6. Comparison of ‘spurious velocity’ between the two models at different
relaxation time τ2.
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3.1.3 Properties of the improved LB model. In the following, we conduct a group of
simulations to further study the static applicability of the improved LB model using the
central bubble case. We still set the radius of the circular bubble as R = 40 lattice sites
and the domain also contains 100 × 100 lattice sites.

Figure 7 shows the maximum relaxation time ratio (τ1/τ2)max that the improved LB
model can simulate at a wide range of the relaxation time, τ2.

Due to the stability of the improved LB model, we find that the improved LB model is
capable of simulations for a much larger range of relaxation time τ2 than that of the SC
model.

We can see from figure 7 that the relaxation time τ2 ranges from 0.501 to 14.0 in this
case. For different relaxation time τ2, the maximum relaxation time ratio (τ1/τ2)max varies
from 1.0 to 29.0. While the value of the relaxation time τ2 in this case is less than 1.0,
the maximum relaxation time ratio (τ1/τ2)max increases rapidly as the relaxation time τ2

become larger. While the relaxation time τ2 reaches a value of 1.0, the maximum relax-
ation time ratio (τ1/τ2)max reaches a value of 29.0. However, the maximum relaxation
time ratio (τ1/τ2)max decreases rapidly as the value of the relaxation time τ2 deviates
away from 1.0.

Therefore, we can conclude that the improved LB model we proposed is an available
and stable LB model for multicomponent flows with a high relaxation time ratio.

3.2 Dynamic cases

We perform several simulations to study the bubble motion. The rising bubble case,
we use contains two kinds of immiscible fluid components. One is a circular bubble
located at the bottom of a domain containing the other component initially. We sug-
gest that the subscripts 1 and 2 refer to the bubble and the domain around the bubble,
respectively.

Figure 7. The maximum relaxation time ratio (τ1/τ2)max, the improved LB model
can reach, at different relaxation time τ2.
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The most important dimensionless parameters in the study of bubble motion are Eotvos
number (Eo), Motorn number (Mo) and Reynolds number (Re) [19].

Eo represents the dimensionless size of the bubble and it determines the amount of the
deformation of a rising bubble. It is defined as

Eo = g�ρd2
e

σ
, (21)

where g is the acceleration due to gravity, �ρ is the difference in density between the
domain and bubble, de is the effective diameter of the bubble and σ is the surface tension.

Mo characterizes the properties of the fluid system surrounding the bubble. It is defined
as

Mo = gρ2
2�ρυ

4
2

σ 3
, (22)

where ρ2 is the density of the domain around the bubble and υ2 is the viscosity of the
domain.

The flow field around the bubble is determined by the Reynolds number, which is
defined as

Re = Utde

υ2
(23)

where Ut is the terminal velocity of the rising bubble. It determines the Reynolds number
of the flow.

In the following, we set the initial diameter of the bubble as 14 lattice sites and the
domain around the bubble contains 150 × 300 lattice sites. The bubble initially located
at the site (75,40). To keep the bubble motion away from the walls, periodic boundary
condition is imposed at all the boundaries of the domain.

In this case, we determine the surface tension of the bubble in a stationary fluid without
gravity according to the Laplace’s law. And the terminal velocity is calculated through
the lattice sites which the bubble rises across and the time steps in the evolution.

When the bubble is in equilibrium for a long time in the domain, a steady state is
achieved, and then gravity is switched on. The gravitational force is in the negative verti-
cal direction. Sankaranarayanan et al [20] have suggested that this external force can be
introduced into the force equation using the expression given below:

aext = g
(

1 − 〈ρ〉
ρ

)
, (24)

where ρ is the number density of the mixture at the node of interest and 〈ρ〉 is the average
number density of the mixture in the entire domain.

For the first case, we set the relaxation time the same for the two components. For a
series of values of Eo and Mo, we perform a variety of simulations to validate the dynamic
property of the improved LB model. When the rising bubble reached a steady state, we
can calculate the terminal velocity of the rising bubble. Hence, we can determine the
Reynolds number of the flow of bubble motion.

To validate the improved LB model, we compare the shape of the bubble and the
Reynolds number with the bubble regime map constructed by Grace [21] according to
the values of Eo and Mo, and we plot several typical cases in figure 8.
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Figure 8. Bubble shape map at the same relaxation time of the two components.

We can see from figure 8 that the shape of the bubble and Reynolds number are con-
sistent with the bubble map proposed by Grace [21]. Therefore, we can conclude that the
improved LB model we propose is an available multicomponent LB model for simulating
dynamic cases.

The details of the parameters of the first case are showed in table 1.
In the second case, we perform several simulations to see the applicability of the

improved LB model for different relaxation time ratios for dynamic cases. We set the
relaxation time of the bubble as 6.0 and that of the domain around the bubble as 0.6, 1.2
and 2.0. That means, we set the relaxation time ratios as 10, 5 and 3 to study the dynamic
property of the improved LB model at different relaxation time ratios. We also compare

Table 1. Parameters for a rising bubble at the same relaxation time of the two
components.

τ1 τ2 Eo Mo Re Shape

0.6 0.6 0.16 7.94×10−8 7.45 Spherical
0.75 0.75 1.64 3.42×10−5 12.31 Oblate ellipsoid
0.75 0.75 4.91 1.03×10−4 18.36 Oblate ellipsoid
1.0 1.0 9.98 3.45×10−3 10.80 Oblate ellipsoid
1.5 1.5 0.17 9.33×10−4 0.22 Spherical
1.5 1.5 1.67 9.33×10−3 2.00 Spherical
1.5 1.5 3.01 1.68×10−2 2.97 Oblate ellipsoid
1.5 1.5 5.02 2.80×10−2 3.78 Oblate ellipsoid
2.0 2.0 25.10 7.08×10−1 5.4 Oblate ellipsoid cap
2.5 2.5 1.67 1.48×10−1 0.57 Spherical
2.5 2.5 6.71 1.48 2.43 Oblate ellipsoid cap
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Figure 9. Bubble shape regime map at different relaxation time ratios.

the bubble shape and the Reynolds number with the bubble regime map of Grace [21] at
the same values of Eo and Mo and plot the typical results in figure 9.

The details of the parameters of the second case are showed in table 2.
We can see from figure 9 that the bubble shape and Reynolds number are also consistent

with the bubble map proposed by Grace [21]. Therefore, we believe that the improved LB
model is still capable of simulation for bubble motion at different relaxation time ratios.

Above all, the figures and tables show that the current numerical simulation using the
improved LB model performs excellent quantitative and qualitative results for a single
rising bubble simulation. Bubble shapes and the Reynolds number in both cases are con-
sistent with Grace’s bubble shape map. Therefore, we can conclude that the improved LB
model that we proposed is also an available LB model for multicomponent flows with a
high relaxation time ratio under dynamic cases.

Table 2. Parameters for a rising bubble at different relaxation time ratios of the two
components.

τ1 τ2 Eo Mo Re Shape

6.0 0.6 0.14 2.22×10−7 4.31 Spherical
6.0 0.6 1.37 2.22×10−6 23.20 Oblate ellipsoid
6.0 1.2 0.14 5.53×10−4 0.20 Spherical
6.0 1.2 1.39 5.53×10−3 1.80 Oblate ellipsoid
6.0 1.2 13.91 5.53×10−2 6.21 Oblate ellipsoid cap
6.0 2.0 0.14 1.20×10−2 0.05 Spherical
6.0 2.0 1.41 1.20×10−1 0.48 Spherical
6.0 2.0 14.10 1.20 2.9 Oblate ellipsoid cap
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4. Conclusion

This work shows that the improved LB model is much more stable than SC model in
multicomponent flow simulations due to the way we introduce the external forces into the
discrete lattice Boltzmann equation and we define velocity in the discrete forcing term.
The improved LB model is capable of simulating for a much wider relaxation time values
ranging from 0.501 to 14.0 and improving the maximum relaxation time ratio to a value
as large as 29.0. Besides, for the dymanic cases of multicompenent systems, the improved
LB model finds many application at different relaxation time ratios.

Above all, we can see that the improved LB model is probably used for simulations of
different kinds of immiscible fluid mixtures at different temperatures and pressures.
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