
PRAMANA c© Indian Academy of Sciences Vol. 81, No. 1
— journal of July 2013

physics pp. 169–176

Nonlinear propagation of ion-acoustic waves
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Abstract. Nonlinear propagation of ion-acoustic (IA) waves in a degenerate dense plasma (with
all the constituents being degenerate, for both the non-relativistic or ultrarelativistic cases) have been
investigated by the reductive perturbation method. The linear dispersion relation and Korteweg–
de Vries (KdV) equation have been derived, and the numerical solutions of KdV equation have
been analysed to identify the basic features of electrostatic solitary structures that may form in
such a degenerate dense plasma. The implications of our results in compact astrophysical objects,
particularly, in white dwarfs and neutron stars, have been briefly discussed.
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1. Introduction

Presently, the main theoretical concern is to understand the environment of the compact
objects having their interiors supporting themselves via degenerate pressure. The degen-
erate pressure, which arises due to the combined effect of Pauli’s exclusion principle
(Wolfgang Ernst Pauli, 1925) and Heisenberg’s uncertainty principle (Werner Heisenberg,
1927), depends only on the fermion number density, not on its temperature. This degener-
ate pressure has a vital role for studying the electrostatic perturbation in matters existing
in extreme conditions [1–6]. The extreme conditions of matter are caused by the signifi-
cant compression of the interstellar medium. High density of degenerate matter in these
compact objects (which are, in fact, ‘relics of stars’) is one of these extreme conditions.
These interstellar compact objects, having ceased burning thermonuclear fuel, thereby no
longer generating thermal pressure, are contracted significantly, and as a result, the den-
sity of their interiors becomes extremely high for providing non-thermal pressure through
degenerate pressure of their constituent particles and particle–particle interaction. The
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observational evidence and theoretical analysis imply that these compact objects support
themselves against gravitational collapse by degenerate pressure.

The degenerate electron number density in such a compact object is so high (e.g. in
white dwarfs it can be of the order of 1030 cm−3, or even more [7]) that the electron Fermi
energy is comparable to the electron mass energy and the electron speed is comparable
to the speed of light in vacuum. The equation of state for degenerate electrons in such
interstellar compact objects are mathematically explained by Chandrasekhar [3] for two
limits, namely non-relativistic and ultrarelativistic limits. The interstellar compact objects
provide us cosmic laboratories for studying the properties of the medium (matter), as well
as waves and instabilities [8–16] in such a medium at extremely high densities (degen-
erate state) for which quantum as well as relativistic effects become important [8,15].
The quantum effects on linear [11,13,16] and nonlinear [12,14] propagation of electro-
static and electromagnetic waves have been investigated using the quantum hydrodynamic
(QHD) model [8,16], which is an extension of classical fluid model in a plasma, and
by using the quantum magnetohydrodynamic (QMHD) model [11–14], which involves
spin- 1

2 and one-fluid MHD equations.
Recently, a number of theoretical investigations have also been done of the nonlinear

propagation [17–20] of electrostatic waves in degenerate quantum plasma by a number
of authors, e.g. Hass [21], Misra and Samanta [22], Misra et al [23] etc. However,
these investigations are based on the electron equation of state which is valid for the non-
relativistic limit. In 2011, Misra and Shukla [24] considered the nonlinear propagation
of electrostatic wave packets in an ultrarelativistic (UR) degenerate dense electron–ion
plasma. One year later, they discussed [25] the nonlinear propagation of electrostatic wave
packets in a collisional plasma composed of strongly coupled ions and relativistically
degenerate electrons. Some investigations have been done of the nonlinear propagation
of electrostatic waves in a degenerate dense plasma based on the degenerate electron equa-
tion of state which is valid for ultrarelativistic limit [26]. To the best of our knowledge,
no theoretical investigation has been done to study the extreme condition of matter for
both non-relativistic and ultrarelativistic limits. Therefore, in this paper, we consider a
degenerate dense plasma containing non-relativistic degenerate cold ion fluid and both
non-relativistic and ultrarelativistic degenerate electrons for studying the basic features
of solitary waves in such a degenerate dense plasma. The model is relevant for compact
interstellar objects (e.g., white dwarf, neutron star, etc.).

The paper is organized as follows. The governing equations are given in §2. The
numerical analysis is given in §3 and a brief summary is provided in §4.

2. Governing equations

We consider the propagation of electrostatic perturbation in a degenerate dense plasma
containing non-relativistic degenerate cold ion and degenerate electron fluids. Thus, at
equilibrium we have ni0 = ne0 = n0, where ni0 (ne0) is the ion (electron) number density
at equilibrium. The nonlinear dynamics of the electrostatic waves propagating in such a
degenerate plasma is governed by

∂ni

∂t
+ ∂

∂x
(niui) = 0, (1)
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∂ui

∂t
+ ui

∂ui

∂x
+ ∂φ

∂x
+ K1

ni

∂ni
α

∂x
= 0, (2)

ne
∂φ

∂x
− K2

∂nγ
e

∂x
= 0, (3)

∂2φ

∂x2
= ne − ni, (4)

where ni (ne) is the ion (electron) number density normalized by its equilibrium value ni0

(ne0), ui is the ion fluid speed normalized by Ci = (mec2/m i)
1/2 with me (m i) being the

electron (ion) rest mass and c being the speed of light in vacuum, φ is the electrostatic
wave potential normalized by mec2/e with e being the magnitude of the charge of an
electron, the time variable (t) is normalized by ωpi = (4πn0e2/m i)

1/2, and the space
variable (x) is normalized by λs = (mec2/4πn0e2)1/2. The constants K1 = nα−1

0 Ki/m2
i C2

i

and K2 = nγ−1
0 Ke/m iCi

2. The equations of state used here are given by

Pi = Kin
α
i , (5)

where

α = 5

3
, Ki = 3

5

(π

3

)1/3 π h̄2

m
� 3

5
	ch̄c, (6)

for the non-relativistic limit (where 	c = π h̄/mc = 1.2 × 10−10 cm and h̄ is the Planck
constant divided by 2π ). For the electron fluid,

Pe = Kenγ
e , (7)

where

γ = α, Ke = Ki for non-relativistic limit (8)

and

γ = 4

3
, Ke = 3

4

(
π2

9

)1/3

h̄c � 3

4
h̄c, (9)

in the ultrarelativistic limit [1–3,7].

3. Numerical analysis

To examine the electrostatic perturbations propagating in the ultrarelativistic degener-
ate dense plasma by analysing the outgoing solutions of (1)–(4), we first introduce the
stretched coordinates [27]

ζ = −ε1/2(x + Vpt), (10)

τ = ε3/2t, (11)

where Vp is the wave phase speed (ω/k where ω is the angular frequency and k is the
wave number of the perturbation mode) and ε is a smallness parameter measuring the
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weakness of the dispersion (0 < ε < 1). We then expand ni, ne, ui and φ, in power series
of ε:

ni = 1 + εn(1)
i + ε2n(2)

i + · · ·, (12)

ne = 1 + εn(1)
e + ε2n(2)

e + · · ·, (13)

ui = εu(1)
i + ε2u(2)

i + · · ·, (14)

φ = εφ(1) + ε2φ(2) + · · ·, (15)

and develop equations in various powers of ε. To the lowest order in ε, eqs (1)–(15)
give u(1)

i = −3Vpφ
(1)/(3V 2

p − 2K ′
1), n(1)

i = 3φ(1)/(3V 2
p − 2K ′

1), n(1)
e = φ(1)/γ K ′

2 and

Vp = √
γ K ′

2 + (2/3)K ′
1, where K ′

1 = α/m i(α−1). The relation Vp = √
γ K ′

2 + (2/3)K ′
1

represents the linear dispersion relation for the ion-acoustic type electrostatic waves in the
degenerate plasma under consideration [the new constants introduced here are given by
K ′

1 = αK1/(α−1) and K ′
2 = γ K2/(γ −1)]. We can express the linear dispersion relation

(taking the equilibrium and first-order perturbation only) in one-dimensional form as

ω2

k2
= C2

i

(mec2/n0 K ′
2) + k2λ2

s

+ K ′
1. (16)

We now examine the dispersion properties of these waves for an interstellar object like
white dwarfs (helium, carbon, oxygen-dominated models [1,2]), where mass density [4–
6] ρ0 can vary from ∼106 g cm−3 to ∼108 g cm−3.

We are interested in studying the nonlinear propagation of these dispersive ion-acoustic
type electrostatic waves in a degenerate plasma. To the next higher order in ε, we obtain
a set of equations

∂n(1)
i

∂τ
− Vp

∂n(2)
i

∂ζ
− ∂

∂ζ

[
u(2)

i + n(1)
i u(1)

i

] = 0, (17)

∂u(1)
i

∂τ
− Vp

∂u(2)
i

∂ζ
− u(1)

i

∂u(1)
i

∂ζ
− ∂φ(2)

∂ζ
− K ′

1
∂

∂ζ

⎡
⎣2n(2)

i

3
−

(
n(1)

i

)2

9

⎤
⎦ = 0,

(18)

∂φ(2)

∂ζ
− γ K ′

2
∂

∂ζ

[
n(2)

e + (γ − 2)

2

(
n(1)

e

)2
]

= 0, (19)

∂2φ(1)

∂ζ 2
= n(2)

e − n(2)
i . (20)

Now, combining eqs (17)–(20) we deduce a modified Korteweg–de Vries equation

∂φ(1)

∂τ
+ Aφ(1) ∂φ(1)

∂ζ
+ B

∂3φ(1)

∂ζ 3
= 0, (21)

172 Pramana – J. Phys., Vol. 81, No. 1, July 2013



Ion-acoustic waves in degenerate dense plasma

where

A =
(
3V 2

p − 2K ′
1

)2

18Vp

(
1

γ 2 K ′
2

2 + 3
(
27V 2

p − 2K ′
1

)
(
3V 2

p − 2K ′
1

)3

)
, (22)

B = (3V 2
p − 2K ′

1)
2

18Vp
. (23)

The stationary solitary wave solution of (21) is

φ(1) = φ(1)
m sech2

(
ξ

�

)
, (24)

Figure 1. The solitary profiles represented by eq. (24) for u0 = 1 and ni0 = 3×1031,
where both the constituent particles are non-relativistic.

Figure 2. The solitary profiles represented by eq. (24) for u0 = 0.1 and ni0 = 3 ×
1031, where both the constituent particles are non-relativistic.
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where ξ = ζ − u0τ , φ(1)
m = 3u0/A and � = (4B/u0)

1/2. It is obvious from eqs (22)
and (24) that the degenerate plasma under consideration supports compressive electro-
static solitary waves which are associated with a positive potential. It is obvious from
eqs (22)–(24) that the amplitude [φ(1)

m ] of these solitary structures depends on the den-
sity parameter μ, i.e., the ratio of electron to ion number density. It is also seen that the
amplitude increases (decreases) with the increase (decrease) of speed u0. The electrostatic
solitary profiles are shown in figures 1–4 where μ is the density ratio of the constituent
particles (electron to ion number density).

We now turn to eq. (21) with the term φ(1) which changes proportionally with the
parameter μ. We have numerically solved eq. (21), and have studied the effects of μ

on electrostatic solitary structures in both non-relativistic and ultrarelativistic degenerate

Figure 3. The effect of variation in density ratio of the constituents (μ = ne0/ni0) in
solitary profiles for ultrarelativistic electron with u0 = 1.

Figure 4. The effect of variation in density ratio of the constituents (μ = ne0/ni0) in
solitary profiles for ultrarelativistic electron with u0 = 0.1.

174 Pramana – J. Phys., Vol. 81, No. 1, July 2013



Ion-acoustic waves in degenerate dense plasma

electrons (ion always being non-relativistic degenerate). The results of the first case are
depicted in figures 1 and 2. It is observed that the solitary potential increases with the
increase of μ, or, in other words, the maximum electron number density results in the
maximum wave potential. It also holds good for the ultrarelativistic degenerate electrons
(shown in figures 3 and 4).

4. Summary

To summarize, we have investigated electrostatic solitary waves in a degenerate dense
plasma, which is relevant to interstellar compact objects [5,28–34]. The degenerate dense
plasma is found to support solitary structures [35–38] whose basic features (amplitude,
width, speed, etc.) depend only on the plasma number density. It has been shown here that
the amplitude, width and speed increase with the increase of the plasma number density,
particularly, the maximum number of light particles (electrons). This work is very much
effective and quite different from others and is more general than the relevant previous
works [7,26]. We hope that our present investigation will be helpful for understanding the
basic features of the localized electrostatic disturbances in compact astrophysical objects
(e.g., white dwarfs, neutron stars, etc.).
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