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Abstract. A class of general relativistic solutions in isotropic spherical polar coordinates which
describe compact stars in hydrostatic equilibrium are discussed. The stellar models obtained here
are characterized by four parameters, namely, λ, k, A and R of geometrical significance related to
the inhomogeneity of the matter content of the star. The stellar models obtained using the solutions
are physically viable for a wide range of values of the parameters. The physical features of the com-
pact objects taken up here are studied numerically for a number of admissible values of the param-
eters. Observational stellar mass data are used to construct suitable models of the compact stars.
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1. Introduction

The discovery of compact stellar objects, such as X-ray pulsars (Her X1, millisecond
pulsar SAX J1808.43658) and X-ray sources (4U 1820-30 and 4U 1728-34) which are
regarded as the probable strange star candidates, has led to critical studies of relativistic
models of such stellar configurations [1–10]. There are several such astrophysical as well
as cosmological situations where one needs to consider the equation of state of matter
involving matter densities of the order of 1015 g cm−3 or higher, exceeding the nuclear
density. The conventional approach of obtaining models of relativistic stars in equilib-
rium heavily relies on the availability of definite information about the equation of state
of its matter content. Our knowledge about possible equation of state inside a superdense
strange star at present is limited. In this context, Vaidya–Tikekar [1] and Tikekar [3] have
shown that in the absence of definite information about equation of state of matter content
of stellar configuration, the alternative approach of prescribing suitable ansatz geometry
for the interior physical three-space of the configuration leads to simple easily tractable
models of such stars which are physically viable. Relativistic models of superdense stars
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based on different solutions of Einstein’s field equations obtained by using Vaidya–
Tikekar approach of assigning different geometries with physical three-spaces of such
objects have been studied by several workers [6,7,9,10]. Pant and Sah [2] obtained a class
of relativistic static non-singular analytic solutions in isotropic form describing the space-
time of static spherically symmetric distribution of matter. The solution has been found
to lead to a physically viable causal model of neutron star with a maximum mass of 4M�.

In this paper we discuss a class of solution of relativistic field equations as obtained in
ref. [2] and examine the physical plausibility of several models of a class of neutron stars
using numerical procedures to explore the possibility of using it to describe the interior of
a compact star. It is possible to estimate the radius of a star when its mass is known. It is
also possible to determine the variation of matter density on its boundary surface and that
at the centre of a superdense star for the prescribed geometry. The plan of the paper is as
follows: in §2 the relevant relativistic field equations have been set up and their solution
is discussed. In §3 several features of physical relevance have been reported. In §4, stellar
models are discussed with the observational stellar mass data for different values of the
parameters λ, k, A and R. Finally in §5, we give a brief discussion.

2. Field equation and solution

The Einstein’s field equation is

Rμν − 1

2
gμν R = 8πGTμν, (1)

where gμν , R, Rμν and Tμν are the metric tensor, Ricci scalar, Ricci tensor and energy–
momentum tensor respectively. We use the following form of the space-time metric
given by

ds2 = eν(r)dt2 − eμ(r)(dr2 + r2d�2) (2)

with

d�2 = dθ2 + sin2 θ dφ2 (3)

using isotropic spherical polar coordinate. In the next section we use systems of units
with 8πG = 1, c = 1 respectively.

The energy–momentum tensor for a spherical distribution of matter in the form of
perfect fluid in equilibrium is given by

T μ
μ = diag(ρ,−p,−p,−p), (4)

where ρ and p are energy density and fluid pressure of matter respectively. Using the space-
time metric given by eq. (2), the Einstein’s field eq. (1) gives the following equations:

ρ = −e−μ

(
μ′′ + μ′2

4
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)
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p = e−μ
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)
. (7)
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Now, pressure isotropy condition from eqs (6) and (7) leads to the following relation
between metric variables μ and ν:

ν ′′ + μ′′ + ν ′2

2
− μ′2

2
− μ′ν ′ − 1

r

(
ν ′ + μ′) = 0. (8)

It is a second-order differential equation which permits a solution [2] as follows:

eν/2 = A

(
1 − kα

1 + kα

)
, eμ/2 = (1 + kα)2

1 + (r2/R2)
, (9)

where R, λ, k and A are arbitrary constants. In the above we denote

α(r) =
√

1 + (r2/R2)

1 + λ(r2/R2)
. (10)

We observe that the geometry of the three-space with metric

dσ 2 = dr2 + r2(dθ2 + sin2 θdφ2)

1 + (r2/R2)
(11)

is that of a three-sphere immersed in a four-dimensional Euclidean space. Accordingly,
the geometry of physical space is given by

ds2 = A2 (1 − kα)2

(1 + kα)2
dt2 − (1 + kα)4

1 + (r2/R2)
(dr2 + r2(dθ2 + sin2 θdφ2)), (12)

where α(r) is given by eq. (10). Hence the geometry of the three-space obtained at
t = constant section of the space-time of metric (12) is a deviation introduced in spherical
three-space and the parameter k is a geometrical parameter measuring inhomogeneity of
the physical space. However, for k = 0, the space-time metric (12) degenerates into that
of Einstein’s static Universe filled with matter of uniform density. The space-time metric
of Pant and Sah [2] is a generalization of the Buchdahl solution, the physical three-space
associated with which has the same feature. For λ = 0, the solution reduces to that
obtained by Buchdahl which is an analog of a classical polytrope of index 5. However,
for λ > 0, the solution corresponds to finite boundary models. Pant and Sah [2] obtained
a class of non-singular analytic solution of the general relativistic field equations for a
static spherically symmetric material distribution which is matched with Schwarzschild’s
empty space-time. In this paper we study physical properties of compact objects taking
different values of R, λ, k and A as permitted by the field equations. Using the solution
given by eq. (9) in eqs (5)–(7), one obtains explicit expressions for the energy density and
fluid pressure as follows:

ρ = 12(1 + λkα5)

R2(1 + kα)5
, (13)

p = 4(λk2α6 − 1)

R2(1 + kα)5(1 − kα)
. (14)

The exterior Schwarzschild line element is given by

ds2 =
(

1 − 2m

r0

)
dt2 −

(
1 − 2m

r0

)−1

dr2 − r2
0 (dθ2 + sin2 θdφ2), (15)
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where m represents the mass of the spherical object. This metric can be expressed in an
isotropic form [11] as

ds2 =
(

1 − (m/2r)

1 + (m/2r)

)2

dt2 −
(

1 + m

2r

)4
(dr2 + r2d�2) (16)

using the transformation r0 = r (1 + (m/2r))2 where r0 is the radius of the compact
object. This form of the Schwarzschild metric will be used here to match at the boundary
with the interior metric given by eq. (12).

3. Physical properties of a compact star

The solution given by eq. (9) is useful to study physical features of a compact star in a
general way which are outlined as follows:

(1) In this model, ρ and p are determined using eqs (13) and (14). We note that ρ is
obviously positive for any positive λ and k, while p ≥ 0 leads to two different cases:
(i) λ > 1/k2α6 with k < 1/α and (ii) λ < 1/k2α6 with k > 1/α.

(2) At the boundary of the star (r = b), the interior solution should be matched with the
isotropic form of Schwarzschild exterior solution, i.e.,

e
ν
2 |r=b =

(
1 − (m/2b)

1 + (m/2b)

)
, e

μ

2 |r=b =
(

1 + m

2b

)2
. (17)

(3) The physical radius of a star, r0, is determined knowing the radial distance where
the pressure at the boundary vanishes (i.e., p(r) = 0 at r = b). The physical
radius is related to the radial distance (r = b) through the relation r0 =
b (1 + (m/2b))2 [11].

(4) The ratio m/b is determined using eqs (9) and (16), which is given by

m

b
= 2

(
1 + kα√
1 + y2

− 1

)
. (18)

(5) The density inside the star should be positive, i.e., ρ > 0.
(6) Inside the star the stellar model should satisfy the condition, dp/dρ < 1 for the sound

propagation to be causal.

The usual boundary conditions are that the first and second fundamental forms be con-
tinuous across the boundary r = b. Applying the boundary conditions we determine A
which is given by

A = (1 − (m/2b))

(1 + (m/2b))

(√
1 + λ(b2/R2) + k

√
1 + (b2/R2)√

1 + λ(b2/R2) − k
√

1 + (b2/R2)

)
. (19)
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Equating eqs (9) and (16) at the boundary (r = b), we get an eighth-order polynomial
equation in y (here b/R is replaced by y):

[(1 + A)4 + k4(1 − A)4 − 8(1 + A)2 + 16 − 2k2(1 − A2)2 − 8k2(1 − A)2]
+ [2λ(1 + A)4 − 16λ(1 + A)2 − 8(1 + A)2 + 32(1 + λ)

− 2k2(1 − A2)2(1 + λ) − 8k2(2 + λ)(1 − A)2 + 2k4(1 − A)4]y2

+ [λ2(1 + A)4 − 8λ2(1 + A)2 − 8λ(1 + A)2 + (1 + 4λ + λ2)

− 2λk2(1 − A2)2 − 8k2(1 − A)2(1 + 2λ) + k4(1 − A)4]y4

− [8λ2(1 + A)2 − 32(1 + λ) − 8λk2(1 − A)2]y6 + 16λ2 y8 = 0, (20)

where λ, k and A are constants. Imposing the condition that pressure at the boundary
vanishes in eq. (14), we determine y which is given by

y =
√

1 − (λk2)1/3

(λk2)1/3 − λ
. (21)

Thus, the size of a star is determined by k and λ. It is evident that a real y is permitted
when k > λ with λ < 1, or when k < λ with λ > 1. Using eqs (20) and (21), a polynomial
equation in λ, k and A is obtained. Although eq. (20) is a polynomial of degree eight we
note that only one realistic solution for y is obtained for different domains of the values
of any pair of parameters namely, A, k and λ. Subsequently, the other parameters may
be determined. For example, when A = 2, we found that λ and k satisfy the inequalities
2.9 ≤ k ≤ 5 and 1.4877 × 10−6 ≤ λ ≤ 0.04, and when A = 4, the range of permitted
values are 1.7 ≤ k ≤ 2.3 and 0.0185 ≤ λ ≤ 0.0653. However, for a given λ, e.g., when
λ = 0.15, we note that the permitted values of A lie in the range 3.6 < A < 5.6 and when
λ = 0.1318, one obtains realistic solution for 3.5 < A < 5.8.

The square of the acoustic velocity dp/dρ takes the form

dp

dρ
= 6λkα5(1−kα)(1+kα)−5(1−kα)(λk2α6−1)+(λk2α6−1)(1+kα)

15(1 − kα)2(λα4(1 + kα) − (1 + λkα5))
.

(22)

The variation of dp/dρ for λ = 0.1318 and k = 2.2268 displayed in table 1. It is
evident that dp/dρ is maximum at the centre and gradually decreases outward. It is also

Table 1. Variation of dp/dρ with radial distance r for
λ = 0.1318 and k = 2.2268.

r in units of R km dp/dρ

0 0.521
0.1 0.518
0.2 0.513
0.3 0.504
0.4 0.496
0.41 0.495
0.42 0.495
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Table 2. Variation of dp/dρ with radial distance r for different values of
λ and k.

dp/dρ for dp/dρ for dp/dρ for
r in units λ = 0.1211 and λ = 0.1318 and λ = 0.15 and
of R km k = 2.2 k = 2.2268 k = 2.2681

0 0.524 0.521 0.520
0.1 0.521 0.518 0.520
0.2 0.514 0.513 0.513
0.3 0.504 0.504 0.508
0.4 0.494 0.496

found that inside the star the constraint dp/dρ < 1 is always maintained which ensures
causality. In table 2, variation of dp/dρ from the centre to the boundary for different
values of λ and k are presented. It is evident that as λ increases dp/dρ decreases at the
centre. The variation of the central density with λ and k are displayed in tables 3 and 4 for
A = 2 and A = 4 respectively. It is evident that the central density (ρc) decreases with
an increase in λ. Thus stellar models with larger λ accommodate a denser compact object
compared to that for lower values of λ and k. The variation of pressure and density with
radial distance are drawn employing eqs (13) and (14) which are shown in figures 1–4.
As it is not possible to express pressure in terms of density, we study the behaviour of
pressure and density inside the curve numerically. In figure 5, the variation of pressure
with density is plotted for different model parameters.

4. Physical analysis

In this section we analyse the physical properties of compact objects numerically. For
given values of λ and k, the radial coordinate at which the pressure vanishes may be
determined from eq. (14). The mass-to-radial distance m/b is estimated from eq. (18),
which in turn determines the physical size of the compact star (r0). For a given set of
values of the parameters λ, A and k, the mass (m) and radius of a compact object is
obtained in terms of the model parameter R. Thus, for a known mass of a compact star,
R is determined which in turn determines the corresponding radius. As the equation
to determine the parameters in the model is highly non-linear and intractable in known
functional form, we adopt a numerical technique in the next section.

Table 3. Variation of central density for A = 2 for different values of λ

and k.

λ k ρc in units of (1.9 × 1015)/R2 kg/m3

1.4877 × 10−6 2.9 0.0133
1.3836 × 10−5 3 0.0117
0.0048 4 0.0039
0.0400 5 0.0019
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Table 4. Variation of central density for A = 4 for different values of λ

and k.

λ k ρc in units of (1.9 × 1015)/R2 kg/m3

0.0185 1.7 0.0863
0.0289 1.8 0.0734
0.0432 1.9 0.0633
0.0876 2.1 0.0496
0.1211 2.2 0.0453
0.15 2.268 0.0431

The radial variation of pressure and density of compact stars for different parameters
are shown in figures 1–5. It is evident that as λ is increased both the pressure and density
at the centre is found to decrease and at the same time it corresponds to a smaller size
accommodating more mass.

For a given mass of a compact star [12], it is possible to estimate the corresponding
radius in terms of the parameter R. We note that for a given mass of a compact star known
from observation, the radius of the star may be estimated from a given R. However, as the
radius of a neutron star is ≤10 km, it is possible to obtain a class of stellar model taking
different R so that the size of the star satisfies the upper bound. In the next sections we
consider a few such stars whose masses are known from observations.

We present below four different models using stellar mass data [12–14]:

Model 1: We consider the X-ray pulsar, Her X-1 [12,15,16], which is characterized by
mass M = 1.47M�, where M� = the solar mass, and found that it permits a star with
radius r0 = 4.921 km, for R = 0.081 km. The compactness of the star in this case is
u = M/r0 = 0.30. The ratio of the density at the boundary to that at the centre of the
star is 0.0003 which is possible for the set of parameters λ = 1.48 × 10−6 and k = 2.9.
Taking different values of R we get different models but a physically realistic model
is obtained which accommodates a compact star with radius ∼10 km. For example, if
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0.0020
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r

p

Figure 1. Plots of variation of pressure with radial distance (in units of R) for λ =
0.15 (solid line), for λ = 0.1318 (dashed line) and for λ = 0.1211 (broken line).
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Figure 2. Plots of variations of density with radial distance (in units of R) for λ =
0.15 (solid line), for λ = 0.1318 (dashed line) and for λ = 0.1211 (broken line).

R = 2.504 km, one obtains a compact object with radius r0 = 7.791 km. In the later
case we note that the ratio of the density at the boundary to that at the centre is very high
(0.99). The compactness of the star is 0.189 which is permitted for the set of parameters
λ = 0.0393 and k = 4.99 with A = 2.

Model 2: We consider the X-ray pulsar, 4U 1700- 37, which is characterized by mass
M = 2.44M� [12]. We note that for A = 4, λ = 0.1211 and k = 2.2, the corresponding
radius of this star is r0 = 8.197 km with R = 1.819 km. The ratio of the density at
the boundary to that at the centre of the star in this case is 0.820. However, for A = 2,
λ = 0.1656 and k = 2.3, a compact object is permitted with radius r0 = 8.110 km when
R = 0.135 km. The ratio of the density at the boundary to that at the centre of the star
in this case is 0.0003. Another stellar model is obtained for A = 2, λ = 0.0393 and
k = 4.99, where the ratio of the density at the boundary to that at the centre is 0.99. In the
later case the values are more compared to the values one obtains taking A = 4. However,
both the cases permit a star with compactness factor u = 0.3.

0.0 0.5 1.0 1.5
0.0000
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0.0010

0.0015

0.0020

0.0025

0.0030

r

p

Figure 3. Plots of variations of pressure with radial distance (in units of R) for A = 4
(solid line), for A = 3 (broken line) and for A = 2 (dashed line).
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Figure 4. Plots of variations of density with radial distance (in units of R km) for
A = 4 (solid line), A = 3 (broken line) and A = 2 (dashed line).

Model 3: We consider the neutron star, J1518+4904, which is characterized by mass
M = 0.72M� [12]. For λ = 0.1211, k = 2.2 and A = 4, the radius of the star estimated
here is r0 = 2.419 km with R = 0.537 km. The ratio of the density at the boundary to
that at the centre of the star is 0.82. In this case the compactness factor u of the star = 0.3.
For A = 2 we note the following: (i) when λ = 1.48 × 10−6 and k = 2.9, it admits a
star with radius r0 = 2.4 km for R = 0.04 km and (ii) when λ = 0.0393 and k = 4.99,
it admits a star with radius r0 = 3.816 km for R = 1.226 km. The ratio of the density at
the boundary to that at the centre of the star in the first case is 0.0003 and that in the later
case is 0.988. However, the compactness factor for the former is 0.3 which is higher than
that in the second case (0.189).

Model 4: We consider the neutron star, J1748-2021 B, which is characterized by mass
M = 2.74M� [12]. For A = 4, λ = 0.1318 and k = 2.2268, a star of radius r0 = 9.281
km with R = 2.247 km is permitted. The ratio of the density at the boundary to that at the
centre of the star is 0.856. The compactness factor u = 0.3. In the other case one obtains
a star with radius r0 = 8.467 km with R = 3.406 km when λ = 0.1656 and k = 2.3. A

0.000037 0.0000375 0.000038 0.0000385 0.000039 0.0000395 0.00004
0

5. × 10−7

1. × 10−6

1.5 × 10−6

ρ

p

Figure 5. Plots of variations of pressure with density for λ = 0.0876 (green line), for
λ = 0.1318 (red line), for λ = 0.15 (solid line) and for λ = 0.165633 (dashed line).
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Table 5. Variation of mass and radius of a compact star for different
values of λ and k for R = 0.2 km.

A = 2 M (mass) (M�) r0 (radius) (km)

λ = 1.48 × 10−6, k = 2.9 3.61 12.087
λ = 1.17 × 10−5, k = 2.99 2.69 9.250
λ = 1.38 × 10−5, k = 3.0 2.63 9.067
λ = 3.93 × 10−2, k = 4.99 0.12 0.622

star of smaller size is thus permitted in the later case with compactness factor (0.32) than
that of the formal model.

For A = 2, stellar model admits a star with radius r0 = 13.154 km for R = 2.74 km,
λ = 0.138 × 10−5 and k = 3. However, a smaller star with radius r0 = 8.380 km is
permitted here when R = 0.181 km with λ = 1.17 × 10−5 and k = 2.99. The ratio of the
density at the boundary to that at the centre in the first case is 0.0017 which is higher than
in the later (0.0015). The compactness factor in the former model is 0.20 which is lesser
than the later case 0.32.

5. Discussions

In this paper, we present general relativistic solution for a class of compact stars which
are in hydrostatic equilibrium considering the isotropic form for a static spherically sym-
metric matter distribution. The general relativistic solution obtained by Pant and Sah
[2] is employed here to study compact objects. We use isotropic form of the exterior
Schwarzschild solution to match at the boundary of the compact object. The stellar mod-
els discussed here contains four parameters λ, A, k and R. The observed mass of a star
determines R for known values of λ, A, k.

We note the following: (i) In figure 1, variation of pressure with radial distance is
plotted for different values of λ for same values of A and K. The figure shows that as
λ increases pressure decreases inside the star. (ii) In figure 2, radial variation of density
is plotted for different λ. We note higher density for lower λ. (iii) The variation of
dp/dρ within the star for a given set of values of λ and k are shown in table 1. The
causality condition is obeyed inside the star and dp/dρ is maximum at the centre which
is however found to decrease monotonically radially outward. For different values of λ

Table 6. Variation of mass and radius of a compact star for different
values of λ and k for R = 2.5 km.

A = 4 M (mass) (M�) b0 (radius) (km)

λ = 0.1211, k = 2.2 3.35 11.268
λ = 0.1318, k = 2.2268 2.82 10.324
λ = 0.15, k = 2.2681 2.45 8.409
λ = 8.76 × 10−2, k = 2.1 4.19 13.688
λ = 0.1656, k = 2.3 1.79 6.214
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Table 7. Variation of the ratio of the density at the boundary to the density at the
centre of a compact star for different values of λ and k.

λ = 1.48 × 10−6, λ = 8.76 × 10−2, λ = 0.1211, λ = 0.1318, λ = 0.15, λ = 0.1656,
k = 2.9 k = 2.1 k = 2.2 k = 2.2268 k = 2.2681 k = 4.99

ρb/ρ0 1.89 × 10−5 0.45 0.54 0.58 0.69 0.81

and k, values of dp/dρ are also shown in table 2. It is evident that dp/dρ decreases when
λ and k values increase. (iv) Variation of central density for different values of λ and k
with A = 2 and A = 4 are presented in tables 3 and 4 respectively. We note that the
central density decreases as the value for the pair (λ and k) increases. From tables 3 and 4
similar tendency for central density is found to exist when A is increased. As the isotropic
Schwarzschild metric is singular at m = 2b, the model considered here may be useful for
representing a strange star with m 	= 2b or m < 2b. (v) In tables 5 and 6, the mass
of a star with its maximum size is shown for different values of λ and k taking density
of the star ρb = 2 × 1015 g/cm3 at the boundary. We obtain here a class of relativistic
stars for different values of λ, A, k and R. (vi) The density profile of a given star with
different values of λ and k is shown in table 7. As λ increases the ratio of the density at
the boundary to that at the centre is found to increase accommodating more compact stars.
(vii) In figure 3, variation of pressure with radial distance is plotted for different values
of A. It is evident that as A increases pressure decreases. (viii) In figure 4, variation
of density with radial distance is plotted for different values of A. We note that as A is
increased both the density and the pressure decrease. But the size of a star increases with
an increase in A thereby accommodating more compact stars. (ix) In figure 5, variation of
pressure with density is plotted for different values of λ. We note that for a given density,
pressure is more for higher λ, and this leads to a star with higher central density.

In §4, we present models of the neutron stars that are tested for some known compact
objects. As the equation of state is not known we analyse star of known geometry here.
The radii of the compact stars, namely, neutron stars, are also estimated here for known
mass with a given R. The parameter R permits a class of compact objects, some of which
are relevant observationally. By considering the observed masses of the compact objects,
namely, X-ray pulsars Her X-1, 4U 1700-37 and neutron stars J1518+4904, J1748-2021
B, we analyse the interior of the star. We obtain a class of compact star models for various
R with given values of k, λ and A. The stellar models obtained here can accommodate
highly compact objects. However, a detailed study of the stellar composition at high
pressure and density will be taken up elsewhere.
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