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A rotating charged black hole solution in f (R) gravity
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Abstract. In the context of f (R) theories of gravity, we address the problem of finding a rotating
charged black hole solution in the case of constant curvature. A new metric is obtained by solving
the field equations and we show that its behaviour is typical of a rotating charged source. In addition,
we analyse the thermodynamics of the new black hole. The results ensure that the thermodynamical
properties in f (R) gravities are qualitatively similar to those of standard General Relativity.
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1. Introduction

Increasing attention has been paid recently to modified theories of gravity in order to
understand several open cosmological questions such as the accelerated expansion of the
Universe and the nature of dark matter. A common option is to modify General Relativ-
ity by adding higher powers of the scalar curvature R, the Riemann and Ricci tensors,
or their derivatives [1] in the Lagrangian formulation. Lovelock and f (R) theories are
some examples of these attempts. Therefore, it is quite natural to ask about the existence
of black hole and its features in those gravitational theories. One can expect that some
signatures of black holes in these theories will be in disagreement with the expected phys-
ical results of Einstein’s gravity. For these purposes, research on the thermodynamical
quantities of black holes is of particular interest.

We shall consider the f (R) gravity theories in metric formalism in Jordan’s frame.
The gravitational Lagrangian is given by R + f (R) where f (R) is an arbitrary function
of the curvature scalar R. Einstein’s equations are usually fourth order in the metric
[2,3] and when working with constant curvature, solutions are very similar to those of
General Relativity with a cosmological constant. An example of this can be seen in the
f (R)-Maxwell static black hole obtained in [4–6], where it has been shown that all of
its thermodynamic quantities are similar to those of the Reissner–Nordström–AdS black
hole when making appropriate replacements.
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In this paper, we find the rotating charged static black hole of f (R) gravity in the case
of constant curvature scalar and study some of the thermodynamic aspects of the new
solution.

2. f (R) Theories with constant curvature scalar

Consider the action for f (R) gravity with Maxwell term in four dimensions

S = Sg + SM, (1)

where Sg is the four-dimensional gravitational action given by

Sg = 1

16π

ˆ
dDx

√|g |(R + f (R)) (2)

and SM is the electromagnetic action given by

SM = − 1

16π

ˆ
d4x

√−g
[
Fμν Fμν

]
, (3)

where g is the determinant of the metric, R is the scalar curvature and R + f (R) is the
function defining the theory under consideration. From the above action, the Maxwell
equation takes the form

∇μFμν = 0 (4)

while the field equations in the metric formalism take the form

Rμν

(
1+ f ′(R)

)− 1

2
(R + f (R)) gμν + (

gμν∇2 −∇μ∇ν

)
f ′(R) = 2Tμν, (5)

where Rμν is the Ricci tensor, ∇ is the usual covariant derivative and the stress-energy
tensor of the electromagnetic field is given by

Tμν = Fμρ Fν
ρ − gμν

4
Fρσ Fρσ (6)

with

T μ
μ = 0. (7)

Considering the constant curvature scalar R = R0, the trace of (5) leads to

R0
(
1 + f ′(R0)

) − 2 (R0 + f (R0)) = 0 (8)

which determines the constant curvature scalar,

R0 = 2 f (R0)

f ′(R0) − 1
(9)

as long as f ′(R0) − 1 �= 0. This shows that the selection of f (R0) fixes the value of the
Ricci scalar. Therefore, some theories of gravity can give multiple real values of R0 while
other theories may not have real solution for the constant Ricci scalar. Some examples
of the different models of f (R) theories and the respective values of R0 are reported in
[7–9].
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If the gravity theory (i.e. the selection of f (R0)) gives a real value for R0, we can use
eq. (9) in eq. (5) to obtain

Rμν = 1

2

(
f (R0)

f ′(R0) − 1

)
gμν + 2

1 + f ′(R0)
Tμν (10)

which shows similarity between this theory and General Relativity with an effective cos-
mological constant �eff = 1

2

(
f (R0)/( f ′(R0) − 1)

)
and an effective Newtonian constant

Geff = G/(1 + f ′(R0)). To ensure a positive effective gravitational constant, we shall
impose 1 + f ′(R0) > 0. It is also known [9] that f ′′(R0) > 0 (when requiring the
existence of a stable high-curvature regime such as the matter-dominated Universe) and
f ′(R0) < 0 (if we want to recover General Relativity at early times). These conditions
restrict f ′(R0) to be a negative, monotic function between the values −1 < f ′(R0) < 0.
Therefore, ( f (R0)/ f ′(R0) − 1) < 0 as long as f (R0) > 0, and it implies that we shall
consider a negative value of the Ricci scalar (i.e. the effective cosmological constant)
from now on.

Some of the most important models of f (R) gravity theories are

(1) f(R0) = α |R0|β . This model accounts for a Universe with accelerated expansion.
Equation (9) gives a curvature scalar given by

R0 = ±
[ ±1

α (β − 2)

]1/(β−1)

= 4�eff. (11)

Since we are considering only negative values of R0, the parameters of this kind of
solution are restricted to {α < 0, β > 2} or {α > 0, β < 1}.

(2) f(R0) = ± |R0|β eα/R − R0. This time, eq. (9) gives the curvature scalar as

R0 = α

β − 2
= 4�eff. (12)

The negative values of R0 are obtained for parameters in the ranges {α < 2, β > 2}
or {α > 0, β < 2}.

(3) f(R0) = R0
[
log(αR0)

]β − R0. The curvature scalar given by eq. (9) is

R0 = eβ

α
= 4�eff. (13)

The negative values of R0 are obtained for α < 0 and the condition 1+ f ′(R0) > 0
restrict β > 0.

3. Rotating charged black hole in f (R) theory

Inspired by the Kerr–Newman–AdS black hole solution, we introduce the axisymmetric
ansatz in Boyer–Lindquist-type coordinates (t, r, θ, ϕ),

ds2 = − B(r)

ρ2

[

dt − a sin2 θ

C(r)
dϕ

]2

+ ρ2

B(r)
dr2

+ ρ2

D(θ)
dθ2 + D(θ) sin2 θ

ρ2

[
a dt − r2 + a2

C(r)
dϕ

]2

(14)
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with

ρ2 = r2 + a2 cos2 θ (15)

and B(r), C(r) and D(θ) are functions to be determined by the field equations. However,
the field equations alone are insufficient to determine all the unknown functions uniquely.
Since we are interested in solutions possesing a regular horizon at r = r+ we shall impose
the condition B (r+) = 0. Additionally, we shall consider that in the asymptotic region,
the metric will be flat if R0 = 0 and Tμν → 0.

Solving the field equations (10) together with the condition of constant curvature scalar,
we obtain the solution

B = �r = (
r2 + a2

) (
1 + R0

12
r2

)
− 2Mr + Q2

(1 + f ′(R0))
(16)

C = � = 1 − R0

12
a2 (17)

D = �θ = 1 − R0

12
a2 cos2 θ (18)

and the line element can be written in the convenient form as

ds2 = − �r

ρ2

[

dt − a sin2 θ

�
dϕ

]2

+ ρ2

�r
dr2 + ρ2

�θ

dθ2

+ �θ sin2 θ

ρ2

[
a dt − r2 + a2

�
dϕ

]2

. (19)

Note that when a = 0 the solution reproduces the charged rotating black hole reported
in [4–6] and it is a generalization of the black hole for a limited case of f (R) theories
studied in [7]. The gauge field considered has the potential

At (r) = − Qr
√

ρ2�r

. (20)

4. Thermodynamics

To complete the analysis of the rotating charged solution, we shall calculate some ther-
modynamical quantities. The radius of the horizon r+ is defined by the condition �r = 0,
i.e.

(
r2
+ + a2

) (
1 + R0

12
r2
+

)
− 2Mr+ + Q2

(1 + f ′(R0))
= 0, (21)

and it gives the horizon area

A = 4π
(
r2+ + a2

)

�
= 4π

(
r2+ + a2

)

1 − (R0/12)a2
. (22)

The Hawking temperature is defined as

T = κ

2π
(23)
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with the surface gravity κ given by

κ2 = −1

2
∇μχν∇μχν, (24)

where χν are null Killing vectors. The metric (19) has the Killing vectors ξν = ∂t and
ζ ν = ∂ϕ that are associated with the time translation and rotational invariance respectively.
Thus, we define

χν = ξν + �ζν (25)

and we shall find � imposing χν to be a null vector. This gives

χνχν = gtt + 2�gtϕ + �2gϕϕ = 0, (26)

from which

� = − gtϕ

gϕϕ

±
√(

gtϕ

gϕϕ

)2

− gtt

gϕϕ

(27)

and therefore at the event horizon �(r+) = 0, it reduces to

�+ = a�

r2+ + a2
. (28)

This gives the surface gravity

κ = 1

2
(
r2+ + a2

)
d�r

dr

∣∣∣∣
r=r+

(29)

κ = r2+ − a2 − Q2

(1+ f ′(R0))
+ R0

12 a2r2+ + R0
4 r4+

2r+
(
r2+ + a2

) (30)

and the corresponding Hawking temperature

T = r2+ − a2 − Q2

(1+ f ′(R0))
+ R0

12 a2r2+ + R0
4 r4+

4πr+
(
r2+ + a2

) . (31)

The same result is obtained by making an analytical continuation of the Lorentzian
metric by t → iτ and a → ia, which gives the Euclidean section. Here, the regularity at
r = r+ requires the identification τ ∼ τ + β and ϕ ∼ ϕ + iβ�+ where

β = 4πr+
(
r2+ + a2

)

r2+ − a2 − Q2

(1+ f ′(R0))
+ R0

12 a2r2+ + R0
4 r4+

= 1

T
. (32)

4.1 Generalized Smarr formula

To obtain a generalized Smarr formula we find the total energy (mass) E and angular
momentum J of the black hole by means of Komar integrals. To do it, we use the Killing
vectors 1

�
∂
∂t and ∂

∂ϕ
to obtain

E = M

�2
(33)

J = aM

�2
. (34)

Pramana – J. Phys., Vol. 78, No. 5, May 2012 701



Alexis Larrañaga

Note that the time Killing vector has been normalized in order to generate an so (3, 2)

algebra from the corresponding conserved quantities. Using these quantities and the
horizon area (22) in eq. (21), we obtain

E2 = A

16π
+ π

A

[
4J 2 + Q4

(1 + f ′(R0))
2

]
+ Q2

2 (1 + f ′(R0))

− R0

12
J 2 − R0 A

96π

[
Q2

(1 + f ′(R0))
+ A

4π
− R0 A2

384π2

]
. (35)

By identifying the entropy of the black hole as

S = A

4
= π

(
r2+ + a2

)

1 − R0
12 a2

(36)

we obtain the generalized Smarr formula

E2 = S

4π
+ π

4S

[
4J 2 + Q4

(1 + f ′(R0))
2

]
+ Q2

2 (1 + f ′(R0))
− R0

12
J 2

− R0S

24π

[
Q2

(1 + f ′(R0))
+ S

π
− R0S2

24π2

]
. (37)

As is well known, this relation contains all the thermodynamical information of the
black hole. Therefore, one can define the quantities conjugate to S, J and Q as the
temperature, angular velocity and electric potential respectively,

T =
(

∂ E

∂S

)

J,Q

= 1

8π E

[
1 − π2

S2

(
4J 2 + Q4

(1 + f ′(R0))
2

)

− R0

6

(
Q2

(1 + f ′(R0))
+ 2S

π
− R0S2

8π2

)]
(38)

� =
(

∂ E

∂ J

)

S,Q

= J

E

(
π S − R0

12

)
(39)

� =
(

∂ E

∂ Q

)

S,J

= Q

2E (1 + f ′(R0))

[
π

S

Q2

(1 + f ′(R0))
+ 1 − R0S

12π

]
. (40)

It is easy to verify that the relation (38) for temperature coincides with eq. (31). How-
ever, it is not true that the angular momentum (39) coincides with eq. (28). In order to
clarify this point, let us write the metric (19) in the form

ds2 = −N 2dt2 + ρ2

�r
dr2 + ρ2

�θ

dθ2 + ϑ2 sin2 θ

ρ2�2
(dϕ − Nϕdt)2

, (41)

where

ϑ2 = (
r2 + a2

)
�θ − a2�r sin2 θ (42)

N = ρ2�r�θ

ϑ2
(43)

702 Pramana – J. Phys., Vol. 78, No. 5, May 2012



Rotating charged black hole in f(R)

and

Nϕ = a�

ϑ2

[(
r2 + a2) �θ − �r

]
. (44)

At the horizon, the function Nϕ coincides with �+ but asymptotically (r → ∞) it
becomes

Nϕ → R0

12
a (45)

that can be interpreted as the angular velocity at infinity. Therefore, the angular velocity
defined in eq. (39) actually corresponds to the difference

� = �+ − R0

12
a (46)

as can be easily checked.
Finally, the thermal capacity C at constant angular momentum and charge is another

thermodynamical quantity of interest. It is given by

C = T

(
∂S

∂T

)

J,Q

= 4π ET S

1 − 4πT (2M + T S) − R0
6

(
Q2 + 3S

π
− R0 S2

4π2

) . (47)

5. Conclusion

In this work we have obtained a rotating charged solution in f (R) theory of gravity with
constant curvature representing a black hole. A new metric is obtained by solving the field
equations and we have also calculated some thermodynamical quantities. The behaviour
of the new solution is typical of a rotating charged source and the analysis shows that
the thermodynamical properties in f (R) gravities, and specially in the constant curvature
case, are qualitatively similar to those of standard General Relativity.
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