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Abstract. The article deals with adaptive projective synchronization between two different
chaotic systems with parametric uncertainties and external disturbances. Based on Lyapunov
stability theory, the projective synchronization between a pair of different chaotic systems with
fully unknown parameters are derived. An adaptive control law and a parameter update rule for
uncertain parameters are designed such that the chaotic response system controls the chaotic drive
system. Numerical simulation results are performed to explain the effectiveness and feasibility of
the techniques.
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1. Introduction

The applications of nonlinear dynamical systems have nowadays spread to a wide spec-
trum of disciplines including science, engineering, biology, sociology etc. Study and
analysis of nonlinear dynamics have gained immense popularity during the last few
decades due to its important feature of any real-time dynamical system. In nonlinear
systems, a small change in a parameter can lead to sudden and dramatic changes in both
the qualitative and quantitative behaviour of the system. Sometimes these may give rise to
the complex behaviour called chaos. Thus, a chaotic system is a nonlinear deterministic
system with unpredictable complexity. In dynamical systems, the term chaos is applied
to deterministic systems that are aperiodic and that exhibit sensitive dependence on initial
conditions and parameter variations, which is known as the butterfly effect [1]. The con-
cept of chaos has been used to explain how systems that should be subject to known laws
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of physics may be predictable in the short term but are apparently random on a longer
time-scale.

In a chaotic synchronization (a chaotic system is considered as the drive system and
another identical/different system is considered as the response system), the aim is to
force the response system to synchronize the drive system. Since the idea of synchro-
nizing chaotic systems was introduced by Pecora and Carroll [2] in 1990, they showed
that it is possible to synchronize chaotic systems through a simple coupling. Synchro-
nization of chaotic dynamical systems has been intensively studied by many researchers
[3–6] and has attracted a great deal of interest in various field due to its important applica-
tions in ecological system [7], physical system [8], chemical system [9], modelling brain
activity, system identification, pattern recognition phenomena, secure communications
[10–12] etc.

In recent years, several types of synchronization schemes, such as time delay feed-
back approach [13], adaptive control [14–17], active control [18], back-stepping design
method [19], sliding mode control [20] so on, have been proposed and successfully
applied to chaos synchronization. The concept of synchronization can be extended to
generalized synchronization [21], complete synchronization [22], lag synchronization
[23], phase synchronization [24], antisynchronization [25], projective synchronization
[26–32], modified projective synchronization [33], hybrid synchronization [34], tracking
control [35] etc.

Projective synchronization is the characterization in which the drive and the response
systems can be synchronized up to a scaling factor. The proportionality between its syn-
chronized dynamical states is used to extend binary digital communication to M-nary
digital communication for achieving fast communication [26–28]. Projective synchro-
nization was first reported by Mainieri and Rehacek [29] in partially linear systems and
they declared that two identical systems could be synchronized up to a scaling factor
K , which is a constant transformation between the synchronized variables of the driven
and the response systems. Later, Xu et al [30] investigated the conditions of projective
synchronization in partially linear systems. Ghosh [31] proposed a nonlinear observer-
based projective synchronization in modulated delay time systems. In 2010, Ghosh and
Bhattacharya [32] studied the projective synchronization of a hyperchaotic Newton–
Leipnik system with fully unknown parameters. Again, a new synchronization method
called ‘modified projective synchronization’ was proposed in [33] where the chaotic
system is synchronized up to a constant scaling matrix. One of the most important
applications of projective synchronization is in secure communication [31] due to the
unpredictability of the scaling factor.

Adaptive control technique is used when the system parameters are unknown. In
adaptive method, control law and a parameter update rule for unknown parameters are
designed in such a way that the chaotic response system is controlled by the chaotic drive
system. Most of the studies in synchronization involve two identical/non-identical sys-
tems under the hypotheses that all the parameters of the master and slave systems are
known a priori. A controller is constructed with the known parameters and systems are
free from external perturbations. But in practical situations the uncertainties like param-
eter mismatch and external disturbances may destroy the synchronization and even break
it. So it is necessary to design an adaptive controller and parameter update law for the
control and synchronization of chaotic systems consisting of unknown parameters to get
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rid of internal and external noises. In the presence of model uncertainties and external
disturbances, an appropriate adaptive control scheme is applied to stabilize a group of
chaotic systems.

Recently, many authors have studied the adaptive synchronization for the chaotic sys-
tems. In 2008, Salarieh and Shahrokhi [14] have investigated adaptive synchronization
of two different chaotic systems with time-varying unknown parameters. Mossa and
Noorani [15] have investigated adaptive antisynchronization of two identical and different
hyperchaotic systems with uncertain parameters in 2010. In 2011, Li et al [16] proposed
complete (anti-)synchronization of chaotic systems with fully uncertain parameters by
adaptive control.

The influences of the uncertainties during synchronization have been considered late. In
the real world applications, such as in secure communication, the receiver plants will def-
initely suffer from the various uncertainties including parameter perturbation or external
disturbance, which will no doubt influence the accuracy of the communication. There-
fore, the synchronization between chaotic systems with uncertainties and disturbances
are challenging jobs for researchers. There are possibilities of destroying synchronization
with the effects of those parameters. Yu et al [17] have studied antisynchronization of a
novel hyperchaotic system with parameter mismatch and external disturbances. Chen et al
[36] have studied disturbance observer-based robust synchronization control of uncertain
chaotic systems. Jawaadaa et al [37] have done robust active sliding mode antisynchro-
nization of hyperchaotic systems with uncertainties and external disturbances in 2012.
Fu and Li [38] investigated robust adaptive antisynchronization of two different hyper-
chaotic systems with external uncertainties. From the literature survey, it is seen that with
the development of nonlinear control theory, nowadays adaptive projective synchroniza-
tion method has become very much effective to control and synchronize the chaotic and
hyperchaotic systems with uncertain parameters and external disturbances. This has moti-
vated the authors to study the adaptive projective synchronization between different pairs
of chaotic systems, all having uncertain parameters and external disturbances.

In this article, a sincere attempt has been made to study projective synchronization
between two non-identical chaotic systems using adaptive control method in the presence
of parametric uncertainties and external disturbances. This paper is organized as fol-
lows. Section 2 contains the description of the formulation of projective synchronization
of uncertain chaotic systems using adaptive control method. In §3, the system descrip-
tions of Genesio–Tesi, Li and Lorenz systems are given. In §4 and 5, adaptive projective
synchronization between uncertain Genesio–Tesi and uncertain Li chaotic systems; and
uncertain Li and uncertain Lorenz chaotic systems are discussed respectively. In §6, the
conclusion of the work is presented.

2. Problem formulation

Consider an uncertain chaotic system

Dt x = (β A1 + �A1)x + F1(x) + d1(t), (1)
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where x(t) ∈ Rn is the states of uncertain chaotic systems (1), β ∈ Rm is the unknown
parameter vector of the system, A1 ∈ Rn×n is a known constant matrix with proper dimen-
sion, F1 : Rn → Rn is the nonlinear part of the system, �A1 ∈ Rn×n is the parametric
uncertainties of chaotic systems with |�A1| ≤ δ1, where δ1 is a positive constant and
d1(t) is the external disturbances of chaotic systems (1) with |d1(t)| ≤ ρ1, where ρ1 is a
positive constant. This is considered as the master system.

Now, consider another uncertain chaotic system as the response system:

Dt y = (γ A2 + �A2)y + F2(y) + d2(t) + μ(t), (2)

where y(t) ∈ Rn , γ ∈ Rm is the unknown parameter vector of the system, A2 ∈ Rn×n

is a known constant matrix with proper dimension, F2 : Rn → Rn is the nonlinear part
of the system, �A2 ∈ Rn×n is the parametric uncertainties of the chaotic systems with
|�A2| ≤ δ2, where δ2 is a positive constant and d2(t) is the external disturbances of
uncertain chaotic systems (2) with |d2(t)| ≤ ρ2, where ρ2 is a positive constant and
μ(t) ∈ Rn is the control input vector of the uncertain chaotic system.

If A1 = A2 and F1 = F2, then the response system is identical with the master sys-
tem. Otherwise they represent two different chaotic systems. Control function μ(t) is
to be designed in such a way that the states of the master and response systems are
synchronized.

Let us define the error system as

e(t) = y(t) − αx(t), (3)

where α is a constant. The systems (1) and (2) are said to be in projective synchronization,
if there exists a constant α such that limt→ ∞ ‖e‖ = 0. From eqs (1) and (2), we get

ė(t) = (γ A2 + �A2)y + F2(y) + d2(t) − α((β A1 + �A1)x

+ F1(x) + d1(t)) + μ(t).
(4)

The parameters belonging to the drive and response systems are always unknown.
Now using the adaptive control and the parameter update rule techniques, the adaptive
nonlinear controller is selected as

μ(t) = − (γ̂ A2 + �A2)y − F2(y) − d2(t) + α((β̂ A1 + �A1)x

+ F1(x) + d1(t)) − ke,
(5)

and adaptive laws of parameters are taken as

˙̂
β = −[ f (x)]T e, ˙̂γ = [g(y)]T e,

where

A1x = f (x) and A2 y = g(y),

k > 0 is a constant, β̂ and γ̂ are estimations of the unknown parameters β and γ

respectively, which are constants.
Assume a positive Lyapunov function

V = [eT e + β̄T β̄ + γ̄ T γ̄ ]
2

,
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where

β̄ = (β − β̂), γ̄ = (γ − γ̂ ).

With proper choices of the adaptive control law and parameter update rule as above for
unknown parameters are designed, the time derivative of V along the solution in eq. (4)
will be smaller than zero. In other words, the error vector will approach zero as time goes
infinite and from Lyapunov stability theory [39]. Thus, the states of the slave system and
master system are asymptotically projective synchronized. This implies that the trajectory
of the response system (2) with initial condition y0 can asymptotically approach the drive
system (1) with initial condition x0 and finally implement the projective synchronization.

Remark 1. In eq. (3), if α = 1 and α = −1, the problem will be complete synchronization
and antisynchronization, respectively.

Remark 2. If α = 0, the synchronization problem will be reduced to a chaos control
problem.

3. Descriptions of the systems

3.1 Genesio–Tesi system

The Genesio–Tesi chaotic system [40] is one of paradigms of chaos since it captures many
features of chaotic systems. It includes a simple square part and three simple ordinary
differential equations that depend on three positive real parameters. The dynamic equation
of the system is as follows:

Dt x = y,

Dt y = z,

Dt z = −ax − by − cz + mx2, (6)

where x , y, z are state variables and a, b, c are the positive real constants satisfying
cb < a. The chaotic attractors in x–y–z space and x–y, y–z, z–x planes are depicted in
figure 1 for a = 6, b = 2.92, c = 1.2 and m = 1.

3.2 Li system

Li system [41] derived from the Lorenz system is defined as

Dt x = a(y − x),

Dt y = −y + xz,

Dt z = b − xy − cz, (7)

where x , y, z are state variables, a, b, c are the positive real constants and a = 5, b = 16,
c = 1 to yield chaotic trajectory. The chaotic attractors in x–y–z space and x–y, y–z, z–x
planes are depicted in figure 2.
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Figure 1. Phase portraits of Genesio–Tesi chaotic attractor in (a) x–y–z space,
(b) x–y plane, (c) y–z plane and (d) x–z plane.

3.3 Lorenz system

The Lorenz system [42] is given by

Dt x = a(y − x),

Dt y = bx − y − xz,

Dt z = xy − cz, (8)

where x , y, z are state variables, a, b, c are the positive real constants and a = 10, b = 28,
c = 8/3 yield chaotic trajectory. The chaotic attractors in x–y–z space and x–y, y–z, z–x
planes are depicted in figure 3.

4. Adaptive projective synchronization between the uncertain Genesio–Tesi
and the uncertain Li chaotic systems

In this section, the projective synchronization between the uncertain Genesio–Tesi chaotic
system (9) and the uncertain Li chaotic system (10) are studied. It is assumed that
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Figure 2. Phase portraits of Li chaotic attractor in (a) x–y–z space, (b) x–y plane,
(c) y–z plane and (d) x–z plane.

Genesio–Tesi system with four unknown parameters drives the Li system with three
unknown parameters. Our aim is to design a control function so that the amplitudes of the
trajectories of the response and the drive systems are proportional, adjusting the unknown
parameters simultaneously.

The drive system is given by

Dt x1 = y1 + 0.5x1 + 0.1 cos(100t),

Dt y1 = z1 − 0.3y1 + 0.1 sin(100t),

Dt z1 = −ax1 − by1 − cz1 + mx2
1 − 0.5x1 + 0.1 sin(100t), (9)

where the uncertain parameter

�A1 =
⎛
⎝

0.5 0 0
0 −0.3 0

−0.5 0 0

⎞
⎠

and the disturbance term

d1(t) =
⎛
⎝

0.1 cos(100t)
0.1 sin(100t)
0.1 sin(100t)

⎞
⎠ .
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Figure 3. Phase portraits of Lorenz chaotic attractor in (a) x–y–z space, (b) x–y
plane, (c) y–z plane and (d) x–z plane.

The response system is described by

Dt x2 = p(y2 − x2) + 4y2 − sin(50t) + μ1(t),

Dt y2 = −y2 + x2z2 + z2 + 4x2 + 5 sin(50t) + μ2(t),

Dt z2 = q − x2 y2 − r z2 − 0.5x2 + cos(50t) + μ3(t), (10)

where the uncertain parameter

�A2 =
⎛
⎝

0 4 0
4 0 1

−0.5 0 0

⎞
⎠ ,

the disturbance term

d2(t) =
⎛
⎝

− sin(50t)
5 sin(50t)
cos(50t)

⎞
⎠ ,

and

μ(t) = [μ1(t), μ2(t), μ3(t)]T
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are three control functions to be designed. The error dynamical system is

e1 = x2 − αx1, e2 = y2 − αy1, e3 = z2 − αz1.

In order to determine the control functions to realize the projective synchronization
between systems (9) and (10), we obtain

Dt e1 = p(y2 − x2) + 4y2 − sin(50t) − α(y1 + 0.5x1 + 0.1 cos(100t)) + μ1(t),

Dt e2 = − y2 + x2z2 + z2 + 4x2 + 5 sin(50t) − α(z1 − 0.3y1

+ 0.1 sin(100t)) + μ2(t),

Dt e3 = q − x2 y2 − r z2 − 0.5x2 + cos(50t) − α(−ax1 − by1 − cz1

+ mx2
1 − 0.5x1 + 0.1 sin(100t)) + μ3(t). (11)

Next to find proper control functions μi (t), i = 1, 2, 3 and parameter update rule,
such that system (10) globally projective synchronizes system (9) asymptotically, i.e.,
limt→ ∞ ‖e‖ = 0. For systems (9) and (10) in the absence of control functions μi (t) = 0,
i = 1, 2, 3, if the initial condition (x1(0), y1(0), z1(0)) 	= (x2(0), y2(0), z2(0)), then the
trajectories of the two systems will quickly separate each other and become irrelevant.
However, when controls are applied, the two systems will approach projective synchro-
nization for any initial condition by appropriate control functions. With this idea, we
propose the following adaptive control law for system equation (10):

μ1(t) = − p̂(y2 − x2) − 4y2 + sin(50t) + α(y1 + 0.5x1 + 0.1 cos(100t))

− k1e1,

μ2(t) = y2 − x2z2 − z2 − 4x2 − 5 sin(50t)
+ α(z1 − 0.3y1 + 0.1 sin(100t)) − k2e2,

μ3(t) = − q̂ + x2 y2 + r̂ z2 + 0.5x2 − cos(50t)

+ α(−âx1 − b̂y1 − ĉz1 + m̂x2
1 − 0.5x1 + 0.1 sin(100t)) − k3e3,

(12)

and parameters update rule for seven unknown parameters a, b, c, m, p, q, r as

˙̂a = αx1e3,
˙̂b = αy1e3, ˙̂c = αz1e3, ˙̂m = −αx2

1 e3,

˙̂p = (y2 − x2)e1, ˙̂q = e3, ˙̂r = −z2e3,
(13)

where ki (i = 1, 2, 3) are positive real scalars and â, b̂, ĉ, m̂, p̂, q̂ , r̂ are estimated values
of a, b, c, m, p, q, r respectively.

Equation (12) with eq. (11) yields the error dynamics as

Dt e1 = p̄(y2 − x2) − k1e1,

Dt e2 = −k2e2,

Dt e3 = α(āx1 + b̄y1 + c̄z1 − m̄x2
1) + q̄ − r̄ z2 − k3e3, (14)

where

ā = a − â, b̄ = b − b̂, c̄ = c − ĉ, m̄ = m − m̂,

p̄ = p − p̂, q̄ = q − q̂, r̄ = r − r̂ .
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Consider the following Lyapunov function:

V (t) = [eT e + ā2 + b̄2 + c̄2 + m̄2 + p̄2 + q̄2 + r̄2]
2

. (15)

The time derivative of V along the solution of error dynamical systems gives that

˙V (t) = eT ė + ā ˙̄a + b̄ ˙̄b + c̄ ˙̄c + m̄ ˙̄m + p̄ ˙̄p + q̄ ˙̄q + r̄ ˙̄r
= e1ė1 + e2ė2 + e3ė3 + ā(−˙̂a) + b̄(− ˙̂b) + c̄(−˙̂c) + m̄(− ˙̂m) + p̄(− ˙̂p)

+ q̄(− ˙̂q) + r̄(−˙̂r)

= e1[ p̄(y2 − x2) − k1e1] + e2[−k2e2] + e3[α(āx1 + b̄y1 + c̄z1 − m̄x2
1)

+ q̄ − r̄ z2 − k3e3] + ā[−αx1e3] + b̄[−αy1e3] + c̄[−αz1e3]
+ m̄[αx2

1 e3] + p̄[−(y2 − x2)e1] + q̄[−e3] + r̄ [z2e3]
= −k1e2

1 − k2e2
2 − k3e2

3

= −eT Pe ≤ 0, (16)

where

e =
⎛
⎝

e1

e2

e3

⎞
⎠ , P =

⎛
⎝

k1 0 0
0 k2 0
0 0 k3

⎞
⎠ .

Since V̇ is negative semidefinite, then e1, e2, e3, â, b̂, ĉ, m̂, p̂, q̂ , r̂ ∈ L∞. From error
system (14), we have ė1, ė2, ė3 ∈ L∞. Since ˙V (t) = −eT Pe and P is a positive definite
matrix, then

∫ t

0
λmin(P)‖e‖2dt ≤

∫ t

0
eT Pe dt =

∫ t

0
−V̇ (t)dt =V (0)−V (t)≤V (0), (17)

where λmin(P) is the minimum eigenvalue of positive-definite matrix P . Thus ė1, ė2, ė3 ∈
L2. According to Barabalat’s lemma, if ei (i = 1, 2, 3) have finite values as t → ∞ and
if ėi are uniformly continuous then ėi → 0 as t → ∞. Consequence of this lemma is, if
ei ∈ L2[0,∞) and ėi are bounded then ei → 0 as t → ∞.

Therefore,

[e1, e2, e3]T → 0 as t → ∞.

Therefore, adaptive projective synchronization is achieved between the drive system (9)
and the response system (10).

4.1 Numerical simulations and results

In numerical simulations, the parameters of uncertain Genesio–Tesi and Li systems
are taken as (a, b, c, m) = (6, 2.92, 1.2, 1) and (p, q, r) = (5, 16, 1) respectively,
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Figure 4. Phase portraits of (a) uncertain Genesio–Tesi and (b) uncertain Li systems.

such that both systems exhibit chaotic behaviour. The chaotic attractor of the uncertain
chaotic Genesio–Tesi and Li systems are given in figure 4. The initial values of
the drive and response systems are taken as (x1(0), y1(0), z1(0)) = (3,−4,−3) and
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Figure 7. Projective synchronization of the drive system (9) and the response system
(10) with the adaptive control method at α = −2: (a) between x1 and x2 signals, (b)
between y1 and y2 signals, (c) between z1 and z2 signals and (d) the error functions
e1(t), e2(t) and e3(t) with time t .
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(x2(0), y2(0), z2(0)) = (−3,−4, 3) respectively. The fourth-order Range–Kutta method
is used to solve the two systems of eqs (9) and (10) with time step size taken as 0.001.
We assume control inputs as (k1, k2, k3) = (1, 1, 1). For α = 2, projective synchro-
nization of systems (9) and (10) via adaptive control laws (12) and parameter update rule
(13) with the initial estimated parameters (â(0), b̂(0), ĉ(0), m̂(0)) = (2,−3, 5,−1) and
( p̂(0), q̂(0), r̂(0)) = (−4, 10, 5) are shown in figures 5 and 6. Figure 5 shows that the
state response and the projective synchronization error system (14) converge to zero and
figure 6 shows that the estimated values (â(t), b̂(t), ĉ(t), m̂(t)) and ( p̂(t), q̂(t), r̂(t)) of
unknown parameters of systems (9) and (10) converge to (a, b, c, m) = (6, 2.92, 1.2, 1)

and (p, q, r) = (5, 16, 1) respectively as t → ∞. For α = −2, the projective synchro-
nization with antiphase pattern between systems (9) and (10) are shown in figure 7. For
α = 1, time variation of the states are shown in figures 8a–8c and the corresponding
complete synchronization error is shown in figure 8d. For α = −1, state response and the
antisynchronization error system (14) converge to zero as shown in figure 9.
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Figure 8. Synchronization of the drive system (9) and the response system (10) with
the adaptive control method at α = 1: (a) between x1 and x2 signals, (b) between y1
and y2 signals, (c) between z1 and z2 signals and (d) the error functions e1(t), e2(t)
and e3(t) with time t .
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Figure 9. Antisynchronization of the drive system (9) and the response system (10)
with the adaptive control method at α = −1: (a) between x1 and x2 signals, (b)
between y1 and y2 signals, (c) between z1 and z2 signals and (d) the error functions
e1(t), e2(t) and e3(t) with time t .

5. Adaptive projective synchronization between the uncertain Li and the uncertain
Lorenz chaotic systems

In this section, the projective synchronization between the chaotic Li system and the
chaotic Lorenz system is studied. It is considered that the Li system drives the Lorenz
system with three unknown parameters. The drive and the response systems are defined
as follows:

Dt x1 = a(y1 − x1) + 4y1 − sin(50t),

Dt y1 = −y1 + x1z1 + z1 + 4x1 + 5 sin(50t),

Dt z1 = b − x1 y1 − cz1 − 0.5x1 + cos(50t), (18)

where the uncertain parameter

�A1 =
⎛
⎝

0 4 0
4 0 1

−0.5 0 0

⎞
⎠ ,
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the disturbance term

d1(t) =
⎛
⎝

− sin(50t)
5 sin(50t)
cos(50t)

⎞
⎠

and

Dt x2 = p(y2 − x2) + 2x2 − z2 − 0.5 cos(10t) + μ1(t),

Dt y2 = qx2 − y2 − x2z2 + 3x2 + 4 sin(10t) + μ2(t),

Dt z2 = x2 y2 − r z2 + y2 + 2 cos(50t) + μ3(t), (19)

where the uncertain parameter

�A2 =
⎛
⎝

2 0 −1
3 0 0
0 1 0

⎞
⎠ ,

the disturbance term

d2(t) =
⎛
⎝

−0.5 cos(10t)
4 sin(10t)
2 cos(10t)

⎞
⎠ ,

and

μ(t) = [μ1(t), μ2(t), μ3(t)]T

are three control functions to be designed. In order to determine the control functions to
realize the projective synchronization between systems (18) and (19), we obtain

Dt e1 = p(y2 − x2) + 2x2 − z2 − 0.5 cos(10t) − α(a(y1 − x1) + 4y1

− sin(50t)) + μ1(t),

Dt e2 = qx2 − y2 − x2z2 + 3x2 + 4 sin(10t) − α(−y1 + x1z1 + z1

+ 4x1 + 5 sin(50t)) + μ2(t),

Dt e3 = x2 y2 − r z2 + y2 + 2 cos(50t) − α(b − x1 y1 − cz1 − 0.5x1

+ cos(50t)) + μ3(t), (20)

where

e1 = x2 − αx1, e2 = y2 − αy1, e3 = z2 − αz1.

Our aim is to find proper control functions μi (t), i = 1, 2, 3 and parameter update rule,
such that system (19) globally projective synchronizes the system (18) asymptotically,
i.e., limt→ ∞ ‖e‖ = 0. Considering the adaptive control law for system (19) as

μ1(t) = − p̂(y2 − x2) − 2x2 + z2 + 0.5 cos(10t) + α(â(y1 − x1) + 4y1

− sin(50t)) − k1e1,

μ2(t) = − q̂x2 + y2 + x2z2 − 3x2 − 4 sin(10t) + α(−y1 + x1z1 + z1

+ 4x1 + 5 sin(50t)) − k2e2,

μ3(t) = − x2 y2 + r̂ z2 − y2 − 2 cos(50t) + α(b̂ − x1 y1 − ĉz1 − 0.5x1

+ cos(50t)) − k3e3 (21)
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Figure 10. Phase portrait of the uncertain Lorenz system.
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Figure 11. Projective synchronization of the drive system (18) and the response sys-
tem (19) with the adaptive control method at α = 2: (a) between x1 and x2 signals, (b)
between y1 and y2 signals, (c) between z1 and z2 signals and (d) the error functions
e1(t), e2(t) and e3(t) with time t .
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Figure 12. Estimated values of parameters a, b, c and p, q, r of (a) Li and (b) Lorenz
systems with parameter update rule (22).
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Figure 13. Projective synchronization of the drive system (18) and the response sys-
tem (19) with the adaptive control method at α = −2: (a) between x1 and x2 signals,
(b) between y1 and y2 signals, (c) between z1 and z2 signals and (d) the error functions
e1(t), e2(t) and e3(t) with time t .
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and parameters update rule for six unknown parameters a, b, c, p, q, r as

˙̂a = −α(y1 − x1)e1,
˙̂b = −αe3, ˙̂c = αz1e3,

˙̂p = (y2 − x2)e1, ˙̂q = x2e2, ˙̂r = −z2e3, (22)

where â, b̂, ĉ, p̂, q̂ , r̂ are estimates values of a, b, c, p, q, r respectively, and proceeding
in similar way as in §4, we can easily show that the error system ei (t)→0 as t →∞ for
i =1, 2, 3, clearly exhibits the projective synchronization between systems (18) and (19).

5.1 Numerical simulations and results

In numerical simulations, the parameters of uncertain Li and Lorenz systems are taken as
(a, b, c) = (5, 16, 1) and (p, q, r) = (10, 28, 8/3) respectively, such that both the sys-
tems exhibit chaotic behaviour. The initial values of the drive and response systems are
taken as (x1(0), y1(0), z1(0)) = (3,−4,−13) and (x2(0), y2(0), z2(0)) = (−3, 4,−3)

respectively. The fourth-order Range–Kutta method is used to solve the two systems of
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Figure 14. Synchronization of the drive system (18) and the response system (19)
with the adaptive control method at α = 1: (a) between x1 and x2 signals, (b) between
y1 and y2 signals, (c) between z1 and z2 signals and (d) the error functions e1(t), e2(t)
and e3(t) with time t .
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eqs (18) and (19) with time step size as 0.001. We assume control inputs as (k1, k2, k3) =
(1, 1, 1). Figure 10 shows the chaotic attractor of the Lorenz system with parametric
uncertainties and disturbances. For α = 2, projective synchronization of systems (18)
and (19) via adaptive control laws (21) and parameter update rule (22) with the initial esti-
mated parameters (â(0), b̂(0), ĉ(0)) = (2,−3,−5) and ( p̂(0), q̂(0), r̂(0)) = (−1,−4, 6)

are shown in figures 11 and 12 respectively. Figures 11a–11c show that the state vectors
of systems (18) and (19) tend to be proportionally synchronized and the ratio of the ampli-
tudes of the two systems tends to a constant scaling factor and figure 11d shows that the
trajectories of the error system converges to zero. Figure 12 shows that the estimated val-
ues (â(t), b̂(t), ĉ(t)) and ( p̂(t), q̂(t), r̂(t)) of unknown parameters of systems (18) and
(19) converge to (a, b, c) = (5, 16, 1) and (p, q, r) = (10, 28, 8/3) as t → ∞. For
α = −2, state variables of the two systems tend to be proportionally synchronized in the
opposite direction and error system converges to zero which is shown in figure 13. For
α = 1, time variations of the states are shown in figures 14a–14c and the corresponding
complete synchronization error is shown in figure 14d. For α = −1, the state response
and the antisynchronization error system converges to zero are shown in figure 15.
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Figure 15. Antisynchronization of the drive system (18) and the response system
(19) with the adaptive control method at α = −1: (a) between x1 and x2 signals, (b)
between y1 and y2 signals, (c) between z1 and z2 signals and (d) the error functions
e1(t), e2(t) and e3(t) with time t .
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6. Conclusion

The present investigation has accomplished two significant goals. Firstly, it success-
fully carried out the study of projective synchronization between Genesio–Tesi and Li
chaotic systems, and Li and Lorenz chaotic systems with uncertainties and external dis-
turbances using adaptive control method. Adaptive controller and parameters update law
are designed properly to synchronize two different pairs of chaotic systems based on the
Lyapunov stability theorem, where the state of the response and the drive systems are
synchronized with a constant scaling factor. The second one is the numerical simula-
tion, carried out using Runge–Kutta method. This shows that the method is reliable and
effective for adaptive projective synchronization of nonlinear dynamical systems. This
type of projective synchronization with uncertainties and external disturbances is highly
applicable in secure communication.
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